CN113295748A - 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用 - Google Patents

一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用 Download PDF

Info

Publication number
CN113295748A
CN113295748A CN202110558593.3A CN202110558593A CN113295748A CN 113295748 A CN113295748 A CN 113295748A CN 202110558593 A CN202110558593 A CN 202110558593A CN 113295748 A CN113295748 A CN 113295748A
Authority
CN
China
Prior art keywords
electrode
graphene
laser
noble metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110558593.3A
Other languages
English (en)
Inventor
李艳霞
汪广源
龙彩霞
陈毅挺
黄露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN202110558593.3A priority Critical patent/CN113295748A/zh
Publication of CN113295748A publication Critical patent/CN113295748A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Oncology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种激光直写技术制备石墨烯/Au柔性复合电极的制备方法,及其在肿瘤标志物中的高灵敏无标记免疫电化学传感应用,属于生物传感技术领域。本发明结合激光直写技术制备微型平面石墨烯电极,通过激光诱导还原贵金属前驱体溶液,于石墨烯电极工作界面一步沉积纳米贵金属颗粒,实现石墨烯/贵金属纳米颗粒复合电极的便捷、批量制备。继而采用抗体作为识别元件,构建功能化微型无标记免疫传感,利用LIG 3D介孔结构的高比表面积和贵金属纳米颗粒的高导电性,在不牺牲灵敏度的条件下,简化免疫分析过程,实现无标记电化学肿瘤标志物的免疫传感。进一步推进简便、绿色、低成本生物传感器的研制。

Description

一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免 疫传感应用
技术领域
本发明属于生物传感技术领域,具体涉及一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法及免疫传感应用。
背景技术
石墨烯是一种单原子层的二维sp2杂化碳纳米片,由于大的比表面积、高的电子迁移率、热导率、生物相容性、超低密度和机械柔性,表现出优异的光学、电学、化学和物理性能。石墨烯的这些特殊特性使其在生物传感器、锂电池和超级电容器等领域具有广阔应用前景。因此,石墨烯的高效制备,如微机械剥离、化学气相沉积、外延生长、氧化石墨烯(GO)的还原和有机合成等,均有较深入的研究和应用。但这些方法具有仪器昂贵、操作复杂、试剂污染环境等缺点,阻碍了其在一些领域的应用。
如何以可拓展的方式直接制备和加工石墨烯基材料是当前的研究热点之一。因此,激光直写技术以其制备简单、环境友好、易于图案化等优点被广泛应用于石墨烯基材料的制备。LIG(Laser-induced Graphene,激光诱导石墨烯)技术可诱导聚酰亚胺(PI)衬底直接生成三维多孔结构的石墨烯,表现出大的比表面积和高的导电性,制备过程无需高温和溶剂。
近年来,LIG电极因其具有电子转移速率高、比表面积大等特点,在电化学分析中得到了广泛的应用。LIG电极的改进对于提高LIG电极在自组装过程的灵敏度、稳定性和易化性方面的性能至关重要。用杂原子和纳米材料对LIG电极进行改性是提高其电化学性能的有效途径。与杂原子掺杂相比,LIG表面的自组装复合材料更易于电极的组装。具有高电催化活性和导电性的贵金属(如金、银、铂纳米粒子)已成功应用于LIG电极的改性。这些贵金属纳米粒子的组装过程通常采用电沉积、磁控溅射工艺。其中电沉积是应用最广泛的一种技术,但它消耗大量的试剂,并且反应条件需严格控制,而磁控溅射工艺需要昂贵而精密的设备和专业的技术人员。Xia等的研究小组提出了一种激光诱导石墨烯薄膜上金属离子的还原。若将该技术应用于LIG电极的修饰,可大大简化修饰步骤,且只需消耗少量前体试剂。
近几十年来,癌症已经成为导致死亡率上升的一个重要的原因,并且癌症的发病率正趋于年轻化,已经严重影响到了人们的健康。肿瘤标志物是存在于血液,体液或组织当中的一种生物分子,常见的肿瘤标志物有前列腺特异性抗原(PSA)、糖链抗原15-3 (CA 15-3)、甲胎蛋白(AFP)、癌胚抗原(CEA)等。它们的存在或量变可以提示肿瘤的性质,帮助癌症的鉴别诊断、预后判断、治疗反应预测及癌症的进展监测。肿瘤标志物是早期癌症检测,确定癌症对化疗治疗的反应以及监测疾病进展的最有价值的工具之一, 快速、灵敏地检测肿瘤标志物对肿瘤的早期诊断和预防具有重要意义。
发明内容
本发明的目的是提供一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法,及用于肿瘤标志物的无标记免疫传感。
本发明设计三电极图案,采用激光直写技术制备微型平面石墨烯电极,通过激光诱导还原贵金属前驱体溶液,于石墨烯电极工作界面一步沉积纳米贵金属颗粒,实现石墨烯/贵金属纳米颗粒复合电极的便捷、批量制备。继而采用抗体作为识别元件,构建功能化微型无标记免疫传感,利用LIG 3D介孔结构的高比表面积和贵金属纳米颗粒的高导电性,在不牺牲灵敏度的条件下,简化免疫分析过程,实现无标记电化学肿瘤标志物的免疫传感。进一步推进简便、绿色、低成本生物传感器的研制。
为实现上述目的,本发明采用如下技术方案:
一种激光直写石墨烯/贵金属纳米颗粒(LIG/ Metal NPs)复合电极的制备方法,包括如下步骤:
1)设计三电极系统微电极图案,采用激光器,在高绝缘PI膜上打印出石墨烯微电极;
2)于工作电极区域部分滴加贵金属前驱体试剂,激光锚定工作区域,通过激光诱导纳米贵金属颗粒生成,并直接沉积石墨烯表面;
3)Ag/AgCl浆涂在参比电极上,导电银浆作为信号输出接头,PDMS(聚二甲基硅氧烷)固定工作区域面积,从而形成激光直写石墨烯/贵金属纳米颗粒(LIG/ Metal NPs)复合电极。
上述步骤1)、步骤2)中采用Nano Pro-Ⅲ型激光打印机(天津嘉银纳米科技有限公司),激光打印或激光诱导的条件为:激光器波长450 nm, 电源电压12V,激光强度50~100,打印深度5~30,电极工作区域直径4 mm。
优选的,上述步骤1)、步骤2)激光打印或激光诱导的条件为:激光器波长450 nm,电源电压12 V,激光强度90,打印深度15,电极工作区域直径4 mm。
上述步骤2)中贵金属前驱体试剂为氯金酸、氯铂酸、硝酸银水溶液,质量浓度为1~10%,体积1~10 μL,自然晾干。
一种无标记电化学免疫传感器的制备方法,包括以下步骤:
1)抗体的组装:巯基十一酸溶液滴加到上述所制备激光直写石墨烯/贵金属纳米颗粒(LIG/ Metal NPs)复合电极的工作界面,孵化一段时间,水洗,晾干;接着于工作电极表面滴加1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐/ N-羟基琥珀酰亚胺(EDC/NHS)混合液,室温静置1小时;电极水洗晾干;工作电极表面滴加抗体溶液,孵化,水洗晾干;接着滴加5 μL 1wt%牛血清白蛋白(BSA)溶液封闭, 室温静置1h,水洗晾干,冷藏,获得组装抗体的复合电极。
2)将样品溶液滴加到步骤1)所制备组装抗体的复合电极的工作区域,吸附一段时间,取出电极,超纯水淋洗,静置,干燥,
3)滴加铁氰化钾溶液,进行循环伏安扫描,监测峰电流的变化,从而构建无标记电化学免疫传感器。
上述步骤1)中巯基十一酸水溶液,浓度1~20 mmol/L,体积1~10 μL,孵化时间为:5~60 min;1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和 N-羟基琥珀酰亚胺(NHS)摩尔比为1:1,浓度0. 1~10 mmol/L,体积5 μL,分3次滴加,每次间隔20 min,共计孵化时间60 min;所用抗体与目标抗原匹配,浓度为0.1~1mg/mL。
上述步骤2)中所述样品为肿瘤标志物中前列腺特异性抗原(PSA)、糖链抗原15-3(CA 15-3)、甲胎蛋白(AFP)、癌胚抗原(CEA)的一种,浓度0.01~100 ng/mL,体积5~10 μL,孵化时间为5~60 min。
上述步骤3)中峰电流采用循环伏安法检测,电介质溶液为20 μL 5 mmol/L铁氰化钾含1.0 mol/L氯化钾混合溶液, 扫描范围-0.4~0.4 V,扫速0.1 V/s。
一种上述方法制备所得的无标记电化学免疫传感器。
上述无标记电化学免疫传感器在检测肿瘤标志物中的应用。
本发明的显著优点在于:
1)激光直写技术制备平面微电极,其操作简便,不需有机溶剂,绿色环保,成本极低,同时能在微尺度对电极进行图案化,能批量制备,为微米尺寸范围内的电极体系创造了特殊需求,利于设计小型化电化学传感器。
2)贵金属纳米颗粒对LIG电极的组装: LIG电极的修饰和自组装对提高LIG电极的灵敏度、稳定性和便利性方面的性能至关重要。具有高电催化活性和导电性的贵金属(如金、银、铂纳米粒子)能大大改善LIG电极的电化学性能。这些贵金属纳米粒子的组装过程通常采用电沉积、磁控溅射等工艺。其中电沉积是应用最广泛的一种技术,但它消耗大量的试剂,并且反应条件需严格控制,而磁控溅射工艺需要昂贵而精密的设备和专业的技术人员。本发明所采用的激光诱导技术,将贵金属前驱体溶液于LIG电极表面直接沉积相应的金属纳米颗粒,能大大简化修饰过程,缩短了制备时间,且只需消耗少量前体试剂。
3)无标记电化学免疫传感:无标记电化学免疫分析由于省略了标记步骤,简化了免疫分析的操作过程。高电导率和大比表面积的传感界面是改善无标记电化学免疫传感器性能的关键。采用LIG技术制备的具有三维介孔结构的石墨烯大大增加了电极的表面积。此外,在石墨烯上沉积贵金属纳米粒子不仅提高了LIG电极的导电性,而且利于抗体的组装。实现在不牺牲灵敏度的条件下,便携制备无标记电化学肿瘤标志物的免疫传感。
4)所构建的无标记免疫电化学传感器,特异性强,灵敏度高,检测范围在0.01~100 ng/mL,且有良好的重现性,该方法为肿瘤标志物的临床筛选和癌症早期诊断提供了一个通用的、有前景的分析平台。
附图说明
图1 LIG/贵金属纳米颗粒复合电极的制备方法及免疫传感分析示意图。
图2 所制备电极结构示意图。WE: 工作区域。
图3 LIG和LIG/Au 电极表面形貌的SEM图。(A)LIG电极;(B)LIG/Au 电极。
图4 LIG和LIG/Au 纳米颗粒形貌的TEM图。(A)LIG电极;(B)LIG/Au 电极。
图5 LIG和LIG/Au 纳米颗粒的XRD图。
图6 LIG和LIG/Au 纳米颗粒的拉曼谱图。
图7 激光直写不同强度下连接工作电极两端之间的电阻变化曲线。
图8 激光直写不同打印深度对LIG/Au电极的电化学性能的影响。
图9 LIG电极与Au 和GC电极的CV图比较。
图10 电极自组装过程的CV曲线。
图11 无标记免疫识别不同浓度CEA的CV曲线。
图12 峰电流与CEA浓度的对数值的线性关系图。
图13 免疫传感器识别不同蛋白分析对峰电流的影响。
具体实施方式
为了更好地理解本发明,下面结合附图和实施例对本发明做进一步阐述,但并不是对本发明的限制。下述实施例中所用的实验方法如无特殊说明,均为常规方法。
仪器:Nano Pro-Ⅲ型激光打印机(天津嘉银纳米科技有限公司)。
LIG/贵金属纳米颗粒复合电极的制备及免疫传感分析过程如图1所示:具体过程包括,a)激光直写三电极图案化石墨烯;b)激光诱导沉积贵金属纳米颗粒;c)自组装巯基十一酸;d)共价键合抗体;e)BAS封闭;f)识别目标抗原;g)电化学分析。
实施例1
设计三电极系统微电极图案,采用450 nm激光器,电源电压12 V,打印深度为15,强度为90,在高绝缘PI膜上打印出石墨烯微电极,电极依次水、乙醇淋洗,晾干。电极尾部涂上银胶,参比电极涂上氯化银,PDMS用来固定工作区域面积,防止滴加的测试样品溶液扩散,从而形成LIG电极。
实施例2
设计三电极系统微电极图案,采用450 nm激光器,电源电压12 V,打印深度为15,强度为90,在高绝缘PI膜上打印出石墨烯微电极,于工作电极区域部分滴加5μL 1wt%氯金酸水溶液,静置不移动位置,自然晾干,激光打印工作区域部分,电极依次水、乙醇淋洗,晾干。电极尾部涂上银胶,参比电极涂上氯化银,PDMS用来固定工作区域面积,从而形成LIG/Au 复合电极。所制备电极的结构示意图如图2所示。
采用扫描电子显微镜(SEM)对LIG和LIG/ Au 复合电极的表面形貌进行了表征(图3)。图3(A)可表明电极表面石墨烯呈3D蜂窝状结构,这种3D结构大大提高了电极工作界面的表面积。图3(B)表明大量纳米颗粒比较均匀地附着在石墨烯的表面,说明金纳米粒子已经成功修饰上石墨烯上,形成石墨烯/Au复合材料。
实施例3
在实施例1和实施例2中所制备的电极工作界面用刮刀收集石墨烯和石墨烯/Au复合材料,研磨分散,采用透射电子显微镜(TEM)对石墨烯和石墨烯/Au复合材料进行形貌表征(图4)。图4(A)表明石墨烯的片状结构,证明所采用的激光直写技术能制备出石墨烯。图4(B)表明金纳米颗粒均匀地分散在石墨烯的表面,形成石墨烯/Au复合材料。
将实施例1和实施例2中所制备的电极工作界面用刮刀收集石墨烯和石墨烯/Au复合材料,研磨分散,采用X射线衍射(XRD)对石墨烯和石墨烯/Au复合材料进行结构分析(图5)。LIG电极在2θ=26.5°处出现特征峰,表明经激光直写处理的聚酰亚胺石墨化效果较好。LIG/Au电极在38.18°、44.48°、64.68°、77.68°和81.96°处出现面心立方晶体结构的Au反射峰,在2θ=26.5°处出现石墨特征峰,表明Au已成功地负载在LIG电极上。
将实施例1和实施例2中所制备的电极工作界面用刮刀收集石墨烯和石墨烯/Au复合材料,研磨分散,采用拉曼光谱对石墨烯和石墨烯/Au复合材料进行结构分析。图6表明其中在1349 cm-1处的D峰表示结构缺陷和无序,在1587 cm-1处的G峰表示C-C键晶格引起的一阶声子振动,在2649 cm-1处2D峰表示C-C键晶体引起的二阶声子振动。金纳米粒子嵌入LIG后,D和G峰没有移动。2D峰的强度变化较为为明显,表明金纳米粒子的嵌入改变了LIG电极的性能,但对石墨烯的结构影响不大。
实施例4
设计三电极系统微电极图案,采用450 nm激光器,电源电压12 V,打印深度为10,强度为分别为10、20、30、40、50、60、70、80、90、100,在高绝缘PI膜上打印出石墨烯微电极,电极依次水、乙醇淋洗,晾干。电极尾部涂上银胶,参比电极涂上氯化银,PDMS用来固定工作区域面积,从而形成LIG电极,用万用表测试工作电极两端之间的电阻,其电阻值随激光强度的变化曲线如图7所示,当激光强度低于50,电极不导电,激光强度从50开始,电阻值逐步降低,证明随着激光强度的增加,所生成的石墨烯越来越紧密,从而导电性增加,当强度增至90,电阻值趋于稳定,证明激光强度90是最佳强度。
实施例5
设计三电极系统微电极图案,采用450 nm激光器,电源电压12 V,打印深度为5~30,强度为90,在高绝缘PI膜上打印出石墨烯微电极,于工作电极区域部分滴加5 μL 1wt%氯金酸水溶液,静置不移动位置,自然晾干,相同激光了解打印工作区域部分,电极依次水、乙醇淋洗,晾干。电极尾部涂上银胶,参比电极涂上氯化银,PDMS用来固定工作区域面积,从而形成LIG/ Au 复合电极。电极表面滴加20 μL 5 mmol/L铁氰化钾含1.0 mol/L氯化钾混合溶液, 采用循环伏安扫描,扫描范围-0.3~0.4 V,扫速0.1 V/s。结果如图8所示,随着打印深度的增加,峰电流逐步增加,当雕刻深度从15增加到30时,峰电流变化不明显,证明打印深度为15是最佳深度。
实施例6
将实施例1 中的LIG电极(LIG electrode)与棒状玻碳电极(GC electrode)、金电极(Au electrode) (直径为4mm)的在铁氰化钾溶液中进行循环伏安扫描。图9表明石墨烯电极的氧化还原峰电流最大,与玻碳电极和金电极差值较大,而玻碳电极和金电极差值较小。石墨烯的3D结构,极大地增加了电极的比表面积,提高了电子在电极表面的传递和转移速度,使得电极的灵敏度大大高于常规的电极,体现了石墨烯材料用于电化学分析中的优越性。
实施例7
5μL 5mM巯基十一酸溶液滴加到实施例2所制备LIG/ Au 复合电极的工作界面,孵化30 min,水洗,晾干;接着于工作电极表面滴加5 μL 0.5 mM EDC/NHS (EDC和NHS摩尔比为1:1)混合液, 滴加三次,每次间隔20 min,室温静置1h;电极水洗晾干;工作电极表面滴加5 μL 0.1 mg/mL的CEA抗体(Ab),室温静置1 h,水洗晾干;接着滴加5 μL 1%BSA 溶液,室温静置1h,水洗晾干,工作电极表面滴加5 μL 10 ng/mL的CEA抗原(AE)溶液,室温静置1h,水洗晾干,待测。制备过程中所得不同电极,表面滴加20 μL 5 mmol/L铁氰化钾含1.0mol/L氯化钾混合溶液,采用循环伏安扫描。
图10表明相对于LIG电极,LIG/Au电极氧化还原峰电流强度明显增强, 因为金纳米粒子能作为电子导体使电子更易传递,LIG与Au的复合增强了电极的表电阻传递能力。当电极逐渐修饰上不同物质时,氧化还原电流也逐渐减小,说明所修饰的物质通过共价键合或静电吸附已经结合到了电极表面,都阻碍了电子的转移。抗体结合到电极上时电流显著下降,因为抗体是一种绝缘体阻碍电子转移。当CEA结合到电极上时氧化还原电流最小值,这是因为抗原抗体发生特异性结合,CEA也是一种非导电物质,进一步阻碍了电极表面电子的迁移。上述实验说明,电化学活性物质[Fe(CN)6]3-在电极表面产生了明显的电化学响应信号。在电极表面进一步固定的各种非导电性物质则引起了检测电流的逐渐降低,这说明本发明所制备的LIG/Au电化学免疫传感器能够通过监测免疫反应固定抗原前电流响应的变化值对CEA浓度进行测定。
实施例8
5μL 5mM巯基十一酸溶液滴加到实施例2所制备LIG/ Au 复合电极的工作界面,孵 化30 min,水洗,晾干;接着于工作电极表面滴加5μL 0.5mM EDC/NHS (EDC和NHS摩尔比为 1:1)混合液, 滴加三次,每次间隔20 min,室温静置1h;电极水洗晾干;工作电极表面滴加5 μL 0.1 mg/mL的CEA抗体,室温静置1 h,水洗晾干;接着滴加5μL 1wt%BSA 溶液, 室温静 置1h,水洗晾干,工作电极表面滴加5 μL 不同浓度(0.01、0.1、1.0、10、100 ng/mL)的CEA溶 液,室温静置1 h,水洗晾干,表面滴加20 μL 5 mmol/L铁氰化钾含1.0mol/L氯化钾混合溶 液, 采用循环伏安扫描。从图11 CV曲线看出氧化还原峰型较好,随着CEA浓度的升高,氧化 还原峰电流逐渐减小,最低浓度达0.01ng/mL,说明该免疫传感器具有高灵敏度。图12表明 CEA在0.01~100 ng/mL浓度范围内峰电流的变化值(
Figure 789562DEST_PATH_IMAGE002
)与浓度对数值呈良好的线性关 系,线性方程为:
Figure 316490DEST_PATH_IMAGE003
,R=0.9447
由此可见,所制备的LIG/ Au电极应用于无标记免疫传感器,检测线性范围宽,灵敏度高,表明LIG/ Au电极具有优越的电化学响应,适用于肿瘤标志物的无标记免疫传感。
实施例9
5μL 5mM巯基十一酸溶液滴加到实施例2所制备LIG/ Au 复合电极的工作界面,孵化30 min,水洗,晾干;接着于工作电极表面滴加5μL 0.5 mM EDC/NHS(EDC和NHS摩尔比为1:1) 混合液, 滴加三次,每次间隔20 min,室温静置1h;电极水洗晾干;工作电极表面滴加5μL 0.1 mg/mL的CEA抗体,室温静置1 h,水洗晾干;接着滴加5μL 1wt%BSA 溶液, 室温静置1h,水洗晾干,工作电极表面滴加5 μL 10 ng/mL的不同蛋白质溶液,分别为癌胚抗原(CEA),牛血红蛋白(BHb),甲胎蛋白(AFP),卵清白蛋白(OVA), 前列腺特异性抗原(PSA),牛血清白蛋白(BSA);室温静置1 h,水洗晾干,表面滴加20 μL 5 mmol/L铁氰化钾含1.0mol/L氯化钾混合溶液, 采用循环伏安扫描。图13 表明与CEA相比,结合其他蛋白的氧化还原峰电流未发生明显变化,而识别CEA之后的CV曲线的峰电流变化显著。表本该免疫传感器对CEA有良好的特异性。
实施例10
按照实施例7,平行制备一批5个电极,识别浓度为0.1 ng/mL CEA溶液,进行电化学测试(循环伏安法),记录五个电极的氧化峰电流,相对标准偏差为2.31%,证明所制备的免疫传感器表现出良好的重现性。
实施例11
选择胎牛血清(FBS)作为生物样本,用稀释20倍的胎牛血清溶液作为基底溶液,分别添加CEA 溶液,使其终浓度依次为1.0 ng/mL 和10 ng/mL,按照实施例8步骤,识别血清中添加不同浓度的样品溶液,进行电化学测试(循环伏安法),记录的氧化峰电流,结果如表1所示。从表1可以看出此电化学传感器在血清样品中受的干扰较小仍具有较好的峰电流信号,于血清样品中添加1.0 ng/mL 和10 ng/mL的 CEA,回收率依次为80.28%和90.25%。这一结果表明,该方法所制备的石墨烯/Au电化学免疫传感器可适用于较复杂的生物样品分析。
表1 血清样品添加回收实验
Figure DEST_PATH_IMAGE004
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法,其特征在于:包括如下步骤:
设计三电极系统微电极图案,采用激光器,在高绝缘PI膜上打印出石墨烯微电极;
于工作电极区域部分滴加贵金属前驱体试剂,激光锚定工作区域,通过激光诱导纳米贵金属颗粒生成,并直接沉积石墨烯表面;
Ag/AgCl浆涂在参比电极上,导电银浆作为信号输出接头,聚二甲基硅氧烷固定工作区域面积,从而形成激光直写石墨烯/贵金属纳米颗粒复合电极。
2.根据权利要求1所述的一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法,其特征在于:所述步骤1)、步骤2)中激光打印或激光诱导的条件为:激光器波长450 nm, 电源电压12 V,激光强度50~100,打印深度5~30,电极工作区域直径4 mm。
3.根据权利要求1所述的一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法,其特征在于:所述步骤1)、步骤2)激光打印或激光诱导的条件为:激光器波长450 nm, 电源电压12 V,激光强度90,打印深度15。
4.根据权利要求1所述的一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备方法,其特征在于:所述步骤2)中贵金属前驱体试剂为氯金酸、氯铂酸、硝酸银水溶液中的一种,质量浓度为1~10%,体积1~10 μL,自然晾干。
5.一种无标记电化学免疫传感器的制备方法,其特征在于,包括以下步骤:
1)抗体的组装:巯基十一酸溶液滴加到权利要求1所制备的激光直写石墨烯/贵金属纳米颗粒复合电极的工作界面,孵化一段时间,水洗,晾干;接着于工作电极表面滴加1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐/ N-羟基琥珀酰亚胺混合液,室温静置1小时;电极水洗晾干;工作电极表面滴加抗体溶液,孵化,水洗晾干;接着滴加5 μL 1wt%牛血清白蛋白溶液封闭, 室温静置1h,水洗晾干,冷藏,获得组装抗体的复合电极;
2)将样品溶液滴加到步骤1)所制备组装抗体的复合电极的工作区域,吸附一段时间,取出电极,水洗晾干;
3)滴加铁氰化钾溶液,进行循环伏安扫描,监测峰电流的变化,从而构建无标记电化学免疫传感器。
6.根据权利要求5所述的一种无标记电化学免疫传感器的制备方法,其特征在于:所述步骤1)中巯基十一酸水溶液,浓度1~20 mmol/L,体积1~10 μL,孵化时间为5~60 min;1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和N-羟基琥珀酰亚胺摩尔比为1:1,浓度0. 1~10 mmol/L,体积5 μL,分3次滴加,每次间隔20 min,共计孵化时间60 min;所用抗体与目标抗原匹配,浓度为0.1~1mg/mL。
7.根据权利要求5所述的一种无标记电化学免疫传感器的制备方法,其特征在于:步骤2)中所述样品为肿瘤标志物中前列腺特异性抗原、糖链抗原15-3 、甲胎蛋白、癌胚抗原的一种,浓度0.01~100 ng/mL,体积5~10 μL,孵化时间为5~60 min。
8.根据权利要求5所述的一种无标记电化学免疫传感器的制备方法,其特征在于:步骤3)中峰电流采用循环伏安法检测,电介质溶液为20 μL 5 mmol/L铁氰化钾含1.0 mol/L氯化钾混合溶液, 扫描范围-0.4~0.4 V,扫速0.1 V/s。
9.一种权利要求5所述方法制备所得的无标记电化学免疫传感器。
10.如权利要求9所述的无标记电化学免疫传感器在检测肿瘤标志物中的应用。
CN202110558593.3A 2021-05-21 2021-05-21 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用 Pending CN113295748A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110558593.3A CN113295748A (zh) 2021-05-21 2021-05-21 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110558593.3A CN113295748A (zh) 2021-05-21 2021-05-21 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用

Publications (1)

Publication Number Publication Date
CN113295748A true CN113295748A (zh) 2021-08-24

Family

ID=77323696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110558593.3A Pending CN113295748A (zh) 2021-05-21 2021-05-21 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用

Country Status (1)

Country Link
CN (1) CN113295748A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216948A (zh) * 2021-11-01 2022-03-22 佛山科学技术学院 一种溶液中检测砷离子的电化学方法
CN114279600A (zh) * 2021-12-28 2022-04-05 大连理工大学 基于激光诱导石墨烯的复合材料介电层的柔性压力传感器
CN114705736A (zh) * 2022-03-21 2022-07-05 山东大学 一种便携式多路检测电化学传感系统及其应用
CN114965636A (zh) * 2022-04-18 2022-08-30 苏州大学 激光直写富氧酶电极及基于其的电化学酶传感器的制备
CN115015345A (zh) * 2022-08-08 2022-09-06 湖南农业大学 用于快速检测重金属离子的无修饰柔性电化学传感器及其制备方法和应用
CN115112738A (zh) * 2022-07-21 2022-09-27 闽江学院 一种激光直写石墨烯/酶电极的制备及葡萄糖传感应用
CN115266862A (zh) * 2022-07-22 2022-11-01 闽江学院 激光直写石墨烯/PB/PEDOT/Au复合电极及其制备方法和应用
CN115950931A (zh) * 2023-03-08 2023-04-11 中国地质大学(北京) 一种水环境中钇(ⅲ)离子检测用修饰电极及检测方法
CN116199210A (zh) * 2023-01-17 2023-06-02 西北工业大学 一种石墨烯负载纳米粒子的高通量激光合成方法及应用
CN116553475A (zh) * 2023-03-23 2023-08-08 清华大学 基于激光的单颗粒微电极制备方法
CN115112738B (zh) * 2022-07-21 2024-05-31 闽江学院 一种激光直写石墨烯/酶电极的制备及葡萄糖传感应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738457A (zh) * 2016-03-07 2016-07-06 济南大学 一种基于金属基标记同时检测两种肿瘤标志物的磁性电化学免疫传感器的制备方法及应用
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
US20190088420A1 (en) * 2014-11-26 2019-03-21 William Marsh Rice University Laser induced graphene hybrid materials for electronic devices
CN110261451A (zh) * 2019-05-28 2019-09-20 广州钰芯传感科技有限公司 一种针对农药蝇毒磷分子识别的二茂铁标记的半抗原-聚乙烯亚胺结合物的制备方法与应用
US20200002174A1 (en) * 2016-06-21 2020-01-02 William Marsh Rice University Laser-induced graphene (lig) and laser induced graphene scrolls (ligs) materials
US20200150075A1 (en) * 2016-07-21 2020-05-14 King Abdullah University Of Science And Technology On-chip graphene electrode, methods of making, and methods of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
US20190088420A1 (en) * 2014-11-26 2019-03-21 William Marsh Rice University Laser induced graphene hybrid materials for electronic devices
CN105738457A (zh) * 2016-03-07 2016-07-06 济南大学 一种基于金属基标记同时检测两种肿瘤标志物的磁性电化学免疫传感器的制备方法及应用
US20200002174A1 (en) * 2016-06-21 2020-01-02 William Marsh Rice University Laser-induced graphene (lig) and laser induced graphene scrolls (ligs) materials
US20200150075A1 (en) * 2016-07-21 2020-05-14 King Abdullah University Of Science And Technology On-chip graphene electrode, methods of making, and methods of use
CN110261451A (zh) * 2019-05-28 2019-09-20 广州钰芯传感科技有限公司 一种针对农药蝇毒磷分子识别的二茂铁标记的半抗原-聚乙烯亚胺结合物的制备方法与应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANA R. CARDOSOA 等: "Molecularly-imprinted chloramphenicol sensor with laser-induced graphene", 《BIOSENSORS AND BIOELECTRONICS》 *
FENGNIAN ZHAO 等: "Smart plant-wearable biosensor for in-situ pesticide analysis", 《BIOSENSORS AND BIOELECTRONICS》 *
KANGWEI XIA 等: "Photo-induced electrodeposition of metallic nanostructures on graphene", 《NANOSCALE》 *
KSHAMA PARATE 等: "Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum", 《ACS APPLIED MATERIALS INTERFACES》 *
RAQUEL R. A. SOARES 等: "Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth", 《ACS SENSORS》 *
SAKANDAR RAUF 等: "Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers", 《BIOSENSORS AND BIOELECTRONICS》 *
ZHIHENG YOU 等: "Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection", 《BIOSENSORS AND BIOELECTRONICS》 *
桑亚新 等: "《食品微生物学》", 31 January 2017, 中国轻工业出版社 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216948A (zh) * 2021-11-01 2022-03-22 佛山科学技术学院 一种溶液中检测砷离子的电化学方法
CN114216948B (zh) * 2021-11-01 2023-09-26 佛山科学技术学院 一种溶液中检测砷离子的电化学方法
CN114279600A (zh) * 2021-12-28 2022-04-05 大连理工大学 基于激光诱导石墨烯的复合材料介电层的柔性压力传感器
CN114705736B (zh) * 2022-03-21 2023-08-11 山东大学 一种便携式多路检测电化学传感系统及其应用
CN114705736A (zh) * 2022-03-21 2022-07-05 山东大学 一种便携式多路检测电化学传感系统及其应用
CN114965636A (zh) * 2022-04-18 2022-08-30 苏州大学 激光直写富氧酶电极及基于其的电化学酶传感器的制备
CN115112738B (zh) * 2022-07-21 2024-05-31 闽江学院 一种激光直写石墨烯/酶电极的制备及葡萄糖传感应用
CN115112738A (zh) * 2022-07-21 2022-09-27 闽江学院 一种激光直写石墨烯/酶电极的制备及葡萄糖传感应用
CN115266862A (zh) * 2022-07-22 2022-11-01 闽江学院 激光直写石墨烯/PB/PEDOT/Au复合电极及其制备方法和应用
CN115015345A (zh) * 2022-08-08 2022-09-06 湖南农业大学 用于快速检测重金属离子的无修饰柔性电化学传感器及其制备方法和应用
CN116199210A (zh) * 2023-01-17 2023-06-02 西北工业大学 一种石墨烯负载纳米粒子的高通量激光合成方法及应用
CN115950931A (zh) * 2023-03-08 2023-04-11 中国地质大学(北京) 一种水环境中钇(ⅲ)离子检测用修饰电极及检测方法
CN116553475A (zh) * 2023-03-23 2023-08-08 清华大学 基于激光的单颗粒微电极制备方法
CN116553475B (zh) * 2023-03-23 2024-01-30 清华大学 基于激光的单颗粒微电极制备方法

Similar Documents

Publication Publication Date Title
CN113295748A (zh) 一种激光直写石墨烯/贵金属纳米颗粒复合电极的制备及免疫传感应用
Qin et al. A novel carbon quantum dots signal amplification strategy coupled with sandwich electrochemiluminescence immunosensor for the detection of CA15-3 in human serum
Amani et al. Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol
Guo et al. An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using Au@ Pd core–shell nanoparticles as labels and platforms for signal amplification
Hasanzadeh et al. Ultrasensitive immunoassay of tumor protein CA 15.3 in MCF-7 breast cancer cell lysates and unprocessed human plasma using gold nanoparticles doped on the structure of mesoporous silica
Ghanavati et al. A novel label-free impedimetric immunosensor for sensitive detection of prostate specific antigen using Au nanoparticles/MWCNTs-graphene quantum dots nanocomposite
Peng et al. Label-free electrochemical immunosensor based on multi-functional gold nanoparticles–polydopamine–thionine–graphene oxide nanocomposites film for determination of alpha-fetoprotein
Liu et al. Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/Au alloy and a disposable device
Kumar et al. Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker
Ge et al. Disposable electrochemical immunosensor for simultaneous assay of a panel of breast cancer tumor markers
Ge et al. Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@ Pt-paper electrode 3D origami immunodevice
Liu et al. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP
Tang et al. Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force
Wang et al. A laser-induced graphene electrochemical immunosensor for label-free CEA monitoring in serum
Farshchi et al. A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology
Feng et al. Graphene oxide supported rhombic dodecahedral Cu2O nanocrystals for the detection of carcinoembryonic antigen
Chen et al. A label-free electrochemical immunosensor based on a gold–vertical graphene/TiO2 nanotube electrode for CA125 detection in oxidation/reduction dual channels
Eskandarinezhad et al. Metal and metal oxide nanoparticles/nanocomposites as electrochemical biosensors for cancer detection
Peng et al. PdIrBP mesoporous nanospheres combined with superconductive carbon black for the electrochemical determination and collection of circulating tumor cells
Deng et al. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels
Wang et al. A sandwich-type immunosensor using Pd–Pt nanocrystals as labels for sensitive detection of human tissue polypeptide antigen
Hassanpour et al. Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC)
Li et al. Electrochemical sensors applied for in vitro diagnosis
Hong et al. Highly sensitive immunosensor based on polydopamine-nanofilm modified 3D gold nanoelectrode for α-fetoprotein detection
Zhao et al. A novel electrochemical immunosensor based on CoS 2 for early screening of tumor marker carcinoembryonic antigen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210824

RJ01 Rejection of invention patent application after publication