CN113354397A - 分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 - Google Patents
分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 Download PDFInfo
- Publication number
- CN113354397A CN113354397A CN202110542696.0A CN202110542696A CN113354397A CN 113354397 A CN113354397 A CN 113354397A CN 202110542696 A CN202110542696 A CN 202110542696A CN 113354397 A CN113354397 A CN 113354397A
- Authority
- CN
- China
- Prior art keywords
- graphene
- ball milling
- hot
- pressing sintering
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,包括a.先将石墨烯增强体放入球磨罐中后再加入非金属材料和磨球,然后分多次向球磨罐中加入助磨剂进行球磨直至原料混合呈均匀浆糊状,将球磨后的浆料干燥制得复合粉料;b.将复合粉料先后经真空热压烧结处理和热等静压烧结处理,制得石墨烯增强非金属基复合材料。采用分步加料球磨的方式能够使石墨烯均匀分散于基体材料中且分散效率高、分散稳定性高、对石墨烯结构无破坏,解决石墨烯易团聚的问题。通过分步加料球磨和热压烧结与热等静压烧结相结合获得的石墨烯增强非金属基复合材料具有最优异的力学性能,而且能够满足工业化制备的要求。
Description
技术领域
本发明涉及石墨烯增强非金属基复合材料领域,具体涉及一种分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法。
背景技术
石墨烯是由碳原子以sp2杂化轨道组成六角型二维碳纳米材料,是世界上最薄且最坚固的材料,它的强度和弹性模量分别达到125GPa和1100GPa。由于其较大的比表面积、高模量和高强度等优异的性能,石墨烯可以作为无机非金属材料、高分子材料的补强体。但是由于完美的石墨烯是由碳原子经sp2杂化成键形成的稳定二维平面结构,如此惰性的表面结构给单片石墨烯的稳定存在及其在其它溶剂中的分散带来难题,由此而限制了石墨烯及石墨烯基复合材料的研究开发与应用。而且石墨烯比表面积大且表面能高,过量的石墨烯不可避免地在材料中形成团簇,使石墨烯与陶瓷基体不能形成良好的接触界面,破坏石墨烯的微观组织结构,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进,影响复合材料性能的提高。
氧化铝陶瓷材料拥有高硬度、高强度、耐高温、耐磨损与耐腐蚀等优异性能,被广泛应用于结构陶瓷和耐磨元件。由于陶瓷材料固有的脆性,较差的断裂韧性限制了氧化铝陶瓷材料的工业应用。由于石墨烯是由碳原子以sp2杂化轨道组成六角型二维碳纳米材料,是世界上最薄且最坚固的材料,它的强度和弹性模量分别达到125GPa和1100GPa。由于其较大的比表面积、高模量和高强度等优异的性能,石墨烯可以作为陶瓷材料良好的补强体,被广泛地应用于陶瓷基复合材料的强韧化中。但是在石墨烯增强氧化铝基复合材料制备中存在一些问题:一是石墨烯含量的影响:适量的石墨烯均匀地分布在基体材料中,能够减少陶瓷材料中的微观孔隙,从而增强材料的机械强度及韧性。而石墨烯比表面积大且表面能高,过量的石墨烯不可避免地在材料中形成团簇,使石墨烯与陶瓷基体不能形成良好的接触界面,破坏石墨烯的微观组织结构,影响复合材料性能的提高。二是制备工艺问题:传统的无压制备需要更高的烧结温度才能制备出高密度的氧化铝陶瓷,但是高温加速了氧化铝晶界的扩散,粗糙的微观结构会引发较高的材料孔隙率(孔隙率);同时较高的烧结温度需要消耗更多的能源。三是关于烧结制度的影响。陶瓷的性能很大程度上受尺寸的影响,当烧结温度较低,离子扩散较慢,各元素在晶体中不能充分扩散,生长出的晶粒存在较多孔洞;当烧结温度较高,晶粒容易异常长大,组织不均,晶界间气孔不易排出,从而导致结合强度下降。因此烧结制度(烧结温度、烧结压力)对于材料微观结构与性能具有重要的影响。
综上所述,现有的石墨烯加料方式导致石墨烯容易团聚,使石墨烯与陶瓷基体不能形成良好的接触界面,破坏石墨烯的微观组织结构,影响复合材料性能的提高,现有的传统的无压制备需要更高的烧结温度才能制备出高密度的石墨烯增强非金属基复合材料,但是高温会引发较高的材料孔隙率,同时消耗更多的能源。
发明内容
有鉴于此,本发明的目的在于提供一种分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,能解决现有的加料方式导致的石墨烯容易团聚问题,以及高温烧结导致的材料孔隙率高和能源消耗高的问题。
本发明的分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,包括以下步骤:a.先将石墨烯增强体放入球磨罐中后再加入非金属材料和磨球,然后分多次向球磨罐中加入助磨剂进行球磨直至原料混合呈均匀浆糊状,将球磨后的浆料干燥制得复合粉料;
b.将复合粉料先后经真空热压烧结处理和热等静压烧结处理,制得石墨烯增强非金属基复合材料;
进一步,步骤a中,先将石墨烯增强体加入球磨罐中,然后再加入非金属材料,最后加入磨球;
进一步,步骤a中,每添加一次助磨剂需球磨一段时间后再进行下次助磨剂添加;
进一步,步骤a中,所述助磨剂的添加量按次数由少至多依次增加;
进一步,步骤a中,所述助磨剂为无水乙醇,所述非金属材料为氧化铝陶瓷,所述磨球为氧化锆球;
进一步,步骤a中,所述石墨烯添加量为石墨烯和氧化铝总量的0.1wt%~4.5wt%;
进一步,步骤b中,热压烧结处理的烧结温度为1500~1600℃、压力30~40MPa,处理时间为1~2h;
进一步,步骤b中,热等静压烧结处理的烧结温度1380~1480℃、压力130~170MPa,处理时间为0.5~1.5h;
进一步,所述石墨烯添加量为石墨烯和氧化铝总量的1wt%;
进一步,步骤a中,球磨至粉体粒度小于0.5μm,将浆料先用320目筛子过筛后经过50℃真空干燥,然后再经80目筛子过筛和人工制粒得到复合粉料。
本发明的有益效果是:本发明公开的分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,采用分步加料球磨的方式能够使石墨烯均匀分散于基体材料中且分散效率高、分散稳定性高、对石墨烯结构无破坏,解决石墨烯易团聚的问题,在复合材料的烧结阶段,采用较低温度的热压烧结技术能有效降低烧结温度,减少能耗。通过分步加料球磨和热压烧结与热等静压烧结相结合获得的石墨烯增强非金属基复合材料具有最优异的力学性能,而且能够满足工业化制备的要求。
具体实施方式
本实施例的分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,包括以下步骤:a.先将石墨烯增强体放入球磨罐中后再加入非金属材料和磨球,然后分多次向球磨罐中加入助磨剂进行球磨直至原料混合呈均匀浆糊状,将球磨后的浆料干燥制得复合粉料;
b.将复合粉料先后经真空热压烧结处理和热等静压烧结处理,制得石墨烯增强非金属基复合材料;采用先将质量轻的石墨烯放入球磨罐中,再加入非金属材料和磨球的方式,再加入一定量的助磨剂球磨一定时间,然后再加入一定量的助磨剂球磨一定时间,如从反复直至原料混合呈均匀浆糊状。采用分步加料法确保石墨烯与非金属材料基体材料之间的良好界面结合,有利于石墨烯在非金属材料基体中的分散和增大二者的接触界面,能够使石墨烯均匀分散于基体材料中,整个过程中几乎不见石墨烯团聚体。在复合材料的烧结阶段,采用较低温度的热压烧结技术能有效降低烧结温度,减少能耗。采用热压烧结和热等静压烧结的处理方式相较于仅仅采用热压烧结处理在产品的相对密度、断裂韧性和维氏硬度上有更好的提升,在断裂韧性方面差异性不大。
本实施例中,步骤a中,先将石墨烯增强体加入球磨罐中,然后再加入非金属材料,最后加入磨球;优选为先加石墨烯,再加非金属材料,最后加磨球,利用石墨烯密度小,质量轻的特点,先加石墨烯,使其位于非金属材料和磨球之内,再加上分批次加入助磨剂(溶剂),导致每次加入助磨剂的量都不会很大,不会导致质量轻的石墨烯粉体悬浮于助磨剂(溶剂)表面,促进石墨烯与非金属材料基体材料之间的良好界面结合,增大石墨烯粉末在非金属材料粉末的接触界面。
本实施例中,步骤a中,每添加一次助磨剂需球磨一段时间后再进行下次助磨剂添加,步骤a中,所述助磨剂的添加量按次数由少至多依次增加;操作时,根据用量比配置好助磨剂的量,然后将助磨剂分成多份(至少3份),分批次在不同的时间段内加入到球磨罐中。所述助磨剂为无水乙醇,所述非金属材料为无机非金属材料、高分子材料中的一种;采用无水乙醇效果更优异,由于石墨烯的添加量会影响复合材料的性能,因此石墨烯的添加量根据非金属材料材料的种类决定。
本实施例中,步骤a中,所述助磨剂为无水乙醇,所述非金属材料为氧化铝陶瓷,所述磨球为氧化锆球;采用上述方法以石墨烯粉末和氧化铝粉末(微米级粒度)为原料,球磨之后采用烧结法制得石墨烯增强氧化铝陶瓷基复合材料,所获得的复合材料在弯曲强度和断裂韧性以及硬度方面均有很大的提升。这有力地证明了石墨烯的良好分散是制备石墨烯增强氧化铝基陶瓷的关键。
本实施例中,步骤a中,所述石墨烯添加量为石墨烯和氧化铝总量的0.1wt%~4.5wt%;石墨烯添加量同样是影响石墨烯/Al2O3复合陶瓷材料力学性能的重要因素。这主要是因为石墨烯自身容易发生团聚,不易在氧化铝基陶瓷材料中均匀分散,而石墨烯团簇对于陶瓷材料而言是具有破坏性的缺陷。采用0.1wt%~4.5wt%的石墨烯添加量可避免加入的石墨烯在陶瓷材料中发生团聚而导致材料力学性能降低。
本实施例中,步骤b中,热压烧结处理的烧结温度为1500~1600℃、压力30~40MPa,处理时间为1~2h;热等静压烧结处理的烧结温度1380~1480℃、压力130~170MPa,处理时间为0.5~1.5h;利用对温度要求较低的热压烧结和热等静压烧结技术制备石墨烯复合氧化铝陶瓷材料,获得具有最佳力学性能的石墨烯增强氧化铝陶瓷基复合材料。适当的烧结温度才能制备出尺寸均匀、相对密度较高的陶瓷材料。
本实施例中,所述石墨烯添加量为石墨烯和氧化铝总量的1wt%;
本实施例中,步骤a中,球磨至粉体粒度小于0.5μm,将浆料先用320目筛子过筛后经过50℃真空干燥,然后再经80目筛子过筛和人工制粒得到复合粉料。
实施例一
原料由如下重量配比的物料组成:石墨烯1.0wt%,氧化铝99.0wt%份,制备方法如下:步骤(1):将石墨烯加入到球磨罐中后加入氧化铝粉末,然后将氧化锆球按照原料:氧化锆球=1:2的质量比装入球磨罐中;步骤(2):将无水乙醇按照原料:无水乙醇=6:1的质量比加入球磨罐中,转速90rpm下球磨5小时;步骤(3):将无水乙醇按照原料:无水乙醇=6:1的质量比加入球磨罐中,转速90rpm下球磨4小时;步骤(4):将无水乙醇按照原料:无水乙醇=3:1的质量比加入球磨罐中,转速90rpm下球磨6小时;步骤(5):将无水乙醇按照物料:无水乙醇=3:1的质量比加入球磨罐中,转速90rpm下球磨至粉体粒度小于0.5μm时停止球磨,在无尘房间把浆料用320目筛子过筛,然后经过50℃真空干燥、80目筛子过筛和人工制粒得到复合粉料;步骤(6)复合粉料装入石墨模具中,在真空热压烧结炉中,在温度1525℃、压力30MPa下,保温1h;步骤(7)将经热压烧结处理后的样品置于热等静压机中,在温度1380℃、压力130MPa下保温0.5h,制得陶瓷,打磨陶瓷得到石墨烯增强氧化铝陶瓷基复合材料。
实施例二
原料由如下重量配比的物料组成:石墨烯1.5wt%,氧化铝98.5wt%份,制备方法如下:步骤(1):将石墨烯加入到球磨罐中后加入氧化铝粉末,然后将氧化锆球按照原料:氧化锆球=1:3的质量比装入球磨罐中;步骤(2):将无水乙醇按照原料:无水乙醇=6:1的质量比加入球磨罐中,转速90rpm下球磨4.5小时;步骤(3):将无水乙醇按照原料:无水乙醇=5:1的质量比加入球磨罐中,转速90rpm下球磨4小时;步骤(4):将无水乙醇按照原料:无水乙醇=4:1的质量比加入球磨罐中,转速90rpm下球磨5小时;步骤(5):将无水乙醇按照物料:无水乙醇=3:1的质量比加入球磨罐中,转速90rpm下球磨至粉体粒度小于0.5μm时停止球磨,在无尘房间把浆料用320目筛子过筛,然后经过50℃真空干燥、80目筛子过筛和人工制粒得到复合粉料;步骤(6)复合粉料装入石墨模具中,在真空热压烧结炉中,在温度1600℃、压力40MPa下,保温2h;步骤(7)将经热压烧结处理后的样品置于热等静压机中,在温度1480℃、压力170MPa下保温1.5h,制得陶瓷,打磨陶瓷得到石墨烯增强氧化铝陶瓷基复合材料。
实施例三
原料由如下重量配比的物料组成:石墨烯0.1wt%,氧化铝99.9wt%份,制备方法如下:步骤(1):将石墨烯加入到球磨罐中后加入氧化铝粉末,然后将氧化锆球按照原料:氧化锆球=1:4的质量比装入球磨罐中;步骤(2):将无水乙醇按照原料:无水乙醇=8:1的质量比加入球磨罐中,转速100rpm下球磨4小时;步骤(3):将无水乙醇按照原料:无水乙醇=6:1的质量比加入球磨罐中,转速100rpm下球磨3小时;步骤(4):将无水乙醇按照原料:无水乙醇=5:1的质量比加入球磨罐中,转速100rpm下球磨3小时;步骤(5):将无水乙醇按照物料:无水乙醇=3:1的质量比加入球磨罐中,转速100rpm下球磨至粉体粒度小于0.5μm时停止球磨,在无尘房间把浆料用320目筛子过筛,然后经过50℃真空干燥、80目筛子过筛和人工制粒得到复合粉料;
步骤(6)复合粉料装入石墨模具中,在真空热压烧结炉中,在温度1525℃、压力40MPa下,保温1h;步骤(7)将经热压烧结处理后的样品置于热等静压机中,在温度1480℃、压力130MPa下保温1.5h,制得陶瓷,打磨陶瓷得到石墨烯增强氧化铝陶瓷基复合材料。
实施例四
原料由如下重量配比的物料组成:石墨烯4.5wt%,氧化铝95.5wt%份,制备方法如下:步骤(1):将石墨烯加入到球磨罐中后加入氧化铝粉末,然后将氧化锆球按照原料:氧化锆球=1:4的质量比装入球磨罐中;步骤(2):将无水乙醇按照原料:无水乙醇=7:1的质量比加入球磨罐中,转速110rpm下球磨4小时;步骤(3):将无水乙醇按照原料:无水乙醇=6:1的质量比加入球磨罐中,转速110rpm下球磨4小时;步骤(4):将无水乙醇按照原料:无水乙醇=3:1的质量比加入球磨罐中,转速110rpm下球磨4小时;步骤(5):将无水乙醇按照物料:无水乙醇=3:1的质量比加入球磨罐中,转速110rpm下球磨至粉体粒度小于0.5μm时停止球磨,在无尘房间把浆料用320目筛子过筛,然后经过60℃真空干燥、90目筛子过筛和人工制粒得到复合粉料;步骤(6)复合粉料装入石墨模具中,在真空热压烧结炉中,在温度1550℃、压力35MPa下,保温1h;步骤(7)将经热压烧结处理后的样品置于热等静压机中,在温度1400℃、压力130MPa下保温1.5h,制得陶瓷,打磨陶瓷得到石墨烯增强氧化铝陶瓷基复合材料。
实施例五
原料由如下重量配比的物料组成:石墨烯2.0wt%,氧化铝98.0wt%份,制备方法如下:步骤(1):将石墨烯加入到球磨罐中后加入氧化铝粉末,然后将氧化锆球按照原料:氧化锆球=1:2的质量比装入球磨罐中;步骤(2):将无水乙醇按照原料:无水乙醇=5:1的质量比加入球磨罐中,转速80rpm下球磨6小时;步骤(3):将无水乙醇按照原料:无水乙醇=5:1的质量比加入球磨罐中,转速80rpm下球磨7小时;步骤(4):将无水乙醇按照原料:无水乙醇=4:1的质量比加入球磨罐中,转速80rpm下球磨6小时;步骤(5):将无水乙醇按照物料:无水乙醇=2:1的质量比加入球磨罐中,转速80rpm下球磨至粉体粒度小于0.5μm时停止球磨,在无尘房间把浆料用320目筛子过筛,然后经过55℃真空干燥、70目筛子过筛和人工制粒得到复合粉料;步骤(6)复合粉料装入石墨模具中,在真空热压烧结炉中,在温度1580℃、压力32MPa下,保温1.2h;步骤(7)将经热压烧结处理后的样品置于热等静压机中,在温度1450℃、压力160MPa下保温1h,制得陶瓷,打磨陶瓷得到石墨烯增强氧化铝陶瓷基复合材料。
将实施例一至五的陶瓷材料进行力学性能测试,测试方法采用现有的常规力学性能测试方法,结果如下:
实施例 | 相对密度(%) | 弯曲强度(MPa) | 断裂韧性(MPa·m<sup>1/2</sup>) | 维氏硬度(GPa) |
1 | 98.66 | 283.92 | 4.24 | 21.5 |
2 | 98.85 | 251.13 | 4.64 | 23.7 |
3 | 98.53 | 269.02 | 4.17 | 21.3 |
4 | 98.77 | 270.22 | 4.67 | 24.2 |
5 | 99.01 | 265.35 | 4.58 | 22.8 |
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (10)
1.一种分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,其特征在于:包括以下步骤:a.先将石墨烯增强体放入球磨罐中后再加入非金属材料和磨球,然后分多次向球磨罐中加入助磨剂进行球磨直至原料混合呈均匀浆糊状,将球磨后的浆料干燥制得复合粉料;
b.将复合粉料先后经真空热压烧结处理和热等静压烧结处理,制得石墨烯增强非金属基复合材料。
2.根据权利要求1所述的分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法,其特征在于:步骤a中,先将石墨烯增强体加入球磨罐中,然后再加入非金属材料,最后加入磨球。
3.根据权利要求2所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤a中,每添加一次助磨剂需球磨一段时间后再进行下次助磨剂添加。
4.根据权利要求3所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤a中,所述助磨剂的添加量按次数由少至多依次增加。
5.根据权利要求4所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤a中,所述助磨剂为无水乙醇,所述非金属材料为氧化铝陶瓷,所述磨球为氧化锆球。
6.根据权利要求4所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤a中,所述石墨烯添加量为石墨烯和氧化铝总量的0.1wt%~4.5wt%。
7.根据权利要求6所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤b中,热压烧结处理的烧结温度为1500~1600℃、压力30~40MPa,处理时间为1~2h。
8.根据权利要求6所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤b中,热等静压烧结处理的烧结温度1380~1480℃、压力130~170MPa,处理时间为0.5~1.5h。
9.根据权利要求8所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:所述石墨烯添加量为石墨烯和氧化铝总量的1wt%。
10.根据权利要求5所述的提高石墨烯增强体在非金属材料基体中分散性的方法,其特征在于:步骤a中,球磨至粉体粒度小于0.5μm,将浆料先用320目筛子过筛后经过50℃真空干燥,然后再经80目筛子过筛和人工制粒得到复合粉料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110542696.0A CN113354397A (zh) | 2021-05-18 | 2021-05-18 | 分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110542696.0A CN113354397A (zh) | 2021-05-18 | 2021-05-18 | 分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113354397A true CN113354397A (zh) | 2021-09-07 |
Family
ID=77526865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110542696.0A Pending CN113354397A (zh) | 2021-05-18 | 2021-05-18 | 分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113354397A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253128A (zh) * | 2005-07-25 | 2008-08-27 | 圣戈本陶瓷及塑料股份有限公司 | 稀土氧硫化物闪烁体及其生产方法 |
CN101823881A (zh) * | 2010-04-29 | 2010-09-08 | 东华大学 | 含石墨烯纳米片层无机非金属复合吸波材料、制备和应用 |
CN107954704A (zh) * | 2017-12-13 | 2018-04-24 | 谢琦 | 一种瓷绝缘子及其制备方法 |
-
2021
- 2021-05-18 CN CN202110542696.0A patent/CN113354397A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253128A (zh) * | 2005-07-25 | 2008-08-27 | 圣戈本陶瓷及塑料股份有限公司 | 稀土氧硫化物闪烁体及其生产方法 |
CN101823881A (zh) * | 2010-04-29 | 2010-09-08 | 东华大学 | 含石墨烯纳米片层无机非金属复合吸波材料、制备和应用 |
CN107954704A (zh) * | 2017-12-13 | 2018-04-24 | 谢琦 | 一种瓷绝缘子及其制备方法 |
Non-Patent Citations (2)
Title |
---|
于佳伟;廖其龙;: "片状氧化铝晶种对氧化铝陶瓷断裂韧性的影响" * |
贾碧等: "热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响" * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112174672B (zh) | 一种碳化硼复合陶瓷板的制备方法及防弹插板 | |
CN114538929B (zh) | 一种高致密度碳化硼陶瓷的制备方法 | |
CN107973610A (zh) | 一种以废弃碳化硅匣钵为主要原料的碳化硅捣打料 | |
CN103979971B (zh) | 一种液相烧结碳化硼防弹材料及其制备方法 | |
CN106478121A (zh) | 一种碳纤维增韧碳化硅木质陶瓷的制备方法 | |
CN109020512A (zh) | 干法生产特高压棒形支柱瓷绝缘子用坯体及其制备方法和应用 | |
CN106145958B (zh) | 具有力学各向异性的Si3N4/TiC/石墨烯复合陶瓷刀具材料及其制备方法 | |
CN113666750A (zh) | 一种轻质高性能碳化硼基防弹陶瓷及其制备方法 | |
CN110066171A (zh) | 一种耐高温陶瓷材料及其制备方法 | |
CN111517761A (zh) | 一种复合内衬材料及其应用和应用方法 | |
CN102503538A (zh) | 连续造孔碳化硅陶瓷材料及其制备方法 | |
CN114380610B (zh) | 一种无压液相烧结碳化硅陶瓷研磨盘的制作方法 | |
CN110627504A (zh) | 碳化硼复合材料的无压烧结制备方法 | |
CN1259281C (zh) | 氮化硅-氮化硼-二氧化硅陶瓷透波材料及其制备方法 | |
CN114409410A (zh) | 一种无压烧结碳化硅陶瓷研磨盘的制作方法 | |
CN113121238B (zh) | 一种高性能碳化硼基复合陶瓷材料及其制备方法 | |
CN113354397A (zh) | 分步加料与热压和热等静压烧结相结合制备石墨烯增强非金属基复合材料的方法 | |
CN110041076A (zh) | 一种大厚度轻质叠层装甲陶瓷及其制备方法 | |
CN116730723B (zh) | 一种Al3BC陶瓷材料及其制备方法和应用 | |
CN112194491A (zh) | 一种无压烧结碳化硼陶瓷粉体及其制备方法与应用 | |
CN108395219A (zh) | 一种托辊用陶瓷材料及其制备方法 | |
CN113292322A (zh) | 采用分步加料球磨与热压烧结制备石墨烯增强非金属基复合材料的方法 | |
CN113416079A (zh) | 分步加料与多重压力烧结相结合制备石墨烯增强非金属基复合材料的方法 | |
CN107089833B (zh) | 一种造纸脱水面板用耐磨氮化硅材料及其制备方法 | |
CN110563477A (zh) | 一种原位生长氧化铝晶须增强补韧锆铝复合陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |