CN113296365B - 一种测量套刻误差的方法及测试结构 - Google Patents

一种测量套刻误差的方法及测试结构 Download PDF

Info

Publication number
CN113296365B
CN113296365B CN202110106733.3A CN202110106733A CN113296365B CN 113296365 B CN113296365 B CN 113296365B CN 202110106733 A CN202110106733 A CN 202110106733A CN 113296365 B CN113296365 B CN 113296365B
Authority
CN
China
Prior art keywords
offset
test structure
test
overlay error
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110106733.3A
Other languages
English (en)
Other versions
CN113296365A (zh
Inventor
张飞虎
刘慧斌
陆梅君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Guangli Microelectronics Co ltd
Original Assignee
Hangzhou Guangli Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Guangli Microelectronics Co ltd filed Critical Hangzhou Guangli Microelectronics Co ltd
Publication of CN113296365A publication Critical patent/CN113296365A/zh
Application granted granted Critical
Publication of CN113296365B publication Critical patent/CN113296365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7069Alignment mark illumination, e.g. darkfield, dual focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明公开了一种测量套刻误差的方法及测试结构,可应用于晶圆套刻误差的测量。所述测试结构由第一光罩和第二光罩按预置套刻偏移量交叉叠加组合,所述预置套刻偏移量分为零偏移量、左偏移量及右偏移量。本发明通过设计的测试结构结合电学测量法来准确测量晶圆的套刻误差,相对于传统的光学测量法,本发明中的电学测量法更易于实现,测量值接近于真实的套刻误差,且不仅能表征晶圆在光刻工艺过程中表面产生的套刻误差,同时能从立体角度表征整体的套刻误差。

Description

一种测量套刻误差的方法及测试结构
技术领域
本发明涉及半导体光刻领域,尤其涉及一种测量套刻误差的方法及测试结构。
背景技术
套刻误差(overlay,OVL)是指在光刻制造工艺中,当前层的图案与前层图案之间的对准精度。由于集成电路芯片的制造是通过多层结构层叠而成,因此各层结构之间的套刻精度直接影响集成电路芯片的有效性及良品率。在半导体芯片的制备工艺中,可根据套刻误差值来调整制备集成电路芯片的工艺参数,以提高集成电路芯片的有效性及良品率,因此,测得精确的套刻误差值是提高良品率的关键步骤。
对于FinFET制备工艺,制备的过程更为复杂,需应用很多张光罩光刻来完成,而目前对于因光罩光刻导致的晶圆(wafer)的套刻误差所采用的测量方法主要是光学测量方法,但光学测量的缺点是测量结构是专门的OVL Pad,不能代表其他常用的或基本的金属线/栅极结构的套刻误差情况;且光学测量方法只能看到晶圆表面的套刻误差情况,对于真实的3D芯片,光学测量法并不能表征晶圆在表面以下的工艺偏移量情况。如图1所示,第一光罩1与第二光罩2在曝光之后完成图形的叠加,在理想情况下第一光罩1和第二光罩2完全对准,此时无套刻误差。但在实际的工艺制程中,第一光罩1和第二光罩2在光刻工艺过程中会产生套刻偏移量,如图2所示,第一光罩1和第二光罩2的图形叠加后,在晶圆下表面发生了偏移量,光学测量法仅能表征晶圆上表面的套刻误差,而监测不到晶圆表面下方发生的工艺偏移量,因而也无法表征两次光刻工艺之间真正的套刻误差。
因此,有必要提出一种不仅能测量晶圆平面套刻误差,且能在立体层面测量整体套刻误差的测量方法和测试结构。
发明内容
本发明的主要目的在于克服现有技术中的全部或部分不足,提供一种测量套刻误差的方法及测试结构,能在立体层面表征晶圆整体套刻误差,且能测量晶圆整体的套刻误差。为解决上述技术问题,本发明的解决方案是:
首先,本发明提供了一种用于测量套刻误差的测试结构,其中,所述测试结构包括第一光罩和第二光罩,所述第一光罩包括若干个第一图形,所述第二光罩包括若干个第二图形,所述第一光罩和第二光罩按预置套刻偏移量交叉叠加组合;所述第一图形既可以一个独立的图形,也可以是若干个独立或相互关联的子图形组成;第二图形也同样。工艺中根据实际需要来设置不同的组合,例如第一图形为一个独立的图形,第二图形为一些子图形组合而成。优选地,所述第一图形为栅结构图形或其组合,所述第二图形为金属线图形或其组合;所述第一图形连接形成正极板、所述第二图形连接形成负极板;或所述第一图形连接形成负极板、所述第二图形连接形成正极板;将所述正极板和负极板分别连线形成正测试端和负测试端。
所述预置套刻偏移量为零偏移量、左偏移量或右偏移量;所述零偏移量表示所述测试结构中的第二光罩相对于第一光罩位置对准,偏移量为0;所述左偏移量表示所述测试结构中第二光罩相对于第一光罩的位置向左偏移的偏移量,所述右偏移量表示所述测试结构中第二光罩相对于第一光罩的位置向右偏移的偏移量。本测试结构于晶圆平面来说可以测量平面任意方向例如X、Y或者其他任何一个方向上的偏移量;为了方便说明,本实施例中采用以观察者为坐标用“左”或“右”的方式来说明,例如:从左向右、左偏移量、从右向左、右侧等。
作为本发明的另一方面,提供了一种测量套刻误差的方法,所述方法采用N个上述测试结构,且N个所述测试结构分别具有不同的预置套刻偏移量,其中,N为不小于3的整数,优选地,所述N为3-1000范围内的整数。所述方法包括测量各测试结构的电容值,并将测量的电容值在坐标系中拟合形成曲线图,所述曲线图的纵坐标轴对应于各测试结构测量的电容值,横坐标轴对应于各测试结构中所述预置套刻偏移量,确定所述曲线图的谷值点,根据所述谷值点确定晶圆的真实套刻误差。
将预置套刻偏移量为零偏移量的测试结构作为中心测试结构;将预置套刻偏移量为左偏移量的测试结构组成第一测试结构群,所述第一测试结构群的各测试结构中的左偏移量以步长值递增;将预置套刻偏移量为右偏移量的测试结构组成第二测试结构群,所述第二测试结构群的各测试结构中的右偏移量以步长值递增。
其中,横坐标的原点对应于中心测试结构的零偏移量,横坐标的左半轴数值的绝对值对应于第一测试结构群中测试结构的预置的左偏移量,横坐标的右半轴的数值对应于第二测试结构群中测试结构的预置的右偏移量;确定所述曲线图的谷值点,其中,所述谷值点对应的横坐标值为M,若M为负数,则表示因第一光罩和第二光罩形成的晶圆的真实套刻误差为向右偏移|M|;若M为正数,则表示因第一光罩和第二光罩形成的晶圆的真实套刻误差为向左偏移M。
进一步地,为了降低电学测量方法在实际测量过程中因测量偏差带来的影响,以获得更加精确的套刻误差值,所述方法还包括形成多组测试结构,所述多组测试结构采用的所述步长值不同,测量所述多组测试结构的套刻误差,以所述多组测试结构的套刻误差的均值作为最终的套刻误差值。
所述步长值在0.1nm-20nm范围内。步长值越小,电容测试得到的套刻误差的精度越准确。因此可根据工艺需求来调整步长,对于旧的工艺,例如对于0.18um逻辑芯片工艺,可选择5nm作为步长值,预置的套刻偏移量在-40nm到+40nm范围内,其中-40nm表示预置的左偏移量为40nm,+40nm表示预置的右偏移量为40nm;对于越先进的工艺技术节点,步长要求设置的数值越小越好,例如对于14nm的FinFET制备工艺,可以选择以1nm为步长值, 预置的套刻偏移量在-15nm到+15nm范围内。
所述正极板和负极板间的距离在1nm-10nm范围内。
所述测量测试结构中各测试结构的电容值时所采用的方法为LCR测量法、基于电荷的电容测量方法(CBCM ,Charge Based Capacitance Measurement)或基于正交时钟的电压电容测量法(QVCM ,quadrature-clocked voltagedepen dent capacitancemeasurement)三种中的任意一种。
此外,基于本发明测量套刻误差的方法设置的一组测试结构,能测量的是因两个光罩光刻导致的晶圆的套刻误差,当需要测量全部光罩光刻导致的晶圆的套刻误差时,则需要分别针对每两个光罩设置一组测试结构来完成测量过程。
与现有技术相比,本发明的有益效果是:
1、本发明通过设计特定的测试结构来实现晶圆套刻误差的测量,不仅能表征晶圆在光刻工艺过程中表面产生的套刻误差,同时能从立体角度表征整体的套刻误差。
2、本发明通过设计的测试结构结合电学测量法来准确测量晶圆的套刻误差,相对于传统的光学测量法,本发明中的电学测量法更易于实现,且测量值接近于真实的套刻误差。
3、本发明所提供的测量套刻误差的方法可根据芯片的制备工艺和精度要求,灵活调整测试结构的组成,例如根据制备工艺和精度要求设置更为精确的步长值和测试结构数量,以达到根据工艺或精度需求准确测量晶圆套刻误差的目的。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。
图1所示为光刻后光罩组合叠加的理想状况;
图2所示为光罩组合叠加后上表面下方产生套刻误差的情形;
图3所示为本发明实施例中的测试结构对应的光罩组合;
图4所示为本发明实施例中的一组测试结构的示意图;
图5所示为本发明实施例中的测试结构光刻后的电学测试方法连接图;
图6所示为本发明实施例中的测试结构实际测量电容值后拟合的曲线图。
附图标记:1-第一光罩,2-第二光罩,21、22、23、24、25-测试结构,3-栅结构图形,4-金属线图形。
具体实施方式
下面结合具体实施方式对本发明作进一步详细描述:
一种测量套刻误差的方法,通过设置一组测试结构并采用电学测量方法来测量晶圆整体的套刻误差,该测量套刻误差的方法包括:
步骤S1:获取待测套刻误差针对的光罩组合,如图3所示,所述光罩组合包括待叠加组合的第一光罩1和第二光罩2,所述第一光罩1包括2个栅结构图形3,所述第二光罩2包括2个金属线图形4。
步骤S2:形成一组测试结构,如图4所示,其中所述测试结构包括由所述第一光罩1和所述第二光罩2按预置套刻偏移量交叉叠加组合的5个测试结构,所述5个测试结构在空间上从左向右依次排布,位于中心位置的测试结构23为中心测试结构,所述中心测试结构23左侧的测试结构21和测试结构22为第一测试结构群,所述中心测试结构23右侧的测试结构24和测试结构25为第二测试结构群。本组测试结构于晶圆平面来说可以测量平面任意方向例如X、Y或者其他任何一个方向上的偏移量;为了方便说明,本实施例中采用以观察者为坐标用“左”或“右”的方式来说明,例如:从左向右、左偏移量、从右向左、右侧等。
所述预置套刻偏移量分为零偏移量、左偏移量及右偏移量,其中所述零偏移量表示所述中心测试结构23中的第二光罩2相对于第一光罩1位置对准;所述左偏移量表示所述第一测试结构群的各测试结构中的第二光罩2相对于第一光罩1的位置预置左偏移量,所述左偏移量以步长值按第一测试结构群的空间位置从右向左递增,在本实施例中,测试结构22中的第二光罩2相对于第一光罩1预置的左偏移量为1个步长值,测试结构21中的第二光罩2相对于第一光罩1预置的左偏移量为2个步长值;所述右偏移量表示所述第二测试结构群的各测试结构中的第二光罩2相对于第一光罩1的位置预置右偏移量,所述右偏移量以步长值按第二测试结构群的空间位置从左向右递增,在本实施例中,测试结构24中的第二光罩2相对于第一光罩1预置的右偏移量为1个步长值,测试结构25中的第二光罩2相对于第一光罩1预置的右偏移量为2个步长值。在本实施例中,所述步长值设置为5nm。
步骤S3:如图5所示,将按照步骤S2中得到的所述测试结构完成光刻并完成BEOL工艺步骤后,将各测试结构的所述栅结构图形3连接形成正极板,所述金属线图形4连接形成负极板,并将正极板和负极板分别连线形成正测试端和负测试端。
本发明采用测量测试结构的电容值的电学测量方法来表征光刻工艺导致的晶圆的套刻误差,基于以下原理:
C=εS/d;(1)
在上述公式(1)中,C表示电容值,ε表示介电常数,S表示两个电极板的相对面积,d表示正负电极板的距离。
其中,ε和S在本发明的设计结构中是定值,因此电容C与d为关联因素,且呈负相关关系。本发明采用将测试结构构成电极板并测量其电容的方法来表征极板间的距离,其中d对应于本申请中测量的套刻误差来说,等于第一光罩1和第二光罩2叠加组合得到的图形之间的距离。由于金属线或栅结构分别在整体上形成电容板,因此电容测量法表征的是光刻工艺导致的晶圆整体的套刻误差,而不仅是表征光刻工艺导致的晶圆上平面套刻误差。
步骤S4:采用LCR测量法来测量各测试结构的电容值,测试结构21、22、23、24、25中测得的电容值分别为50pF、25pF、50pF、100pF、150pF,并将测量的电容值在坐标系中拟合形成曲线图,如图6所示,所述曲线图的纵坐标轴对应于各测试结构测量的电容值,横坐标轴对应于各测试结构中所述预置的套刻偏移量,其中横坐标的原点对应于中心测试结构23的零偏移量,横坐标的左半轴数值的绝对值对应于第一测试结构群中测试结构21、22的预置的左偏移量,横坐标的右半轴的数值对应于第二测试结构群中测试结构24、25的预置的右偏移量。所述曲线图以曲线谷值点为中心,曲线在谷值点的左右两侧基本呈中心对称走向。
步骤S5:观察步骤S4中拟合的曲线谷值点,读取谷值点对应的横坐标值为-5nm,表示因第一光罩1和第二光罩2形成的晶圆的真实套刻误差为向右偏移5nm。
最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (6)

1.一种测量套刻误差的方法,其特征在于,包括:采用N个测试结构,且N个所述测试结构分别具有不同的预置套刻偏移量,其中,N为不小于3的整数;所述测量套刻误差的方法包括测量各测试结构的电容值,并将测量的电容值在坐标系中拟合形成曲线图,所述曲线图的纵坐标轴对应于各测试结构测量的电容值,横坐标轴对应于各测试结构中所述预置套刻偏移量,确定所述曲线图的谷值点,根据所述谷值点确定晶圆的真实套刻误差;
所述测试结构包括第一光罩和第二光罩,所述第一光罩包括若干个第一图形,所述第二光罩包括若干个第二图形,所述第一光罩和第二光罩按预置套刻偏移量交叉叠加组合;所述第一图形连接形成正极板、所述第二图形连接形成负极板;或所述第一图形连接形成负极板、所述第二图形连接形成正极板;将所述正极板和负极板分别连线形成正测试端和负测试端。
2.根据权利要求1所述的测量套刻误差的方法,其特征在于,所述预置套刻偏移量为零偏移量、左偏移量或右偏移量;所述零偏移量表示所述测试结构中的第二光罩相对于第一光罩位置对准,偏移量为0;所述左偏移量表示所述测试结构中第二光罩相对于第一光罩的位置向左偏移的偏移量,所述右偏移量表示所述测试结构中第二光罩相对于第一光罩的位置向右偏移的偏移量;将预置套刻偏移量为零偏移量的测试结构作为中心测试结构;将预置套刻偏移量为左偏移量的测试结构构成第一测试结构群,所述第一测试结构群的各测试结构中的左偏移量以步长值递增;将预置套刻偏移量为右偏移量的测试结构构成第二测试结构群,所述第二测试结构群的各测试结构中的右偏移量以步长值递增;其中,横坐标的原点对应于中心测试结构的零偏移量,横坐标的左半轴数值的绝对值对应于第一测试结构群中测试结构的预置的左偏移量,横坐标的右半轴的数值对应于第二测试结构群中测试结构的预置的右偏移量;确定所述曲线图的谷值点,其中,所述谷值点对应的横坐标值为M,若M为负数,则表示因第一光罩和第二光罩形成的晶圆的真实套刻误差为向右偏移|M|;若M为正数,则表示因第一光罩和第二光罩形成的晶圆的真实套刻误差为向左偏移M。
3.根据权利要求2所述的测量套刻误差的方法,其特征在于,形成多组测试结构,所述多组测试结构采用的所述步长值不同,测量所述多组测试结构的套刻误差,以所述多组测试结构的套刻误差的均值作为最终的套刻误差值。
4.根据权利要求2所述的测量套刻误差的方法,其特征在于,所述步长值在0.1nm-20nm范围内。
5.根据权利要求1-4任一项所述的测量套刻误差的方法,其特征在于,所述正极板和负极板间的距离在1nm-10nm范围内。
6.根据权利要求1-4任一项所述的测量套刻误差的方法,其特征在于,所述测量各测试结构的电容值时所采用的方法为LCR测量法、基于电荷的电容测量方法或基于正交时钟的电压电容测量法三种中的任意一种。
CN202110106733.3A 2020-12-29 2021-01-26 一种测量套刻误差的方法及测试结构 Active CN113296365B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011592337 2020-12-29
CN2020115923378 2020-12-29

Publications (2)

Publication Number Publication Date
CN113296365A CN113296365A (zh) 2021-08-24
CN113296365B true CN113296365B (zh) 2024-04-02

Family

ID=77318855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110106733.3A Active CN113296365B (zh) 2020-12-29 2021-01-26 一种测量套刻误差的方法及测试结构

Country Status (1)

Country Link
CN (1) CN113296365B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917802A (zh) * 2021-10-13 2022-01-11 杭州广立微电子股份有限公司 一种套刻误差的测量计算方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617340A (en) * 1994-04-28 1997-04-01 The United States Of America As Represented By The Secretary Of Commerce Method and reference standards for measuring overlay in multilayer structures, and for calibrating imaging equipment as used in semiconductor manufacturing
KR19980030438A (ko) * 1996-10-29 1998-07-25 김영환 반도체 버어니어 구조 및 그것을 이용한 오버레이 정확도 측정방법
JPH11126746A (ja) * 1997-10-22 1999-05-11 Ricoh Co Ltd 重ね合わせ精度測定パターン及び重ね合わせ精度測定方法
KR20010058979A (ko) * 1999-12-30 2001-07-06 박종섭 오버레이 버니어 및 그를 이용한 오버레이 측정 방법
KR20040033621A (ko) * 2002-10-15 2004-04-28 주식회사 하이닉스반도체 반도체 소자의 임계치수 측정방법
WO2004053426A1 (en) * 2002-12-05 2004-06-24 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
KR100591135B1 (ko) * 2004-12-29 2006-06-19 동부일렉트로닉스 주식회사 포토 공정에서 오버레이 에러 측정 방법
CN106154764A (zh) * 2015-04-23 2016-11-23 中芯国际集成电路制造(上海)有限公司 套刻测量装置
CN107316823A (zh) * 2017-07-12 2017-11-03 张婉婷 一种离子注入层图形套准偏差的检测方法
CN210776174U (zh) * 2019-08-29 2020-06-16 上海华力微电子有限公司 组合光罩

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425396B2 (en) * 2003-09-30 2008-09-16 Infineon Technologies Ag Method for reducing an overlay error and measurement mark for carrying out the same
NL2005459A (en) * 2009-12-08 2011-06-09 Asml Netherlands Bv Inspection method and apparatus, and corresponding lithographic apparatus.
US9218448B2 (en) * 2014-01-20 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive capacitance determination method for multiple-patterning-multiple spacer integrated circuit layout

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617340A (en) * 1994-04-28 1997-04-01 The United States Of America As Represented By The Secretary Of Commerce Method and reference standards for measuring overlay in multilayer structures, and for calibrating imaging equipment as used in semiconductor manufacturing
KR19980030438A (ko) * 1996-10-29 1998-07-25 김영환 반도체 버어니어 구조 및 그것을 이용한 오버레이 정확도 측정방법
JPH11126746A (ja) * 1997-10-22 1999-05-11 Ricoh Co Ltd 重ね合わせ精度測定パターン及び重ね合わせ精度測定方法
KR20010058979A (ko) * 1999-12-30 2001-07-06 박종섭 오버레이 버니어 및 그를 이용한 오버레이 측정 방법
KR20040033621A (ko) * 2002-10-15 2004-04-28 주식회사 하이닉스반도체 반도체 소자의 임계치수 측정방법
WO2004053426A1 (en) * 2002-12-05 2004-06-24 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
KR100591135B1 (ko) * 2004-12-29 2006-06-19 동부일렉트로닉스 주식회사 포토 공정에서 오버레이 에러 측정 방법
CN106154764A (zh) * 2015-04-23 2016-11-23 中芯国际集成电路制造(上海)有限公司 套刻测量装置
CN107316823A (zh) * 2017-07-12 2017-11-03 张婉婷 一种离子注入层图形套准偏差的检测方法
CN210776174U (zh) * 2019-08-29 2020-06-16 上海华力微电子有限公司 组合光罩

Also Published As

Publication number Publication date
CN113296365A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US9400435B2 (en) Method of correcting overlay error
CN111522210B (zh) 套刻对准标记、套刻误差测量方法和套刻对准方法
US6143621A (en) Capacitor circuit structure for determining overlay error
CN112631090B (zh) 套刻标记和套刻误差测试方法
CN113296365B (zh) 一种测量套刻误差的方法及测试结构
CN109884862B (zh) 三维存储器曝光系统中套刻偏差的补偿装置及方法
TWI760606B (zh) 用於重疊量測之非對稱重疊標記
US7772710B2 (en) Zero-order overlay targets
CN112034677A (zh) 一种套刻标记、套刻标记方法及套刻测量方法
CN113741154A (zh) 对位偏差的量测方法、半导体器件及其制备方法
CN112259527A (zh) 晶圆的测试结构
CN214375834U (zh) 一种测量套刻误差的测试结构
US8564143B2 (en) Overlay mark for multiple pre-layers and currently layer
US20070296935A1 (en) Substrate having alignment marks and method of obtaining alignment information using the same
CN110931380B (zh) 测试方法
CN218567833U (zh) 一种用于监测同层金属套刻误差的测试结构
TW201516558A (zh) 對位標識記號、對位方法,及疊對誤差量測方法和系統
US9157980B2 (en) Measuring metal line spacing in semiconductor devices
JP2824318B2 (ja) 重ね合わせ精度及び寸法精度の評価方法
CN102034736B (zh) 接触孔的光刻方法
DE10338018A1 (de) Fotolitographisches Verfahren zur Reduzierung von Effekten von Linsen-Aberration
CN214068725U (zh) 晶圆的测试结构
CN213958950U (zh) 晶圆的测试结构
CN115407618A (zh) 一种高精度套刻补偿方法
CN212515348U (zh) 套刻对准标记

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant