CN113293383A - 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用 - Google Patents

一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用 Download PDF

Info

Publication number
CN113293383A
CN113293383A CN202011207214.8A CN202011207214A CN113293383A CN 113293383 A CN113293383 A CN 113293383A CN 202011207214 A CN202011207214 A CN 202011207214A CN 113293383 A CN113293383 A CN 113293383A
Authority
CN
China
Prior art keywords
photoelectrode
electrode
carbon steel
inooh
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011207214.8A
Other languages
English (en)
Other versions
CN113293383B (zh
Inventor
熊贤强
张晓�
武承林
马博华
周睿
陈奕飞
程高飞
韩得满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Taizhou Biomedical Industry Research Institute Co Ltd
Original Assignee
Taizhou University
Taizhou Biomedical Industry Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University, Taizhou Biomedical Industry Research Institute Co Ltd filed Critical Taizhou University
Priority to CN202011207214.8A priority Critical patent/CN113293383B/zh
Publication of CN113293383A publication Critical patent/CN113293383A/zh
Application granted granted Critical
Publication of CN113293383B publication Critical patent/CN113293383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供了一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用,属于防腐材料技术领域。本发明采用热蒸发法在基底的表面沉积Bi2O3,经煅烧得到Bi2WO6光电极,再经电化学沉积法引入InOOH,有利于促进Bi2WO6光电极的载流子分离和转移,大幅降低了载流子的复合速率,最终制备得到的Bi2WO6/InOOH复合光电极对太阳能光谱具有较强的光响应,能够有效捕获可见光,且能有效加速电极界面的水氧化速率。将本发明提供的Bi2WO6/InOOH复合光电极用于碳钢防腐,能够促使光生电子在碳钢表面的有效集聚,有效提升光生电子向碳钢的注入效率,使碳钢的自腐蚀电位负移,从而增强碳钢的抗腐蚀能力。

Description

一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用
技术领域
本发明涉及防腐材料技术领域,尤其涉及一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用。
背景技术
碳钢的腐蚀电势较低,耐腐蚀能力较弱,因此迫切需要开展碳钢防腐蚀的相关技术研究。光电化学防腐技术作为一种新型的腐蚀防护技术,能够利用n型半导体在光照条件下产生的光生电子注入到碳钢基体上,使其电势低于腐蚀电势,从而使碳钢进入不发生腐蚀的阴极保护区。该过程不牺牲半导体电极,理论上其具有较长的使用寿命,且太阳光能量取之不尽用之不竭,是一种重要的绿色防护方法。
在光电阴极防护方面,研究者们探讨了多种半导体光电极材料对碳钢的光致阴极保护的可能性,但目前仍主要局限于TiO2半导体。虽然TiO2结构稳定,成本低,但TiO2仅能吸收波长400nm以下的紫外光,难以有效利用太阳能中的可见光部分。基于此,开发可见光半导体光电极成为解决该问题的一种有效途径。近年来,Bi2WO6作为一种常见的半导体材料被人们广泛研究,其带隙为2.7eV,窄于TiO2的带隙,可以在可见光区域发生光能响应,但是,Bi2WO6作为半导体电极难以有效驱动水氧化,不利于碳钢的光生阴极保护,这是因为在光照条件下,电子和空穴同时产生,如果空穴无法氧化水,则电子易与空穴复合,导致电子难以转移至碳钢基体上,从而不利于碳钢的光生阴极保护。因此,如何提高Bi2WO6半导体电极表面的水氧化动力学是提高Bi2WO6光生阴极防腐的关键。
发明内容
本发明的目的在于提供一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用,本发明采用热蒸发法在基底的表面沉积Bi2O3,经煅烧得到Bi2WO6光电极,再经电化学沉积法引入InOOH,最终制备得到的Bi2WO6/InOOH复合光电极对太阳能光谱具有较强的光响应,且能有效加速电极界面水氧化速率,促使光生电子在碳钢表面的有效集聚,显著提升了碳钢的抗腐蚀能力。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种钨酸铋/羟基氧化铟复合光电极的制备方法,包括以下步骤:
采用热蒸发法在基底的表面沉积Bi2O3,得到Bi2O3光电极;
将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面,之后进行煅烧,得到Bi2WO6光电极;
将硝酸铟、高氯酸钠和水混合,得到电解质溶液;
在所述电解质溶液存在条件下,以所述Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,进行恒电位沉积,得到钨酸铋/羟基氧化铟复合光电极。
优选地,在所述基底的表面沉积Bi2O3的操作参数包括:温度为20~30℃,真空度为4.5×10-5Pa,沉积速率为0.1~1nm/s,沉积时间为1~30min。
优选地,所述钨酸铵的乙二醇溶液中钨酸铵的浓度为0.5~2mol/L,所述钨酸铵的乙二醇溶液的滴涂量为50~200μL/cm2
优选地,所述煅烧的温度为640~660℃,时间为2.5~3.5h。
优选地,所述煅烧后还包括:将煅烧所得电极进行洗涤,得到Bi2WO6光电极;所述洗涤用试剂为碱性溶液,所述碱性溶液的浓度为0.8~1.2mol/L。
优选地,所述电解质溶液中高氯酸钠的浓度为0.08~0.12mol/L,硝酸铟的浓度为5~10mmol/L。
优选地,所述恒电位沉积的电位为-0.5~-1V,时间为1~10min。
本发明提供了上述技术方案所述制备方法制备得到的钨酸铋/羟基氧化铟复合光电极,包括基底以及依次覆盖于所述基底表面的Bi2WO6层和InOOH层。
优选地,所述Bi2WO6层的厚度为1~50μm,所述InOOH层的厚度为50~1000nm。
本发明提供了上述技术方案所述钨酸铋/羟基氧化铟复合光电极在碳钢防腐中的应用。
本发明提供了一种钨酸铋/羟基氧化铟复合光电极的制备方法,包括以下步骤:采用热蒸发法在基底的表面沉积Bi2O3,得到Bi2O3光电极;将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面,之后进行煅烧,得到Bi2WO6光电极;将硝酸铟、高氯酸钠和水混合,得到电解质溶液;在所述电解质溶液存在条件下,以所述Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,进行恒电位沉积,得到钨酸铋/羟基氧化铟复合光电极。本发明采用热蒸发法在基底的表面沉积Bi2O3,经煅烧得到Bi2WO6光电极,再经电化学沉积法引入InOOH,有利于促进Bi2WO6光电极的载流子分离和转移,大幅降低了载流子的复合速率,最终制备得到的Bi2WO6/InOOH复合光电极对太阳能光谱具有较强的光响应,能够有效捕获可见光,且能有效加速电极界面的水氧化速率。将本发明提供的Bi2WO6/InOOH复合光电极用于碳钢防腐,能够促使光生电子在碳钢表面的有效集聚,有效提升光生电子向碳钢的注入效率,使碳钢的自腐蚀电位负移,从而增强碳钢的抗腐蚀能力。此外,本发明提供的方法工艺简单,效率高,成本低。
附图说明
图1为实施例1制备的Bi2WO6光电极和Bi2WO6/InOOH复合光电极与碳钢耦联后在暗态和光照下的开路电位-时间曲线图;
图2为纯碳钢在暗态条件下以及纯碳钢与实施例2制备的Bi2WO6光电极或Bi2WO6/InOOH复合光电极耦合后在光照条件下的塔菲尔曲线图。
具体实施方式
本发明提供了一种钨酸铋/羟基氧化铟复合光电极的制备方法,包括以下步骤:
采用热蒸发法在基底的表面沉积Bi2O3,得到Bi2O3光电极;
将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面,之后进行煅烧,得到Bi2WO6光电极;
将硝酸铟、高氯酸钠和水混合,得到电解质溶液;
在所述电解质溶液存在条件下,以所述Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,进行恒电位沉积,得到钨酸铋/羟基氧化铟复合光电极。
本发明采用热蒸发法在基底的表面沉积Bi2O3,得到Bi2O3光电极。本发明对所述基底的种类没有特殊限定,采用本领域技术人员熟知的基底即可,具体可以为FTO导电玻璃或钛板。在本发明中,所述基底在使用前优选进行洗涤和干燥,以保证其表面洁净;所述洗涤优选包括依次进行的水洗、乙醇洗和丙酮洗,所述洗涤优选在超声条件下进行,具体是将基底依次置于水、乙醇和丙酮中进行超声清洗;所述干燥优选为采用高纯氮气吹干。
在本发明中,在所述基底的表面沉积Bi2O3的操作参数包括:温度优选为20~30℃,具体是在室温条件下进行沉积;真空度优选为4.5×10-5Pa,沉积速率优选为0.1~1nm/s,更优选为0.1~0.2nm/s;沉积时间优选为1~30min,更优选为10~15min。在本发明的实施例中,具体是在室温条件下,将Bi2O3靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下Bi2O3靶材以0.1~1nm/s沉积速率蒸发,沉积于基底的表面,得到Bi2O3光电极。
得到Bi2O3光电极后,本发明将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面,之后进行煅烧,得到Bi2WO6光电极。在本发明中,所述钨酸铵的乙二醇溶液中钨酸铵的浓度优选为0.5~2mol/L,更优选为0.2~1mol/L;所述钨酸铵的乙二醇溶液的滴涂量优选为50~200μL/cm2,更优选为80~100μL/cm2。本发明优选将钨酸铵的乙二醇溶液的滴涂量控制在上述范围,确保钨酸铵过量,以便氧化铋完全转化为钨酸铋。本发明对所述硝酸钴溶液的滴涂方式没有特殊限定,采用本领域技术人员熟知的滴涂方式、保证硝酸钴溶液涂覆均匀即可。
将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面后,本发明通过煅烧得到Bi2WO6光电极。在本发明中,所述煅烧的温度优选为640~660℃,更优选为650℃;时间优选为2.5~3.5h,更优选为3h。在本发明中,所述煅烧优选在马弗炉中进行。在本发明中,煅烧过程中,钨酸铵转化为氧化钨,高温条件下氧化钨和氧化铋发生固相反应,生成钨酸铋。
在本发明中,所述煅烧后优选还包括:将煅烧所得电极进行洗涤,得到Bi2WO6光电极。在本发明中,所述洗涤用试剂优选为碱性溶液,更优选为氢氧化钠溶液;所述碱性溶液的浓度优选为0.8~1.2mol/L,更优选为1mol/L;所述洗涤的方式优选为将煅烧所得电极浸泡于所述碱性溶液中,所述浸泡的时间优选为40~120min,更优选为50~60min。本发明通过洗涤去除煅烧后所得电极表面的残余的WO3
本发明将硝酸铟、高氯酸钠和水混合,得到电解质溶液。在本发明中,所述电解质溶液中高氯酸钠的浓度优选为0.08~0.12mol/L,更优选为0.1mol/L;硝酸铟的浓度优选为5~10mmol/L。本发明对所述硝酸铟、高氯酸钠和水混合时的加料顺序以及混合方式没有特殊限定,保证各组分充分混合均匀即可,本发明优选将硝酸铟加入到高氯酸钠的水溶液中,混合得到电解质溶液。
得到Bi2WO6光电极和电解质溶液后,本发明在所述电解质溶液存在条件下,以所述Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,进行恒电位沉积,得到钨酸铋/羟基氧化铟复合光电极。在本发明中,所述恒电位沉积的电位优选为-0.5~-1V,更优选为-0.5~-0.6V;时间优选为1~10min,更优选为5~8min。在本发明中,所述恒电位沉积沉积过程中,溶液中的氢离子被还原,导致局部溶液pH值增加,使电极表面的三价铟离子与氢氧根离子发生沉淀反应,生成羟基氧化铟。
本发明提供了上述技术方案所述制备方法制备得到的钨酸铋/羟基氧化铟复合光电极,包括基底以及依次覆盖于所述基底表面的Bi2WO6层和InOOH层。在本发明中,所述Bi2WO6层的厚度优选为1~50μm,所述InOOH层的厚度优选为50~1000nm。
本发明提供了上述技术方案所述钨酸铋/羟基氧化铟复合光电极在碳钢防腐中的应用。本发明对所述应用没有特殊限定,采用本领域技术人员熟知的方式应用即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将基底(具体为FTO导电玻璃)置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,之后用高纯氮气吹干待用;
在室温(25℃)条件下通过热蒸发法在基底的表面沉积Bi2O3,具体是将Bi2O3靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下Bi2O3靶材以0.1nm/s的沉积速率沉积10min,得到Bi2O3光电极;
将钨酸铵溶于乙二醇中,得到浓度为1mol/L的钨酸铵的乙二醇溶液;用移液枪移取100μL所述钨酸铵的乙二醇溶液滴涂在Bi2O3光电极表面(钨酸铵的乙二醇溶液的滴涂量为80μL/cm2),之后在650℃马弗炉中煅烧3h,取出后在1mol/L的氢氧化钠溶液中浸泡60min,以去除残余的WO3,得到Bi2WO6光电极;
将硝酸铟加入到浓度为0.1mol/L的高氯酸钠溶液中,得到电解质溶液,所述电解质溶液中硝酸铟的浓度为5mmol/L;
在所述电解质溶液存在条件下,以Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,在-0.5V偏压条件下沉积5min,得到钨酸铋/羟基氧化铟复合光电极,记为Bi2WO6/InOOH复合光电极。
将腐蚀池中的碳钢与光阳极池中的Bi2WO6光电极或Bi2WO6/InOOH复合光电极通过铜线相连,研究二者在可见光间断照射条件下开路电位变化情况。图1为实施例1制备的Bi2WO6光电极和Bi2WO6/InOOH复合光电极与碳钢耦联后在暗态和光照下的开路电位-时间曲线图,由图1可知,暗态时,开路电位较正,当可见光照射的时候,与Bi2WO6光电极耦合的碳钢电极的开路电位正移,而与Bi2WO6/InOOH复合光电极耦合的碳钢电极的开路电位出现负移,这说明Bi2WO6光电极不仅不能保护碳钢,反而会加速碳钢的腐蚀,而与Bi2WO6/InOOH复合光电极耦合的碳钢电极的开路电位负移,说明Bi2WO6/InOOH复合光电极上的光生电子可以转移至碳钢表面,从而使耦合的碳钢电极的开路电位负移,进而实现了碳钢的光生阴极保护。
实施例2
将基底(具体为FTO导电玻璃)置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,之后用高纯氮气吹干待用;
在室温(25℃)条件下通过热蒸发法在基底的表面沉积Bi2O3,具体是将Bi2O3靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下Bi2O3靶材以0.2nm/s的沉积速率沉积15min,得到Bi2O3光电极;
将钨酸铵溶于乙二醇中,得到浓度为0.5mol/L的钨酸铵的乙二醇溶液;用移液枪移取150μL所述钨酸铵的乙二醇溶液滴涂在Bi2O3光电极表面(钨酸铵的乙二醇溶液的滴涂量为100μL/cm2),之后在650℃马弗炉中煅烧3h,取出后在1mol/L的氢氧化钠溶液中浸泡60min,以去除残余过剩的WO3,得到Bi2WO6光电极;
将硝酸铟加入到浓度为0.1mol/L的高氯酸钠溶液中,得到电解质溶液,所述电解质溶液中硝酸铟的浓度为10mmol/L;
在所述电解质溶液存在条件下,以Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,在-0.6V偏压条件下沉积8min,得到钨酸铋/羟基氧化铟复合光电极,记为Bi2WO6/InOOH复合光电极。
图2为纯碳钢在暗态条件下以及纯碳钢与实施例2制备的Bi2WO6光电极或Bi2WO6/InOOH复合光电极耦合后在光照条件下的塔菲尔曲线图,电解液为3.5wt%NaCl溶液。由图2可知,纯碳钢在3.5wt%NaCl溶液中的腐蚀电势为-0.46V,当将腐蚀池中的碳钢与光阳极池中的Bi2WO6光电极耦联后,腐蚀电位正移至-0.38V,而与Bi2WO6/InOOH复合光电极耦联后,腐蚀电位发生负移,达到-0.63V,再次说明光照条件下的Bi2WO6光电极不能保护碳钢,而Bi2WO6/InOOH复合光电极则能保护碳钢。因此,InOOH的负载对提升Bi2WO6的光生阴极防护性能至关重要。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种钨酸铋/羟基氧化铟复合光电极的制备方法,包括以下步骤:
采用热蒸发法在基底的表面沉积Bi2O3,得到Bi2O3光电极;
将钨酸铵的乙二醇溶液滴涂在所述Bi2O3光电极的表面,之后进行煅烧,得到Bi2WO6光电极;
将硝酸铟、高氯酸钠和水混合,得到电解质溶液;
在所述电解质溶液存在条件下,以所述Bi2WO6光电极为工作电极、Ag/AgCl电极为参比电极、铂网电极为对电极,进行恒电位沉积,得到钨酸铋/羟基氧化铟复合光电极。
2.根据权利要求1所述的制备方法,其特征在于,在所述基底的表面沉积Bi2O3的操作参数包括:温度为20~30℃,真空度为4.5×10-5Pa,沉积速率为0.1~1nm/s,沉积时间为1~30min。
3.根据权利要求1所述的制备方法,其特征在于,所述钨酸铵的乙二醇溶液中钨酸铵的浓度为0.5~2mol/L,所述钨酸铵的乙二醇溶液的滴涂量为50~200μL/cm2
4.根据权利要求1或3所述的制备方法,其特征在于,所述煅烧的温度为640~660℃,时间为2.5~3.5h。
5.根据权利要求4所述的制备方法,其特征在于,所述煅烧后还包括:将煅烧所得电极进行洗涤,得到Bi2WO6光电极;所述洗涤用试剂为碱性溶液,所述碱性溶液的浓度为0.8~1.2mol/L。
6.根据权利要求1所述的制备方法,其特征在于,所述电解质溶液中高氯酸钠的浓度为0.08~0.12mol/L,硝酸铟的浓度为5~10mmol/L。
7.根据权利要求1或6所述的制备方法,其特征在于,所述恒电位沉积的电位为-0.5~-1V,时间为1~10min。
8.权利要求1~7任一项所述制备方法制备得到的钨酸铋/羟基氧化铟复合光电极,包括基底以及依次覆盖于所述基底表面的Bi2WO6层和InOOH层。
9.根据权利要求8所述的钨酸铋/羟基氧化铟复合光电极,其特征在于,所述Bi2WO6层的厚度为1~50μm,所述InOOH层的厚度为50~1000nm。
10.权利要求8或9所述钨酸铋/羟基氧化铟复合光电极在碳钢防腐中的应用。
CN202011207214.8A 2020-11-03 2020-11-03 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用 Active CN113293383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011207214.8A CN113293383B (zh) 2020-11-03 2020-11-03 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011207214.8A CN113293383B (zh) 2020-11-03 2020-11-03 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113293383A true CN113293383A (zh) 2021-08-24
CN113293383B CN113293383B (zh) 2023-03-17

Family

ID=77318363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011207214.8A Active CN113293383B (zh) 2020-11-03 2020-11-03 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113293383B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126689A (zh) * 2017-12-20 2018-06-08 江苏大学 一种富含氧缺陷的Bi2WO6/In2O3异质结复合光催化剂的制备方法及用途
CN109440130A (zh) * 2018-11-29 2019-03-08 山东大学 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
CN110465286A (zh) * 2019-06-21 2019-11-19 广东工业大学 一种表面氧空位缺陷修饰的钨酸铋光催化剂及其制备方法和应用
CN110565111A (zh) * 2019-07-24 2019-12-13 台州学院 一种六角柱型WO3/Bi2WO6复合光电极薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126689A (zh) * 2017-12-20 2018-06-08 江苏大学 一种富含氧缺陷的Bi2WO6/In2O3异质结复合光催化剂的制备方法及用途
CN109440130A (zh) * 2018-11-29 2019-03-08 山东大学 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
CN110465286A (zh) * 2019-06-21 2019-11-19 广东工业大学 一种表面氧空位缺陷修饰的钨酸铋光催化剂及其制备方法和应用
CN110565111A (zh) * 2019-07-24 2019-12-13 台州学院 一种六角柱型WO3/Bi2WO6复合光电极薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIJIE CHEN等: ""Photodegradation of Malachite Green by Nanostructured Bi2WO6 Visible Light-Induced Photocatalyst"", 《INTERNATIONAL JOURNAL OF PHOTOENERGY》 *
张士成 等: ""可见光响应Bi2WO6薄膜的制备与光电化学性能"", 《物理化学学报》 *

Also Published As

Publication number Publication date
CN113293383B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
Jang et al. Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
Wang et al. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications
Yang et al. Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf
Pilli et al. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO 4 photoelectrodes for solar water oxidation
Hirayama et al. Solar-driven photoelectrochemical water oxidation over an n-type lead–titanium oxyfluoride anode
Pilli et al. Light induced water oxidation on cobalt-phosphate (Co–Pi) catalyst modified semi-transparent, porous SiO 2–BiVO 4 electrodes
Chen et al. Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination
Kim et al. Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes
KR101369961B1 (ko) 색소 증감형 태양 전지
JP5840170B2 (ja) 高耐久性、高変換効率を有する色素増感型太陽電池
Raksha et al. Functional materials for dye-sensitized solar cells
Ahn et al. MoS x supported hematite with enhanced photoelectrochemical performance
CN104047043A (zh) TiO2/SnO2半导体双层复合膜光阳极的制备方法
CN110512264B (zh) 一种光电极的制备方法
JP2008243752A (ja) 電極及びその製造方法、並びに色素増感型太陽電池
CN102103930B (zh) 由微晶硅层为入射层的复合薄膜太阳电池及其制备方法
CN101872685B (zh) 固态染料敏化纳米晶微晶硅复合薄膜太阳电池及其制备方法
WO2021103478A1 (zh) 一种铋酸铜薄膜的制备方法
CN113293383B (zh) 一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用
KR20180008454A (ko) 대극에 집전극을 설치한 색소 증감형 태양 전지
CN107416940B (zh) 具有非均相光电催化性能的Ir掺杂二氧化钛电极材料
JP2010067542A (ja) 光電変換素子、その製造方法及び太陽電池
Kim et al. A durable VO 2 transition layer and defect inactivation in BiVO 4 via spontaneous valence-charge control
JP2008053024A (ja) 色素増感型太陽電池
JP2009129574A (ja) 色素増感型太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant