CN113337580B - 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法 - Google Patents

基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法 Download PDF

Info

Publication number
CN113337580B
CN113337580B CN202110597914.0A CN202110597914A CN113337580B CN 113337580 B CN113337580 B CN 113337580B CN 202110597914 A CN202110597914 A CN 202110597914A CN 113337580 B CN113337580 B CN 113337580B
Authority
CN
China
Prior art keywords
solution
zen
aptamer
mixed solution
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110597914.0A
Other languages
English (en)
Other versions
CN113337580A (zh
Inventor
由天艳
毕晓雅
李丽波
李佳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110597914.0A priority Critical patent/CN113337580B/zh
Publication of CN113337580A publication Critical patent/CN113337580A/zh
Application granted granted Critical
Publication of CN113337580B publication Critical patent/CN113337580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Materials Engineering (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于适配体传感检测技术领域,涉及一种基于光致电子转移的比率荧光适配体传感器的制备方法及检测ZEN的应用;本发明具体是将N,S‑CQDs和适配体修饰的CdTe QDs‑apt产生的荧光信号分别作为参比信号和响应信号,通过利用WS2NTs和CdTe QDs‑apt之间的光致电子转移、Exo I对CdTe QDs‑apt的剪切作用以及适配体特异性结合ZEN的特性,得到基于光致电子转移的比率荧光适配体传感器,实现实际样品中ZEN的高灵敏、高精准、高选择性检测;本发明构建的传感器对ZEN的线性响应范围为0.1‑100pg/mL,检测限为0.1pg/mL,成功实现了ZEN的高性能分析。

Description

基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感 器的制备方法
技术领域
本发明属于适配体传感检测技术领域,涉及一种基于光致电子转移效应的比率荧光适配体传感器的制备方法,并将其用于对玉米赤霉烯酮(ZEN)的灵敏、精准检测。
背景技术
玉米赤霉烯酮(ZEN)是由镰刀菌侵染产生的一类次级有毒代谢产物,广泛存在于玉米、小麦、大麦、大米等农作物中。ZEN的严重污染不仅会造成种植业、畜牧业面临严重的经济损失,同时会引发致畸、致癌、神经毒性和生殖毒性等疾病,严重威胁动物与人体健康。鉴于此,我国于2017年将ZEN列入现行食品安全国家限量标准GB 2761-2017《食品中真菌毒素限量》,并对ZEN的限量、食品类型等作出明确指示,旨在保障国民食品安全和身体健康。而ZEN的灵敏、精准定量检测是该限量标准科学、有效执行的必要前提。因此,建立和完善高灵敏、高特异性的ZEN检测技术,对保障农产品质量安全、维护畜牧业可持续发展、保护动物和人类健康具有重要意义。
比率荧光传感以两种不同发射波长的荧光物质为比率探针,通过研究比率探针的荧光强度比值与目标物浓度之间的关系,实现对目标物的检测。当测试微环境发生改变时,比率探针的强度比值可以将误差抵消,从而消除外部因素变化对测试结果的影响,提高检测灵敏度、准确性。其中基于光致电子转移(PET)的比率荧光传感方法因具有灵敏度高、分子可设计性等优点被广泛应用于生物成像、食品检测、医药分析等多个领域。但是,基于PET的比率荧光适配体传感器用于ZEN分析检测的研究仍未见报道。
发明内容
针对现有技术存在的问题,本文旨在发明一种高灵敏度、高精准度、高选择性的PET比率荧光适配体传感器用于ZEN的分析检测。
本发明将氮硫双掺杂碳量子点(N,S-CQDs)和适配体修饰的碲化镉量子点(CdTeQDs-apt)作为比率探针,通过利用二硫化钨纳米片(WS2 NTs)和CdTe QDs-apt之间的光致电子转移、大肠杆菌核酸外切酶I(Exo I)对CdTe QDs-apt的剪切作用以及适配体与ZEN的特异性结合作用,提供了一种高灵敏、高精准、高选择性检测ZEN的方法。
基于光致电子转移检测ZEN的比率荧光适配体传感器的制备方法,包括如下步骤:
(1)合成N,S-CQDs溶液,备用;
(2)合成CdTe QDs-apt溶液,备用;
(3)混合N,S-CQDs溶液和CdTe QDs-apt溶液;
将步骤(1)制备的N,S-CQDs溶液和步骤(2)制备的CdTe QDs-apt溶液混合,然后用PBS溶液调节pH后,得到比率荧光探针混合溶液A;
(4)添加ZEN溶液;
在步骤(3)制得的比率荧光探针混合溶液A中加入ZEN溶液,作用一段时间得到混合溶液B;
(5)添加Exo I溶液;
在步骤(4)制得的混合溶液B中加入Exo I溶液,作用一段时间后得到混合溶液C;
(6)添加WS2 NTs溶液;
按比例在步骤(5)制得的混合溶液C中加入二硫化钨纳米片(WS2 NTs)溶液,作用一段时间后得到混合溶液D,即为比率荧光适配体传感器。
优选的,步骤(1)中,合成N,S-CQDs溶液的浓度0.02mg/mL;具体合成方法为:将4.5g柠檬酸、4.5g尿素和1.125g L-半胱氨酸溶于10mL水中,形成透明的混合溶液,在家用微波炉(700W)中加热5min得到深棕色固体;将10mg深棕色固体重新分散在20mL水中并离心(10000rpm,15min);通过0.22μm的滤膜过滤后,得到N,S-CQDs溶液,避光保存在4℃下备用。
优选的,步骤(2)中,合成CdTe QDs-apt溶液的具体方法为:
a.前驱体溶液的制备:将0.0646g Te和0.0457g NaBH4溶于4mL水中,通氮气20min后静置于4℃下反应8h,得到前驱体溶液;
b.CdTe QDs溶液的制备:在搅拌条件下,将0.1142g CdCl2·2.5H2O溶于50mL水中,加入75μL巯基丙酸,然后用1mol/L NaOH溶液将溶液的pH调至8.5,通氮气15min;加入2mL步骤a制备的前驱体溶液,通氮气10min后将混合溶液倒入三口烧瓶中,在100℃下回流20h,并加入等体积乙醇离心(10000rpm,10min)去除杂质;离心后得到发射波长为665nm的红色CdTe QDs,加入水中得到CdTe QDs溶液;
c.CdTe QDs-apt的制备:在200μL 10μM CdTe QDs溶液中加入50μL 10mM PBS溶液(pH=7.4,含有10mM EDC和5mM NHS)和3770μL 40mM Tris-HCl溶液混合,并常温避光搅拌30min;加入40μL 50μM ZEN-适配体溶液,并搅拌4h后得到CdTe QDs-apt溶液,避光保存在4℃下备用。
优选的,步骤(3)中,N,S-CQDs溶液和CdTe QDs-apt溶液的体积比为1:2;用PBS溶液调节pH到7.4。
优选的,步骤(4)中,所述比率荧光探针混合溶液A与ZEN溶液的体积比是43:5,ZEN溶液浓度为0-1000pg/mL,作用一段时间为30-60min。
优选的,步骤(5)中,所述混合溶液B与Exo I溶液的体积比是48:1,Exo I溶液浓度为0.1U/μL,作用时间为20-40min。
优选的,步骤(6)中,所述混合溶液C与WS2 NTs溶液的体积比是49:1,WS2 NTs溶液的浓度为0.5mg/mL,作用时间为15-25min。
将本发明制备的比率荧光适配体传感器用于检测ZEN的用途,具体步骤如下
S1:在比率荧光探针混合溶液A中加入ZEN溶液,经第一次反应后,加入Exo I溶液,进行第二次反应后,再加入WS2 NTs溶液,进行第三次反应后用荧光分光光度计在室温下分别检测溶液在443nm和665nm处的荧光强度,得出荧光强度比(665nm的荧光强度比443nm的荧光强度);加入0pg/mL ZEN时665nm与443nm的荧光信号比记为(I665/I443)0,加入其它浓度ZEN时665nm与443nm的荧光信号比记为(I665/I443)1、(I665/I443)2、…(I665/I443)n-1、(I665/I443)n,n为大于等于3的正整数;(I665/I443)1、(I665/I443)2、…(I665/I443)n-1、(I665/I443)n与(I665/I443)0的比值记为yi,其中i为大于等于1的正整数;基于yi和不同的ZEN浓度的对数建立标准曲线;
优选的,步骤S1中所述比率荧光探针混合溶液A、ZEN溶液、Exo I溶液和WS2 NTs溶液的体积比为43:5:1:1;所述ZEN溶液的浓度为0-1000pg/mL;所述Exo I溶液的浓度为0.1U/μL;所述WS2 NTs溶液溶液的浓度为0.5mg/mL;所述第一次反应时间为20-40min;所述第二次反应时间为20-40min;所述第三次反应的时间为15-25min;
所述荧光分光光度计的激发波长设置为350nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。
S2:在比率荧光探针混合溶液A中加入待测溶液,经第一次反应后,加入10μL0.1U/μL Exo I溶液,进行第二次反应后,再加入WS2 NTs溶液,经第三次反应后,用荧光分光光度计在室温下分别检测溶液在443nm和665nm处的荧光强度,将两处荧光强度做比值后代入步骤S1中的标准曲线,得出待测溶液中ZEN的浓度。
优选的,步骤S2中所述比率荧光探针混合溶液A、待测溶液、Exo I溶液和WS2 NTs溶液的体积比为43:5:1:1;所述Exo I溶液的浓度为0.1U/μL;所述WS2 NTs溶液溶液的浓度为0.5mg/mL;所述第一次反应时间为20-40min;所述第二次反应时间为20-40min;所述第三次反应的时间为15-25min。
本发明的有益效果:
(1)本发明基于WS2 NTs对CdTe QDs-apt的光致电子转移,实现CdTe QDs-apt荧光信号的高效猝灭,不仅为传感器构建提供平台,而且可有效提高传感器的灵敏度;
(2)本发明采用简单混合N,S-CQDs和CdTe QDs-apt的方式制备比率荧光探针,可有效避免化学结合制备方法中材料损耗的问题,同时简化实验过程,有效提高传感器的稳定性;
(3)本发明引入Exo I酶对CdTe QDs-apt的剪切作用,通过改变Exo I酶用量可实现传感器灵敏度的调控;本发明选择混合溶液B与Exo I溶液体积比48:1、混合溶液C与WS2NTs溶液体积比49:1是基于传感器构建参数优化的选择,如果改变了比例,则会影响Exo I对CdTe QDs-apt的剪切作用效果及WS2 NTs和CdTe QDs-apt之间的光致电子转移效率,进一步影响检测灵敏度,无法实现对ZEN的灵敏检测。
(4)本发明构建的比率荧光适配体传感器用于ZEN的检测,灵敏度高、选择性好、可靠性高,线性响应范围为0.1-100pg/mL。
附图说明
图1是该比率荧光适配体传感器可行性分析中不同溶液的荧光光谱图;其中a为比率荧光探针混合溶液A,b为比率荧光探针混合溶液A和ZEN溶液的混合液,c为比率荧光探针混合溶液A、ZEN溶液和Exo I的混合液,d为比率荧光探针混合溶液A、ZEN溶液、Exo I溶液和WS2 NTs溶液的混合液。
图2中A图是不同浓度ZEN标准溶液存在时溶液的荧光光谱图;B图是ZEN浓度与荧光强度比值之间的线性关系图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:实施例在本发明的技术方案为前提下进行,给出了详细实施步骤和具体操作过程,但本发明的保护范围不限于下述的实施例。
本发明所使用的ZEN-适配体、Exo I购自上海生工生物工程股份有限公司;ZEN购自阿拉丁试剂有限公司(上海);二硫化钨纳米片购自南京先丰纳米材料科技有限公司。
实施例1:
(1)合成N,S-CQDs,并制成溶液备用;
将4.5g柠檬酸、4.5g尿素和1.125g L-半胱氨酸溶于10mL水中,形成透明的混合溶液,然后在家用微波炉(700W)中加热5min得到深棕色固体。将10mg固体重新分散在20mL水中并离心(10000rpm,15min)。通过0.22μm的滤膜过滤后,避光保存在4℃下备用。
(2)合成CdTe QDs-apt,备用;
a.前驱体溶液的制备:将0.0646g Te和0.0457g NaBH4溶于4mL水中,通氮气20min后静置于4℃下反应8h;
b.CdTe QDs溶液的制备:在搅拌条件下,将0.1142g CdCl2·2.5H2O溶于50mL水中,加入75μL巯基丙酸,然后用1mol/L NaOH溶液将溶液的pH调至8.5,通氮气15min;加入2mL步骤a得到的前驱体溶液,通氮气10min后将混合溶液倒入三口烧瓶中,在100℃下回流20h,加入等体积乙醇离心(10000rpm,10min)去除杂质;得到发射波长为665nm的红色CdTe QDs,加入水中得到CdTe QDs溶液;
c.CdTe QDs-apt溶液的制备:在200μL 10μM CdTe QDs溶液中加入50μL 10mM PBS溶液(pH=7.4,含有10mM EDC和5mM NHS)和3770μL 40mM Tris-HCl溶液混合,并常温避光搅拌30min;加入40μL 50μM ZEN-适配体溶液(ZEN-适配体序列为:5'-TCA TCT ATC TATGGT ACA TTA CTA TCT GTA ATG TGA TAT G-C6H12-NH2-3'),并搅拌4h后得到CdTe QDs-apt溶液,避光保存在4℃下备用;
(3)混合N,S-CQDs溶液和CdTe QDs-apt溶液;
将N,S-CQDs溶液和CdTe QDs-apt溶液按1:2的体积比混合,用PBS溶液调节pH到7.4,得到比率荧光探针混合溶液A;
(4)添加ZEN溶液;
将比率荧光探针混合溶液A与ZEN溶液按43:5的体积比混合,其中ZEN溶液浓度为100pg/mL,作用40min后得到混合溶液B;
(5)添加Exo I溶液;
将混合溶液B与Exo I溶液按48:1的体积比混合,其中Exo I溶液浓度为0.1U/μL,作用30min后得到混合溶液C;
(6)添加WS2 NTs溶液;
将混合溶液B与Exo I溶液按49:1的体积比混合,其中WS2 NTs溶液的浓度为0.5mg/mL,作用20min后得到混合溶液D;
用荧光分光光度计在室温下分别检测混合溶液A、B、C、D的荧光强度,所述荧光分光光度计的激发波长设置为350nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。如图1所示,比率荧光探针混合溶液A存在两个互不干扰的荧光发射峰,分别在443nm和665nm(线a),分别归属于N,S-CQDs和CdTe QDs-apt;加入ZEN溶液后制备混合溶液B(线b),由于ZEN与比率探针之间无直接相互作用,443nm和665nm处的荧光强度均无明显变化;再加入Exo I溶液制备混合溶液C(线c),此时,ZEN与CdTe QDs-apt特异性结合保护CdTe QDs-apt不被Exo I剪切,但对N,S-CQDs和CdTe QDs-apt的荧光无影响,故443nm和665nm处的荧光强度依然无明显变化;在此基础上,加入WS2 NTs溶液制备混合溶液D(线d),由于ZEN-CdTe QDs-apt与WS2NTs之间存在光致电子转移,使CdTe QDs-apt在665nm处的荧光被猝灭,而N,S-CQDs在443nm处的荧光不受影响。综上,该比例制备的荧光适配体传感器用于检测ZEN具有可行性。
绘制ZEN响应标准曲线及线性回归方程式:
步骤(1)~(6)中按照实施例1的步骤(1)~(6),不同在于取430μL比率荧光探针混合溶液A,并分别加入50μL 0、0.1、0.2、1、5、20、50、100、500、1000pg/mL的ZEN标准溶液,反应40min;加入10μL 0.1U/μL Exo I溶液,反应20min;再加入10μL 0.5mg/mLWS2NTs溶液,反应1min后用荧光分光光度计在室温下分别检测溶液在443nm和665nm处的荧光强度,所得的谱图如图2中A图所示,其中,图中曲线从上到下分别对应ZEN标准液的浓度为0、0.1、0.2、1、5、20、50、100、500、1000pg/mL。加入0pg/mL ZEN时665nm与443nm的荧光信号比记为(I665/I443)0,加入浓度0.1、0.2、1、5、20、50、100pg/mL ZEN标准液时665nm与443nm的荧光信号比分别记为(I665/I443)1、(I665/I443)2、(I665/I443)3、(I665/I443)4、(I665/I443)5、(I665/I443)6、(I665/I443)7;其中(I665/I443)1、(I665/I443)2、…(I665/I443)7与(I665/I443)0的比值分别记为y1、y2…y7;基于y1、y2…y7和不同的ZEN浓度的对数(lg cZEN)建立标准曲线,如图2中B图所示;线性方程为:yi=0.8774-0.1068lg cZEN,相关系数R2=0.9987,线性范围为0.1-100pg/mL,检测限为0.1pg/mL;i为正整数。
基于光致电子转移比率荧光适配体传感器检测玉米粉中的ZEN:
玉米粉作为实际样品,将ZEN标准溶液喷洒在玉米样品表面,振摇1min后放于室温下晾干;用10mL甲醇水溶液(60%)提取1g玉米粉中的ZEN,然后在8000rpm下离心10min;取上清液并用0.22μm滤膜过滤,将得到的实际样品溶液储存在4℃下备用;
步骤(1)~(6)中按照实施例一的步骤(1)~(6),不同在于取430μL混合溶液A,并分别加入50μL待测实际样品溶液,反应40min。加入10μL 0.1U/μL Exo I溶液,反应20-40min;再加入10μL 0.5mg/mLWS2 NTs溶液,反应15-25min后用荧光分光光度计在室温下分别检测溶液在443nm和665nm处的荧光强度。表1所示。
表1:玉米粉中ZEN的检测结果
利用国标方法高效液相色谱串联荧光法(HPLC-FL)对我们提出的ZEN传感器的可靠性进行验证。从表1可以看出,两种方法对相同样品检测得到的回收率均基本一致,证明我们提出的传感器具有较高的可靠性。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (5)

1.基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法,其特征在于包含步骤如下:
(1)合成氮硫双掺杂碳量子点溶液:将4.5g柠檬酸、4.5g尿素和1.125g L-半胱氨酸溶于10mL水中,形成透明的混合溶液,于微波炉中700W条件下加热5min得到深棕色固体;将10mg深棕色固体重新分散在20mL水中并在10000rpm离心15min,通过0.22μm的滤膜过滤后,得到氮硫双掺杂碳量子点溶液;
(2)合成适配体修饰的碲化镉量子点溶液:
a.前驱体溶液的制备:将0.0646g Te和0.0457g NaBH4溶于4mL水中,通氮气20min后静置于4℃下反应8h,得到前驱体溶液;
b.CdTe QDs溶液的制备:在搅拌条件下,将0.1142g CdCl2·2.5H2O溶于50mL水中,加入75μL巯基丙酸,然后用1mol/L NaOH溶液将溶液的pH调至8.5,通氮气15min;加入2mL步骤a制备的前驱体溶液,通氮气10min后将混合溶液在100℃下回流20h,并加入等体积乙醇离心,离心条件为10000rpm离心10min,离心后得到发射波长为665nm的红色CdTe QDs,加入水中得到CdTe QDs溶液;
c.适配体修饰的碲化镉量子点溶液的制备:在200μL 10μM CdTe QDs溶液中加入50μL10mM PBS溶液和3770μL 40mM Tris-HCl溶液混合,并常温避光搅拌30min;加入40μL 50μMZEN-适配体溶液,并搅拌4h后得到适配体修饰的碲化镉量子点溶液;所述PBS溶液的pH为7.4,含有10mM EDC和5mM NHS;
(3)将步骤(1)制备的氮硫双掺杂碳量子点溶液和步骤(2)制备的适配体修饰的碲化镉量子点溶液混合,用PBS溶液调节pH后,得到比率荧光探针混合溶液A;
(4)在步骤(3)制得的比率荧光探针混合溶液A中加入ZEN溶液,作用一段时间得到混合溶液B;
(5)在步骤(4)制得的混合溶液B中加入大肠杆菌核酸外切酶I溶液,作用一段时间后得到混合溶液C;所述混合溶液B与大肠杆菌核酸外切酶I溶液的体积比是48:1;大肠杆菌核酸外切酶I溶液浓度为0.1U/μL,作用时间为20-40min;
(6)按比例在步骤(5)制得的混合溶液C中加入二硫化钨纳米片溶液,作用一段时间后得到混合溶液D,即为比率荧光适配体传感器;所述混合溶液C与二硫化钨纳米片溶液的体积比是49:1,二硫化钨纳米片溶液的浓度为0.5mg/mL,作用时间为15-25min。
2.根据权利要求1所述的基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法,其特征在于:步骤(1)中,合成氮硫双掺杂碳量子点溶液的浓度0.02mg/mL。
3.根据权利要求1所述的基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法,其特征在于:步骤(3)中,所述氮硫双掺杂碳量子点溶液和适配体修饰的碲化镉量子点溶液的体积比为1:2;用PBS溶液调节pH到7.4。
4.根据权利要求1所述的基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法,其特征在于:步骤(4)中,所述比率荧光探针混合溶液A与ZEN溶液的体积比是43:5,ZEN溶液浓度为0-1000pg/mL,作用一段时间为30-60min。
5.根据权利要求1~4任一项所述的方法制备的的比率荧光适配体传感器用于检测ZEN的用途。
CN202110597914.0A 2021-05-31 2021-05-31 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法 Active CN113337580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110597914.0A CN113337580B (zh) 2021-05-31 2021-05-31 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110597914.0A CN113337580B (zh) 2021-05-31 2021-05-31 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法

Publications (2)

Publication Number Publication Date
CN113337580A CN113337580A (zh) 2021-09-03
CN113337580B true CN113337580B (zh) 2024-04-09

Family

ID=77472284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110597914.0A Active CN113337580B (zh) 2021-05-31 2021-05-31 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法

Country Status (1)

Country Link
CN (1) CN113337580B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330974A (zh) * 2019-07-11 2019-10-15 南京工业大学 一种玉米赤霉烯酮比率荧光探针的制备及应用
CN111220585A (zh) * 2020-02-15 2020-06-02 江苏大学 一种检测玉米赤霉烯酮的比率荧光适配体传感器的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330974A (zh) * 2019-07-11 2019-10-15 南京工业大学 一种玉米赤霉烯酮比率荧光探针的制备及应用
CN111220585A (zh) * 2020-02-15 2020-06-02 江苏大学 一种检测玉米赤霉烯酮的比率荧光适配体传感器的制备方法

Also Published As

Publication number Publication date
CN113337580A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Goswami et al. ESIPT based Hg 2+ and fluoride chemosensor for sensitive and selective ‘turn on’red signal and cell imaging
Yordanov et al. EPR and UV spectral study of gamma-irradiated white and burned sugar, fructose and glucose
CN111595832B (zh) 基于碳点与碲化镉量子点作为荧光探针检测有机磷农药的方法
Babayeva et al. A novel spectrophotometric method for the determination of copper ion by using a salophen ligand, N, N′-disalicylidene-2, 3-diaminopyridine
CN108611090B (zh) 一种荧光碳量子点及其制备方法和应用
CN107216270A (zh) 一种检测硫化氢高选择性反应型荧光探针的应用
CN113075269A (zh) 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
Chandra et al. Simple salicylaldimine-functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+
Chen et al. A bio-bar-code photothermal probe triggered multi-signal readout sensing system for nontoxic detection of mycotoxins
CN101349640A (zh) 一种乳及乳制品中铬的检测方法
CA1282420C (en) Process for producing 2-methyl-1,4-naphthoquinone
CN113337580B (zh) 基于光致电子转移检测玉米赤酶烯酮的比率荧光适配体传感器的制备方法
CN116239518A (zh) 一种具有“esipt+aie”效应的近红外荧光分子探针的制备及应用
Das et al. Selective cyanide sensing using a Fe (III) complex of pyridoxal-beta alanine Schiff base
CN114460054A (zh) 一种量子点-MXene荧光传感器及其制备方法和应用
KR102066964B1 (ko) 인산이온 검출용 복합체 및 이를 포함하는 형광센서막
CN112724166B (zh) 一种水溶性荧光探针及其合成方法和用于检测抗生素的用途
CN110041305B (zh) 吲哚半菁荧光探针,制备方法及在氰根离子检测上的应用
Wang et al. Synthesis, properties and biological activity of organotin decatungstophosphates, Part 2
Tang et al. A 2-(2′-hydroxyphenyl) quinazolin-4 (3H)-one derived fluorescence ‘turn on’probe for recognition of Hg2+ in water solution and its live cell imaging
US11499094B1 (en) Ratiometric fluorescent probe, preparation method thereof, and application in detection of hydrogen peroxide
CN110514609B (zh) 固体食品样品中铅金属元素的分析检测方法
CN109705055B (zh) 苯并噻唑类化合物及其制备方法及作为次溴酸探针的应用
CN114199837A (zh) 一种检测水中Hg2+的荧光-比色双模式传感器的制备方法及其应用
KR101505467B1 (ko) 수은 2가 이온 검출용 화학센서 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant