CN113327992A - 中波超晶格红外探测器 - Google Patents

中波超晶格红外探测器 Download PDF

Info

Publication number
CN113327992A
CN113327992A CN202110545359.7A CN202110545359A CN113327992A CN 113327992 A CN113327992 A CN 113327992A CN 202110545359 A CN202110545359 A CN 202110545359A CN 113327992 A CN113327992 A CN 113327992A
Authority
CN
China
Prior art keywords
layer
superlattice
inas
type
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110545359.7A
Other languages
English (en)
Inventor
王国伟
李农
刘冰
朱小贵
李宁
牛智川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guoke Semiconductor Co ltd
Institute of Semiconductors of CAS
Original Assignee
Nanjing Guoke Semiconductor Co ltd
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Guoke Semiconductor Co ltd, Institute of Semiconductors of CAS filed Critical Nanjing Guoke Semiconductor Co ltd
Priority to CN202110545359.7A priority Critical patent/CN113327992A/zh
Publication of CN113327992A publication Critical patent/CN113327992A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及探测器技术领域,公开了一种中波超晶格红外探测器,包括:由下至上依次形成在衬底结构上的下电极接触层、器件核心层和上盖层,所述下电极接触层之上设有下电极,所述上盖层之上设有上电极;所述器件核心层包括:N型InAs/InAsSb超晶格第一接触层、AlGaAsSb势垒层、N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层,所述AlGaAsSb势垒层和N型InAs/InAsSb吸收层位于InAs/InAsSb超晶格第一接触层和InAs/InAsSb超晶格第二接触层之间,且AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层的禁带宽度。本发明的中波超晶格红外探测器能够抑制低温下红外探测器件的产生复合电流,从而降低器件的暗电流密度,达到降低探测器的噪声的效果。

Description

中波超晶格红外探测器
技术领域
本发明涉及探测器技术领域,特别涉及一种中波超晶格红外探测器。
背景技术
温度在500℃-1000℃的物体其热辐射峰值波长位于3-5微米之间,能够产生这一温度的物体在航空和工业制造领域中极为广泛,中波红外(3-5微米)焦平面相机被广泛应用于航空探测和工业制造监控中。此外,一些气体和物质的吸收峰也位于3-5微米的中波红外波段,如CO2气体吸收峰位于4.26微米处。因此,中波红外探测器在大气监测和物质检测方面也有广泛应用。衡量红外探测器的一个重要技术指标是信噪比(或探测率)。为了提高中波红外探测器的信噪比,一种常用的办法是通过降低中波红外探测器的工作温度来降低其电流,从而达到降低红外探测器噪声提高信噪比的目的。但是,为降低器件工作温度所添加的制冷设备会增大红外探测系统的尺寸、重量、功耗和成本。
发明内容
本发明提出一种中波超晶格红外探测器,解决现有中波红外探测器暗电流水平高、噪声大的问题。
本发明的一种中波超晶格红外探测器,包括:由下至上依次形成在衬底结构上的下电极接触层、器件核心层和上盖层,所述下电极接触层之上设有下电极,所述上盖层之上设有上电极;所述器件核心层包括:N型InAs/InAsSb超晶格第一接触层、AlGaAsSb势垒层、N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层,所述AlGaAsSb势垒层和N型InAs/InAsSb吸收层位于InAs/InAsSb超晶格第一接触层和InAs/InAsSb超晶格第二接触层之间,且AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层的禁带宽度。
其中,所述AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层的禁带宽度的2倍。
其中,所述衬底为GaSb层,AlGaAsSb势垒层的组分满足AlxGa1-xAs0.08xSb1-0.08x,其中,x∈(0,1]。
其中,所述AlGaAsSb势垒层厚度为0.05~1μm的非掺杂Al0.5Ga0.5As0.04Sb0.96势垒层。
其中,所述AlGaAsSb势垒层的掺杂类型可以是N型、弱P型或非故意掺杂。
其中,所述下电极接触层为N型掺杂的GaSb层、N型掺杂的InAs0.91Sb0.09层或N型掺杂的InAs/InSb超晶格层。
其中,所述上盖层为N型掺杂的InAs层或N型掺杂的InAs0.91Sb0.09层。
其中,所述器件核心层包括:由下至上依次形成在下电极接触层上的N型InAs/InAsSb超晶格第一接触层、AlGaAsSb势垒层、N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层。
其中,所述器件核心层包括:由下至上依次形成在下电极接触层上的N型InAs/InAsSb超晶格第二接触层、N型InAs/InAsSb超晶格吸收层、AlGaAsSb势垒层和N型InAs/InAsSb超晶格第一接触层。
本发明的中波超晶格红外探测器中,N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层采用同种掺杂类型,使得器件耗尽区主要集中在宽禁带的AlGaAsSb势垒层,由于该AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层禁带宽度,因而能够抑制低温下红外探测器件的产生复合电流,从而降低器件的暗电流密度,达到降低探测器的噪声的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种中波超晶格红外探测器结构示意图;
图2为本发明的另一种中波超晶格红外探测器结构示意图;
图3为本发明的中波超晶格红外探测器的器件核心层的能带结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例的中波超晶格红外探测器如图1和2所示,包括:由下至上依次形成在衬底1结构上的下电极接触层3、器件核心层和上盖层8,下电极接触层3之上设有下电极9,上盖层8之上设有上电极10,下电极9和上电极10一般由Ti、Pt和Au三种金属材料依次沉积形成。本实施例中,器件核心层包括:N型InAs/InAsSb超晶格第一接触层4、AlGaAsSb势垒层5、N型InAs/InAsSb超晶格吸收层6和N型InAs/InAsSb超晶格第二接触层7。其中,AlGaAsSb势垒层5和N型InAs/InAsSb超晶格吸收层6位于InAs/InAsSb超晶格第一接触层4和InAs/InAsSb超晶格第二接触层7之间,且AlGaAsSb势垒层5禁带宽度大于N型InAs/InAsSb超晶格吸收层6的禁带宽度。
本实施例的中波超晶格红外探测器,N型InAs/InAsSb超晶格吸收层6和N型InAs/InAsSb超晶格第二接触层7采用同种掺杂类型,使得器件耗尽区主要集中在宽禁带的AlGaAsSb势垒层5,具体如图3所示,为器件核心层的能带结构图,其中A、B、C和D区分别表示InAs/InAsSb超晶格第一接触层4、N型InAs/InAsSb超晶格吸收层6、AlGaAsSb势垒层5和N型InAs/InAsSb超晶格第二接触层7的导带底Ec和价带顶Ev禁带宽度Eg=Ec-Ev,可见AlGaAsSb势垒层5禁带宽度大于N型InAs/InAsSb超晶格吸收层6禁带宽度。由于该AlGaAsSb势垒层5禁带宽度大于N型InAs/InAsSb超晶格吸收层6禁带宽度,因而能够抑制低温下红外探测器件的产生复合电流,从而降低器件的暗电流密度,达到降低探测器的噪声的效果。
而且InAs/InAsSb超晶格作为超晶格吸收层6材料具有禁带宽度容易调节,即InAs/InAsSb超晶格作为吸收层材料的禁带宽度可通过InAs层和InAsSb层的相对厚度调节,具有禁带宽度调节灵活性大,少子寿命高的特点。可为该器件结构提供更多的器件灵活性和更好的性能。以AlGaAsSb四元合金作为势垒层材料也为设计不同禁带宽度和能带位置的器件提供了更大的灵活性,使本实施例适用于中波红外探测器的设计。
AlGaAsSb势垒层5的禁带宽度大于N型InAs/InAsSb超晶格吸收层6的禁带宽度的2倍时,可完全抑制低温下器件的产生复合电流,从而降低器件的暗电流密度,进一步降低探测器的噪声。
衬底1为GaSb层,通常衬底1和下电极接触层3之间还设有GaSb缓冲层2,AlGaAsSb势垒层5的组分满足AlxGa1-xAs0.08xSb1-0.08x,其中,x∈(0,1],使得AlGaAsSb势垒层5的晶格常数和GaSb层的晶格常数匹配,若不匹配会出现晶格驰豫增加生长缺陷密度,导致暗电流增加,从而增加器件噪声。具体地,AlGaAsSb势垒层厚度为0.05~1μm(优选0.25μm)的非掺杂Al0.5Ga0.5As0.04Sb0.96势垒层。
AlGaAsSb势垒层5的掺杂类型可以是N型、弱P型或非故意掺杂。
下电极接触层3可以为N型掺杂的GaSb层、N型掺杂的InAs0.91Sb0.09层或N型掺杂的InAs/InSb超晶格层。上盖层8为N型掺杂的InAs层或N型掺杂的InAs0.91Sb0.09层。
本实施例的中波超晶格红外探测器具体有图1和图2两种结构:
如图1所示,器件核心层包括:由下至上依次形成在下电极接触层3上的N型InAs/InAsSb超晶格第一接触层4、AlGaAsSb势垒层5、N型InAs/InAsSb超晶格吸收层6和N型InAs/InAsSb超晶格第二接触层7。具体地生长方式如下:
在N型GaSb衬底1上外延生长0.5μm的GaSb缓冲层2,采用Te掺杂,掺杂浓度为1×1016cm-3
生长1μm N型GaSb的下电极接触层3,采用Te掺杂,掺杂浓度为1×1018cm-3
生长0.4μm厚N型InAs:Si/InAsSb超晶格第一接触层4,掺杂浓度为1×1018cm-3。其中InAs层中的Si作为N型掺杂源,实现InAs/InAsSb超晶格的N型掺杂,每一周期超晶格材料由14ML(Mono Layer,单原子层)InAs:Si/7ML InAs0.73Sb0.27构成。
生长0.25μm厚的非掺杂Al0.5Ga0.5As0.04Sb0.96势垒层5,其禁带宽度为1.388eV。
生长2μm厚非掺杂的14ML InAs/7ML InAs0.73Sb0.27超晶格吸收层6,其中14MLInAs/7ML InAs0.73Sb0.27超晶格吸收层50%截至波长为5.6μm,其禁带宽度为0.221eV。
生长0.2μm厚N型14ML InAs:Si/7ML InAs0.73Sb0.27超晶格第二接触层7,掺杂浓度为1×1018cm-3
生长0.02μm厚N型InAs上盖层8,采用Si实现N型掺杂,掺杂浓度为3×1018cm-3
器件外延生长完成后,通过半导体制造工艺技术将器件制作出台面,在N型GaSb下电极接触层3和N型InAs上盖层8上制作Ti/Pt/Au电极接触层,即下电极9和上电极10。
如图2所示,器件核心层包括:由下至上依次形成在下电极接触层上的N型InAs/InAsSb超晶格第二接触层7、N型InAs/InAsSb吸收层6、AlGaAsSb势垒层5和N型InAs/InAsSb超晶格第一接触层4。具体地生长方式如下:
在N型GaSb衬底1上外延生长0.5μm的GaSb缓冲层2,采用Te掺杂,掺杂浓度为1×1016cm-3
生长1μm N型InAs0.91Sb0.09下电极接触层3,采用Si掺杂,掺杂浓度为1×1018cm-3
生长0.2μm厚N型14ML InAs:Si/7ML InAs0.73Sb0.27超晶格第二接触层7,掺杂浓度为1×1018cm-3
生长2μm厚非掺杂的14ML InAs/7ML InAs0.73Sb0.27超晶格吸收层6。其中14MLInAs/7ML InAs0.73Sb0.27超晶格吸收层50%截至波长为5.6μm。
生长0.25μm厚的非掺杂Al0.5Ga0.5As0.04Sb0.96势垒层5。
生长0.4μm厚N型14ML InAs:Si/7ML InAs0.73Sb0.27超晶格第一接触层4,掺杂浓度为1×1018cm-3
生长0.02μm厚N型InAs上盖层8,采用Si实现N型掺杂,掺杂浓度为3×1018cm-3
器件外延生长完成后,通过半导体制造工艺技术将器件制作出台面,在N型GaSb的下电极接触层3和N型InAs上盖层8上制作Ti/Pt/Au电极接触层,即下电极9和上电极10。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种中波超晶格红外探测器,其特征在于,包括:由下至上依次形成在衬底结构上的下电极接触层、器件核心层和上盖层,所述下电极接触层之上设有下电极,所述上盖层之上设有上电极;所述器件核心层包括:N型InAs/InAsSb超晶格第一接触层、AlGaAsSb势垒层、N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层,所述AlGaAsSb势垒层和N型InAs/InAsSb吸收层位于InAs/InAsSb超晶格第一接触层和InAs/InAsSb超晶格第二接触层之间,且AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层的禁带宽度。
2.如权利要求1所述的中波超晶格红外探测器,其特征在于,所述AlGaAsSb势垒层禁带宽度大于N型InAs/InAsSb超晶格吸收层的禁带宽度的2倍。
3.如权利要求1所述的中波超晶格红外探测器,其特征在于,所述衬底为GaSb层,AlGaAsSb势垒层的组分满足AlxGa1-xAs0.08xSb1-0.08x,其中,x∈(0,1]。
4.如权利要求3所述的中波超晶格红外探测器,其特征在于,所述AlGaAsSb势垒层厚度为0.05~1μm的非掺杂Al0.5Ga0.5As0.04Sb0.96势垒层。
5.如权利要求1所述的中波超晶格红外探测器,其特征在于,所述AlGaAsSb势垒层的掺杂类型可以是N型、弱P型或非故意掺杂。
6.如权利要求1所述的中波超晶格红外探测器,其特征在于,所述下电极接触层为N型掺杂的GaSb层、N型掺杂的InAs0.91Sb0.09层或N型掺杂的InAs/InSb超晶格层。
7.如权利要求1所述的中波超晶格红外探测器,其特征在于,所述上盖层为N型掺杂的InAs层或N型掺杂的InAs0.91Sb0.09层。
8.如权利要求1~7中任一项所述的中波超晶格红外探测器,其特征在于,所述器件核心层包括:由下至上依次形成在下电极接触层上的N型InAs/InAsSb超晶格第一接触层、AlGaAsSb势垒层、N型InAs/InAsSb超晶格吸收层和N型InAs/InAsSb超晶格第二接触层。
9.如权利要求1~7中任一项所述的中波超晶格红外探测器,其特征在于,所述器件核心层包括:由下至上依次形成在下电极接触层上的N型InAs/InAsSb超晶格第二接触层、N型InAs/InAsSb超晶格吸收层、AlGaAsSb势垒层和N型InAs/InAsSb超晶格第一接触层。
CN202110545359.7A 2021-05-19 2021-05-19 中波超晶格红外探测器 Pending CN113327992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110545359.7A CN113327992A (zh) 2021-05-19 2021-05-19 中波超晶格红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110545359.7A CN113327992A (zh) 2021-05-19 2021-05-19 中波超晶格红外探测器

Publications (1)

Publication Number Publication Date
CN113327992A true CN113327992A (zh) 2021-08-31

Family

ID=77416290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110545359.7A Pending CN113327992A (zh) 2021-05-19 2021-05-19 中波超晶格红外探测器

Country Status (1)

Country Link
CN (1) CN113327992A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215900A1 (en) * 2006-03-19 2007-09-20 Shimon Maimon Reduced dark current photodetector
US20070235758A1 (en) * 2003-07-02 2007-10-11 Philip Klipstein Depletion-Less Photodiode with Supressed Dark Current and Method for Producing the Same
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235758A1 (en) * 2003-07-02 2007-10-11 Philip Klipstein Depletion-Less Photodiode with Supressed Dark Current and Method for Producing the Same
US20070215900A1 (en) * 2006-03-19 2007-09-20 Shimon Maimon Reduced dark current photodetector
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法

Similar Documents

Publication Publication Date Title
JP5266521B2 (ja) 赤外線センサ、及び赤外線センサic
JP5063929B2 (ja) 赤外線センサ
CN102790100B (zh) 一种基于中间能带的InSb量子点多色红外探测器
Dehzangi et al. Impact of scaling base thickness on the performance of heterojunction phototransistors
Craig et al. InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance
Bishop et al. nBn detectors based on InAs∕ GaSb type-II strain layer superlattice
CN111710732A (zh) 一种锑化物超晶格甚长波红外探测器中抑制扩散暗电流的结构
Canedy et al. Antimonide type-II “W” photodiodes with long-wave infrared R 0 A comparable to HgCdTe
CA2662526C (en) High operation temperature split-off band infrared detectors
Korkmaz et al. Performance evaluation of InAs/GaSb superlattice photodetector grown on GaAs substrate using AlSb interfacial misfit array
US10439082B2 (en) Photodetector with reduced dark current
Chen et al. Bulk InAsSb-based upside-down pCBn photodetectors with greater than 5 µm cut-off wavelength
US10269996B1 (en) Low cost, high performance barrier-based position sensitive detector arrays
CN106409966B (zh) 半导体受光元件
Jackson et al. Radiation damage in type ii superlattice infrared detectors
Zhang et al. High in content InGaAs near-infrared detectors: growth, structural design and photovoltaic properties
JP2009272385A (ja) 半導体素子
CN113327992A (zh) 中波超晶格红外探测器
Yang An introduction to ultraviolet detectors based on III group-nitride semiconductor
Cui et al. Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Craig et al. Extended short-wave infrared linear and Geiger mode avalanche photodiodes, based on 6.1 Å materials
Wei et al. Performance and electron radiation damage of InAs/GaSb long-wave infrared detectors based on PπMN design
Savich Analysis and suppression of dark currents in mid-wave infrared photodetectors
Suo et al. Dark Current Analysis of InAsSb-Based Hetero-$ p {\text {-}} i {\text {-}} n $ Mid-Infrared Photodiode
WO2010087353A1 (ja) 赤外線検出素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210831