CN113354421A - 一种粘接剂及其制备方法和应用 - Google Patents

一种粘接剂及其制备方法和应用 Download PDF

Info

Publication number
CN113354421A
CN113354421A CN202110461361.6A CN202110461361A CN113354421A CN 113354421 A CN113354421 A CN 113354421A CN 202110461361 A CN202110461361 A CN 202110461361A CN 113354421 A CN113354421 A CN 113354421A
Authority
CN
China
Prior art keywords
powder
adhesive
curing
ceramic
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110461361.6A
Other languages
English (en)
Other versions
CN113354421B (zh
Inventor
杨政
陈浩
汤志军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jingcheng Special Ceramic Co ltd
Original Assignee
Hunan Jingcheng Special Ceramic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jingcheng Special Ceramic Co ltd filed Critical Hunan Jingcheng Special Ceramic Co ltd
Priority to CN202110461361.6A priority Critical patent/CN113354421B/zh
Publication of CN113354421A publication Critical patent/CN113354421A/zh
Application granted granted Critical
Publication of CN113354421B publication Critical patent/CN113354421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/04Casting by dipping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种粘接剂及其制备方法和应用,所述粘接剂主要由下述两部分混合而成:粉体部分,其主要由α‑Al2O3粉、硅微粉、ZrO2粉、Mn‑Fe粉和Ni粉,经煅烧处理而成;液体部分,其主要由铝溶胶和硅溶胶混合而成。将粘接剂用于制备陶瓷颗粒增强金属基耐磨复合材料,包括:使陶瓷颗粒表面覆盖一层所述粘接剂;将覆盖粘接剂的陶瓷颗粒在预制体成型模具中进行固化,制成多孔预制体;将多孔预制体烧结后浇铸金属液,制成陶瓷颗粒增强金属基耐磨复合材料。预制体强度可满足脱模要求,高温烧结后预制体强度增加,可满足高温金属液铸渗的要求。采用本发明的粘接剂,固化时间短,只需要几分钟即可,大大提高了生产效率,降低了成本。

Description

一种粘接剂及其制备方法和应用
技术领域
本发明属于复合材料领域,尤其涉及一种粘接剂及其制备方法和在制备陶瓷颗粒增强金属基耐磨复合材料过程中的应用。
背景技术
陶瓷颗粒增强金属基耐磨复合材料(以下简称“陶瓷金属复合材料”或“复合材料”)是将高硬度的耐磨陶瓷颗粒与金属材料复合,把陶瓷颗粒的高硬度、高耐磨性同金属材料的韧性相结合,在耐磨件的工作表面形成一定厚度的陶瓷金属复合层,以复合层承受磨损,金属基体起承载作用。这种局部复合的方式既能提高耐磨件的耐磨性,又能保证其整体韧性。
金属基体对增强颗粒起支撑作用,必须有一定的强度和韧性,主要为各种耐磨铸铁和合金钢,根据复合材料的具体使用工况选用合适的基体。陶瓷颗粒是复合材料中的主要耐磨相,必须具有比基体更高的硬度才能有效地保护基体,同时陶瓷颗粒要与基体具有良好的界面结合性能,保证在服役过程中不会整体脱落。
陶瓷金属复合材料的制备多采用铸渗法,如CN103143699A公开的金属-陶瓷预制件复合增强耐磨件及其制备方法。一般先将陶瓷颗粒与粘结剂混合,置于预制体成型模具中固化,然后烧结得到多孔预制体,然后浇铸金属液于孔隙中。预制体成型模具可以是蜂窝状,由此形成蜂窝状的多孔预制体,将金属液浇铸于蜂窝孔隙中。
但现有技术采用的粘结剂并不理想,主要表现在固化速度慢,影响生产效率,初始固化后强度不高,影响脱模,同时烧结后的预制体强度不高,金属液浇铸过程中容易溃散漂浮。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种适用于制备陶瓷颗粒增强金属基耐磨复合材料的粘接剂及其制备方法和应用,以缩短固化时间,提高预制体强度。
为解决上述技术问题,本发明提出的技术方案为:
一种粘接剂,所述粘接剂主要由下述两部分混合而成:
粉体部分,其主要由α-Al2O3粉、硅微粉、ZrO2粉、Mn-Fe粉和Ni粉,经煅烧处理而成;
液体部分,其主要由铝溶胶和硅溶胶混合而成。
在一些实施例中,粉体部分和液体部分的质量比为1:1~10。
在一些实施例中,α-Al2O3粉含量为50-80%,硅微粉含量为10-40%,ZrO2粉含量为2-15%,Mn-Fe粉和Ni粉共计0.5-8%,基于粉体部分总质量。
在一些实施例中,铝溶胶和硅溶胶质量比为1:0.5~3。
一种所述粘接剂的制备方法,包括:
将粉体部分的各原料混合研磨后,在1000℃以上的温度煅烧处理;
将煅烧后的粉体部分粉碎后,与液体部分混匀得到所述粘接剂。
在一些实施例中,所述煅烧保温时间为2~3小时。
一种所述粘接剂的应用,将所述粘接剂用于制备陶瓷颗粒增强金属基耐磨复合材料,包括:
使陶瓷颗粒表面覆盖一层所述粘接剂;
将覆盖粘接剂的陶瓷颗粒在预制体成型模具中进行固化,制成多孔预制体;
将多孔预制体烧结后浇铸金属液,制成陶瓷颗粒增强金属基耐磨复合材料。
在一些实施例中,所述固化为物理烘干固化。
在一些实施例中,所述固化为在二氧化碳氛围中进行化学反应固化。
在一些实施例中,所述固化时间<5min。
与现有技术相比,本发明的有益效果为:
本发明的粘接剂由粉体部分和液体部分制成,其中的粉体部分主要起对陶瓷表面改性的作用,增强陶瓷与金属液之间的润湿性,使陶瓷与基体界面接触良好。液体部分起粘接作用,通过低温固化,预制体强度可满足脱模要求,简化了脱模过程,高温烧结后预制体强度增加,可满足高温金属液铸渗的要求。而且,采用本发明的粘接剂进行化学反应固化,固化时间短,只需要几分钟(<5min)即可,大大提高了生产效率,降低了成本。同时,本发明的粘接剂易于储存,无气味挥发。本发明的技术易于实现工业化生产。
本发明的粘接剂适合于WC、TiC、Al2O3、ZrO2、ZTA、SiC等陶瓷颗粒增强的金属基复合材料。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
本发明的粘接剂主要由粉体部分和液体部分两部分混合而成。以下进行详述。
粉体部分
粉体部分包括α-Al2O3粉、硅微粉、ZrO2粉、Mn-Fe粉和Ni粉。
α-Al2O3粉可以市购或采用现有方法制备。α-Al2O3是氧化铝最密堆积、最稳定的状态,在后续煅烧过程中再不会发生晶型转变。在一些具体实施例中,α-Al2O3晶粒尺寸<0.5μm,粒径<1μm,纯度>96%。在一些具体实施例中,其含量为50-80%,更优选60-70%,基于粉体部分总质量。
硅微粉即石英粉,可以市购或采用现有方法制备。在一些具体实施例中,硅微粉粒径-1200目。在一些具体实施例中,其含量为10-40%,更优选20-30%,基于粉体部分总质量。
ZrO2粉可以市购或采用现有方法制备。在一些具体实施例中,其含量为2-15%,更优选5-10%,基于粉体部分总质量。
Mn-Fe粉是锰和铁组成的合金粉,对其中的碳含量并无限制,可以市购或采用现有方法制备。Ni粉可以市购或采用现有方法制备。Mn-Fe粉和Ni粉共计0.5-8%,更优选1-5%,基于粉体部分总质量。Mn-Fe粉和Ni粉的质量比可以具有较宽的范围,例如1:0.1~10,更优选1:0.5~2。
粉体部分的制备一般经研磨、煅烧再粉碎。
研磨可以采用公知的方法和设备,例如球磨。球磨时间可以在5~20h,后者8~15h,例如10h左右。只要充分磨细混匀即可。
煅烧温度一般在1000℃以上,例如1000~1500℃,例如1200℃左右。煅烧保温时间优选2~3小时。煅烧会使粉体活化,以有利于后续配制粘接剂时粉体溶解到液体部分中。将煅烧后的粉体粉碎成粉末状,例如粉碎磨细至600目左右,以利于溶解。
粘接剂中氧化铝粉、氧化锆粉与硅微粉高温反应生成铝硅酸盐、锆铝复合硅酸盐等玻璃相,一方面起高温粘接作用,另一方面起玻璃相改性作用。再通过加入Mn-Fe粉和Ni粉等金属粉也进一步改善陶瓷颗粒与金属液之间的润湿性,防止复合材料在使用过程中陶瓷颗粒脱落出来导致起不到增强作用。
因此,在制备陶瓷颗粒增强金属基耐磨复合材料过程中,粉体部分主要起对陶瓷表面改性的作用,增强陶瓷与金属液之间的润湿性,使陶瓷与基体界面接触良好,进而提高陶瓷金属复合材料的强度。
液体部分
液体部分包括铝溶胶和硅溶胶。铝溶胶和硅溶胶可以市购或采用常规方法制备。在一些实施例中,铝溶胶质量浓度为10~25%。在一些实施例中,硅溶胶质量浓度为10~25%。
铝溶胶和硅溶胶的质量比可以在较宽的范围内,在一些实施例中,液体部分由铝溶胶和硅溶胶按1:0.5~3,更优选1:1~2的质量比搅拌混匀。
目前工业耐高温粘接剂主要有磷酸盐、硅酸盐,铝盐等。磷酸盐有良好的粘接强度,但P是铸造中的有害元素,如果用磷酸盐作陶瓷预制体的粘接剂,会使后续复合铸件中P元素超标。硅酸盐如常见的水玻璃硅酸钠会带进碱金属,碱金属又是陶瓷制品中需要严格控制的元素。相比之下,铝溶胶无毒、无味,不污染环境,可以任意比例与水溶合,长时间储存性能稳定,使用方便,大大降低了使用成本。
硅溶胶可以看作是特高模数的碱金属硅酸盐,其碱金属氧化物含量很低,不易发生盐析发白,干燥速度快,耐水性好,但其粘接性稍差。为了兼顾粘接剂的高温粘接强度和室温固化速度,将铝溶胶和硅溶胶配成混合物使用。铝溶胶干燥脱水后生成活性氧化铝,氧化铝在高温下只会发生晶相变化而不会分解,高温下与硅结合会生成铝硅酸盐玻璃相,有非常好的高温粘接效果。
在制备陶瓷颗粒增强金属基耐磨复合材料过程中,液体部分主要起粘接作用,通过低温固化,预制体强度可满足脱模要求。高温烧结时,氧化铝和二氧化硅反应生成铝硅酸盐,使得烧结后预制体强度增加,可满足高温金属液铸渗的要求。
粘接剂的制备
将粉体部分和液体部分两部分搅拌混匀即可制备成本发明的粘接剂。
在一些实施例中,粉体部分和液体部分的质量比可以在较宽的范围内,例如1:1~10,更优选1:1~5,更优选1:1.5~3,例如1:2。
陶瓷金属复合材料的制备
陶瓷金属复合材料的制备是先将陶瓷颗粒与粘接剂混合,置于预制体成型模具中固化,然后烧结得到多孔预制体,最后浇铸金属液于孔隙中。
可选的先将陶瓷颗粒进行预处理。在一些实施例中,预处理工序包括颗粒净化、粉末膏剂制备、涂敷、金属化烧结。
(覆盖粘接剂)
将适量的粘接剂和陶瓷颗粒混合搅拌适当的时间,使陶瓷颗粒表面均匀覆盖一层粘接剂。其中的陶瓷颗粒非限制性实例包括WC、TiC、Al2O3、ZrO2、ZTA、SiC等,在一些实施例中,颗粒粒径为0.1-5mm。粘接剂的量和混合时间可以根据实际情况调整,例如粘接剂重量为陶瓷颗粒重量的5%-15%,搅拌时间为0.05-5h。
(固化)
将覆盖了粘接剂的陶瓷颗粒置于预制体成型模具中,进行固化,然后脱模。固化方式可以是物理烘干固化或化学反应固化。在一些实施例中,物理烘干固化温度为50~80℃。优选化学反应固化。
化学反应固化是在二氧化碳氛围中进行固化,二氧化碳与液体部分的溶胶反应,保证预制体达到脱模的强度要求,脱模时不溃散,更容易脱模。化学反应固化在常温下进行即可,固化时间一般<5min,例如2~3min即可。化学反应固化相比物理烘干固化,固化时间大大缩短。
由于本发明的粘接剂与成本低廉的epe(珍珠棉)有排斥性,预制体成型模具材质(尤其是构成蜂窝结构的部分)可以采用epe,制备过程中模具不与预制体相互粘接、脱模方便。
可以根据陶瓷金属复合材料所应用的耐磨件的磨损工况设计预制体的结构,并设计预制体成型模具的结构。在一些实施例中,可以将预制体设计成同时含有定位孔和铸渗孔,方便后续铸造过程中的定位和渗透。
(烧结)
将脱模后的预制体在一定温度下烧结保温一定时间,得到高强度、多孔预制体。在一些实施例中,烧结温度为800-1 500℃,优选1000-1400℃。保温时间为5~60min,优选8~15min。由于采用本发明的粘接剂,烧结时间也可以缩短,在较短的时间内达到更高的强度。
高温烧结时粘接剂的液体部分与粉体部分发生反应,使得烧结后预制体强度增加,可满足高温金属液铸渗的要求。在一些实施例中,抗压强度达到8Mpa以上,优选10Mpa以上。
(浇铸)
可以根据耐磨件磨损部位,将预制体固定在铸造模具的模腔内磨损部位相对应的位置,在耐磨件指定工作面形成具有高耐磨性能的陶瓷金属复合层。
在一定温度下浇铸金属液于多孔预制体的孔隙中,实现铸渗复合,得到具有陶瓷金属复合材料的耐磨件。在一些实施例中,浇铸温度为1400-1600℃。
由此制备出的陶瓷颗粒增强金属基复合材料,陶瓷与金属基体界面接触良好,陶瓷颗粒均匀分布,兼具陶瓷颗粒的高硬度、高耐磨性和金属基体材料的韧性。这种局部复合的方式既能提高耐磨件的耐磨性,又能保证其整体韧性。
实施例和对比例
粘接剂制备实施例1
将α-Al2O3粉(晶粒尺寸<0.5μm,粒径<1μm,纯度>96%)60g、硅微粉(粒径-1200目)30g、ZrO2粉5g、Mn-Fe粉2g和Ni粉3g,球磨混合10h,在1200℃煅烧2小时,得到粉体部分。将铝溶胶(质量浓度为15%)100g和硅溶胶(质量浓度为10%)100g搅拌混合均匀,得到液体部分。将粉体部分和液体部分之间混合均匀得到本实施例的粘接剂。
粘接剂制备实施例2
将α-Al2O3粉(晶粒尺寸<0.5μm,粒径<1μm,纯度>96%)70g、硅微粉(粒径-1200目)20g、ZrO2粉8g、Mn-Fe粉1g和Ni粉1g,球磨混合10h,在1100℃煅烧2小时,得到粉体部分。将铝溶胶(质量浓度为15%)80g和硅溶胶(质量浓度为10%)120g搅拌混合均匀,得到液体部分。将粉体部分和液体部分之间混合均匀得到本实施例的粘接剂。
陶瓷金属复合材料制备实施例1
称取预处理后的ZTA陶瓷颗粒1000g,陶瓷颗粒粒径为1.5-2.5mm,称取实施例1制备的粘接剂70g,在衬有ZTA陶瓷内衬的容器中,搅拌混匀10min,使陶瓷颗粒表面均匀覆盖一层粘接剂。再将覆盖了粘接剂的ZTA陶瓷颗粒放入平板状预制体模具中,通入二氧化碳进行固化,常温固化2-3min,然后脱模,再将脱模后的预制体在1300℃下烧结10min,即得到抗压强度为10MPa,孔隙率40%的预制体。将该预制体固定在砂模中,1460℃下浇铸高铬铸铁金属液,得到陶瓷金属复合材料。
其中抗压强度采用GB/T5072.1-1998致密定形耐火制品常温耐压强度试验方法进行测量。
陶瓷金属复合材料制备实施例2
称取预处理后的ZTA陶瓷颗粒1000g,陶瓷颗粒粒径为2.5-3.5mm,称取实施例1制备的粘接剂70g,在衬有ZTA陶瓷内衬的容器中,搅拌混匀10min,使陶瓷颗粒表面均匀覆盖一层粘接剂。再将覆盖了粘接剂的ZTA陶瓷颗粒放入多孔状预制体模具中,通入二氧化碳进行固化,常温固化2-3min,然后脱模,再将脱模后的预制体在1200℃下烧结10min,即得到抗压强度为8MPa,孔隙率55%的预制体。将该预制体固定在消失模泡沫模具中,1480℃下浇铸高铬铸铁金属液,得到陶瓷金属复合材料。
陶瓷金属复合材料制备实施例3
与陶瓷金属复合材料制备实施例1相比,不同仅在于采用物理烘干固化(70℃烘干6h),不通入二氧化碳,得到抗压强度为7MPa,孔隙率51%的预制体。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

1.一种粘接剂,其特征在于,所述粘接剂主要由下述两部分混合而成:
粉体部分,其主要由α-Al2O3粉、硅微粉、ZrO2粉、Mn-Fe粉和Ni粉,经煅烧处理而成;
液体部分,其主要由铝溶胶和硅溶胶混合而成。
2.根据权利要求1所述的粘接剂,其特征在于,粉体部分和液体部分的质量比为1:1~10。
3.根据权利要求1或2所述的粘接剂,其特征在于,α-Al2O3粉含量为50-80%,硅微粉含量为10-40%,ZrO2粉含量为2-15%,Mn-Fe粉和Ni粉共计0.5-8%,基于粉体部分总质量。
4.根据权利要求1或2所述的粘接剂,其特征在于,铝溶胶和硅溶胶质量比为1:0.5~3。
5.一种权利要求1~4任一项所述粘接剂的制备方法,其特征在于,包括:
将粉体部分的各原料混合研磨后,在1000℃以上的温度煅烧处理;
将煅烧后的粉体粉碎后,与液体部分混匀得到所述粘接剂。
6.根据权利要求5所述的制备方法,其特征在于,所述煅烧保温时间为2~3小时。
7.一种权利要求1~4任一项所述粘接剂的应用,其特征在于,将所述粘接剂用于制备陶瓷颗粒增强金属基耐磨复合材料,包括:
使陶瓷颗粒表面覆盖一层所述粘接剂;
将覆盖粘接剂的陶瓷颗粒在预制体成型模具中进行固化,制成多孔预制体;
将多孔预制体烧结后浇铸金属液,制成陶瓷颗粒增强金属基耐磨复合材料。
8.根据权利要求7所述的应用,其特征在于,所述固化为物理烘干固化。
9.根据权利要求7所述的应用,其特征在于,所述固化为在二氧化碳氛围中进行化学反应固化。
10.根据权利要求9所述的应用,其特征在于,所述固化时间<5min。
CN202110461361.6A 2021-04-27 2021-04-27 一种粘接剂及其制备方法和应用 Active CN113354421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110461361.6A CN113354421B (zh) 2021-04-27 2021-04-27 一种粘接剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110461361.6A CN113354421B (zh) 2021-04-27 2021-04-27 一种粘接剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113354421A true CN113354421A (zh) 2021-09-07
CN113354421B CN113354421B (zh) 2023-03-14

Family

ID=77525662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110461361.6A Active CN113354421B (zh) 2021-04-27 2021-04-27 一种粘接剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113354421B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979772A (zh) * 2021-11-05 2022-01-28 广东省科学院新材料研究所 多孔陶瓷及其粘结剂以及其制备方法与应用
CN114012088A (zh) * 2021-10-09 2022-02-08 湖南精城特种陶瓷有限公司 一种复合耐磨件的制备方法
CN115074034A (zh) * 2022-06-24 2022-09-20 华中科技大学 一种用于增材制造陶瓷零件的粘结剂及粘结方法
CN116903387A (zh) * 2023-07-20 2023-10-20 优钢新材料科技(湖南)有限公司 一种zta颗粒多孔陶瓷预制体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN109053215A (zh) * 2018-08-30 2018-12-21 暨南大学 一种Fe-Cr-Ni-Ti微粉包覆下蜂窝状ZTA陶瓷预制体及其制备和应用
CN110436948A (zh) * 2019-09-12 2019-11-12 长兴煤山新型炉料有限公司 一种陶瓷质高炉摆动流槽及其制备方法
CN112094129A (zh) * 2020-10-10 2020-12-18 上海宝钢铸造有限公司 高温粘结剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN109053215A (zh) * 2018-08-30 2018-12-21 暨南大学 一种Fe-Cr-Ni-Ti微粉包覆下蜂窝状ZTA陶瓷预制体及其制备和应用
CN110436948A (zh) * 2019-09-12 2019-11-12 长兴煤山新型炉料有限公司 一种陶瓷质高炉摆动流槽及其制备方法
CN112094129A (zh) * 2020-10-10 2020-12-18 上海宝钢铸造有限公司 高温粘结剂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012088A (zh) * 2021-10-09 2022-02-08 湖南精城特种陶瓷有限公司 一种复合耐磨件的制备方法
CN113979772A (zh) * 2021-11-05 2022-01-28 广东省科学院新材料研究所 多孔陶瓷及其粘结剂以及其制备方法与应用
CN115074034A (zh) * 2022-06-24 2022-09-20 华中科技大学 一种用于增材制造陶瓷零件的粘结剂及粘结方法
CN116903387A (zh) * 2023-07-20 2023-10-20 优钢新材料科技(湖南)有限公司 一种zta颗粒多孔陶瓷预制体的制备方法

Also Published As

Publication number Publication date
CN113354421B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN113354421B (zh) 一种粘接剂及其制备方法和应用
CN104313446B (zh) 一种耐磨陶瓷涂层材料及其制备方法
CN100436376C (zh) 一种陶瓷化Al2O3-SiC质耐火砖及其制备方法
KR970001267B1 (ko) 유연층을 포함하는 세라믹-금속 복합체
CN106187248B (zh) 一种多层复合流钢砖及其生产方法
CN102861905B (zh) 一种氧化铝金属陶瓷增强铁基复合材料的制备方法
CA2266475A1 (fr) Piece d&#39;usure composite
WO2012045247A1 (zh) 一种多层壳芯复合结构零件的制备方法
CN112725649A (zh) 一种金属改性陶瓷颗粒增强金属基复合材料的制备方法
CN105921679B (zh) 改性陶瓷壳型及其制作方法
CN103785841A (zh) 一种浆料涂挂表面活化zta颗粒增强钢铁基复合耐磨件的制备方法
CN103896616A (zh) 一种陶瓷纤维增强陶瓷粉末复合陶瓷及其涂层制备方法
CN113716969B (zh) 一种莫来卡特抗结皮浇注料及预制件的制备方法
CN109554572A (zh) 一种多尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法
CN101982435B (zh) 低温、无铅、近零膨胀微晶陶瓷涂层的制备方法
CN109663900B (zh) 一种钢铁基复合板锤及其制备方法
CN109020603B (zh) 一种Cu-Ti合金微粉包覆下多孔ZTA陶瓷预制体及其制备和应用
CN110436901A (zh) 一种SiC-AlN固溶体结合Al2O3-C复合滑板及其制备方法
CN116535233B (zh) 多孔高强建筑陶瓷板材、多孔高强调温建筑陶瓷板材及其制备方法
CN109396395B (zh) 一种铁基复合磨辊及其制备方法
JP2002226285A (ja) 軽量セラミックス部材およびその製造方法
CN107282857B (zh) MgO-SrZrO3复合型壳、应用及其制备方法
CN114012088B (zh) 一种复合耐磨件的制备方法
CN104874799A (zh) 一种在纯铝及合金铸件表面制备耐磨涂层的工艺方法
CN108220831A (zh) 一种硼酸铝晶须增强锌基合金复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant