CN113292140A - 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用 - Google Patents

一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用 Download PDF

Info

Publication number
CN113292140A
CN113292140A CN202110716742.4A CN202110716742A CN113292140A CN 113292140 A CN113292140 A CN 113292140A CN 202110716742 A CN202110716742 A CN 202110716742A CN 113292140 A CN113292140 A CN 113292140A
Authority
CN
China
Prior art keywords
titanium dioxide
preparation
nitrogen
membrane electrode
doped titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110716742.4A
Other languages
English (en)
Inventor
孙德
代名欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202110716742.4A priority Critical patent/CN113292140A/zh
Publication of CN113292140A publication Critical patent/CN113292140A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种氮掺杂二氧化钛颗粒负载石墨烯‑泡沫镍(N‑TiO2/Gr‑Ni)膜电极的制备方法及应用,涉及一种复合膜的制备方法及其应用。是要解决现有水环境中高分子印染废水降解复杂,且降解效果差,难以高效降解问题。方法:(1)将钛酸四丁酯溶解于无水乙醇中,溶解形成混合溶液,将混合溶液用醋酸和乙二胺进行滴定,制成溶胶A;(2)将石墨箔作为阳极,泡沫镍作为阴极,电解液为(NH4)2SO4和氨水,在10V电压下剥离组装石墨烯,制备Gr‑Ni膜B;(3)将B在溶胶A中浸渍提拉数次,得到膜C;(4)在马弗炉中N2条件下高温煅烧C,得到N‑TiO2/Gr‑Ni膜。本发明的成本低,在通电和光照的条件下对水中大分子有机物可产生协同降解作用。本发明用于水环境中印染废水的降解和去除领域。

Description

一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方 法及应用
技术领域
本发明涉及一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法及应用。
背景技术
印染废水是一种高分子有机物,难降解,对环境有不良影响。印染废水排入水体时,会影响水体的透明度,进而危害水生生物。高级氧化法是研究这一问题的新的有效方法。可分为电芬顿法、光催化法等。光催化因其环保而备受关注。二氧化钛只对紫外光有反应。氮掺杂被认为是提高二氧化钛可见光吸收能力的有效策略之一。在本研究中,选择石墨烯作为泡沫镍的负载,是因为它具有大的比表面积和高的电导率。石墨烯的制备方法有很多,包括加热SiC;插层后超声处理,与极性溶剂相互作用;用等离子体增强化学气相沉积法制备了双层石墨烯,与这些方法相比,电化学石墨剥离法更简单、更有效。与光催化相似,电芬顿也是通过产生羟基自由基来处理废水,原理是让O2通过阴极附近,阴极会吸附O2,O2在其表面发生二电子反应,产生过氧化氢,并与铁阳极产生的二价铁离子(Fe2+)反应生成羟基自由基。开发高效、选择性和稳定性好的电催化剂是决定H2O2生产性能的基本和决定性因素。已经开发了许多催化剂来抑制氧的四电子转移并选择性地产生双电子转移反应。如用于高效氧还原反应的铁-氮-碳阴极、氧掺杂和过渡金属氧掺杂的碳阴极、涂有氮掺杂多孔碳的泡沫镍阴极。如前所述,将两种方法结合在一个系统中,从而实现印染废水的高效快速降解,称为光电化学氧化(PEC)。PEC在很多研究中都可以发现,但是,一般是用光电极作为阳极然后通电,ORR反应在阴极被动发生,阴极的电催化功能被削弱到相当程度。另一种方式是在阳极和阴极分别制作ORR电极和光电极,手动向溶液中加入Fe2+。操作复杂,不适合大规模降解。因此,在阴极将光催化和电催化结合起来,将二氧化钛负载镍复合膜作为阴极,同时进行光催化和电催化协同作用,将取得降解效果的巨大提升。
发明内容
本发明是提供一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极用于降解印染废水的制备方法及应用。
本发明N-TiO2/Gr-Ni膜电极的制备方法,其特征在于该方法包括以下步骤:
(1)将钛酸四丁酯溶解于无水乙醇中,溶解形成混合溶液,将混合溶液用醋酸水溶液和乙二胺进行滴定,制成溶胶A,即为二氧化钛溶胶;
(2)将石墨箔作为阳极,泡沫镍作为阴极,电解液为(NH4)2SO4和氨水,在10V电压下剥离组装石墨烯,阳极电离石墨烯向泡沫镍上移动,制成B膜;
(3)将B在溶胶A中浸渍提拉数次,得到膜C;
(4)在马弗炉中N2条件下高温煅烧膜C,后得到N-TiO2/Gr-Ni膜,煅烧温度为500℃,起始温度为50℃,加热时间2h,在500℃保持2h后自然冷却到常温。
进一步的,步骤一中所述滴定过程要求每6秒一滴速度滴定。
进一步的,步骤一中搅拌过程中,溶液温度保持在50℃。
进一步的,步骤二中所中阴阳两极石墨箔片和泡沫镍大小相同,且距离为3cm。
进一步的,步骤三中所述提拉速度为每秒3cm左右。
进一步的,步骤四中所述N2要在反应开始前通入,且时间持续3min。
上述方法制备的N-TiO2/Gr-Ni膜电极在水环境中作为阴极其催化降解印染废水的应用。
本发明可实现对水环境中印染废水的高效去除。
本发明的原理:
因为印染产业快速发展,印染废水的排放直接危害到人类的健康。因此,制备能够有效去除印染水体等高分子有机物具有重要的现实意义。
本发明中N-TiO2/Gr-Ni膜电极的工作原理主要是根据所制备的复合膜表面氮掺杂二氧化钛的光催化作用,价带和导带的能隙使电子空穴产生羟基自由基,且石墨烯负载镍的高效二电子转移效率,使电极表面羟基自由基的大量产生,且二者具有协同作用,进而高效降解水中印染有机废物。
本发明的有益效果:
本发明方法以泡沫镍为基底,采用一步电化学法制备,制备出Gr-Ni膜。且在其表面负载氮掺杂二氧化钛,因此,可以利用本发明的光电混合催化降解废水。
由于二氧化钛泡沫镍具有良好的化学稳定性,因此在多次使用后仍能保持良好的降解效果,有良好的稳定性和催化性能。
本发明通过一步电化学法和浸渍涂覆法,制备方法简单、原料成本低且来源广泛,操作简单。环境中高浓度有机印染废水在低电压,自然光照条件下表现出良好的降解能力,且呈线性可控变化。以上表明此复合膜具有很好的实用性和在广阔的应用前景。
本方法所制备的复合膜结构稳定,催化效果明显,其合成方法简单,原料廉价易得、成本低,对高浓度有机废水有较好的讲解效果。在环境治理和恢复等领域具有广阔的应用前景。
附图说明
图1为实施例1制备的二氧化钛负载镍复合膜的扫描电镜图像;
图2为实施例1制备的二氧化钛(TiO2)和N-TiO2的XRD谱图;
图3是实施例1制备的复合膜的光电混合催化降解曲线与单独光电催化比对,其中C0:印染废水初始浓度,C:复合膜催化降解处理后废水浓度,PC:光催化,EC:电催化,PEC:光电催化。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式N-TiO2/Gr-Ni膜电极的制备方法,其特征在于该方法包括以下步骤:
(1)将钛酸四丁酯溶解于无水乙醇中,溶解形成混合溶液,将混合溶液用醋酸水溶液和乙二胺进行滴定,制成溶胶A,即为二氧化钛溶胶;
(2)将石墨箔作为阳极,泡沫镍作为阴极,电解液为(NH4)2SO4和氨水,在10V电压下剥离组装石墨烯,阳极电离石墨烯向泡沫镍上移动,制成B膜;
(3)将B在溶胶A中浸渍提拉3次,得到膜C;
(4)在马弗炉中N2条件下高温煅烧膜C,后得到N-TiO2/Gr-Ni膜,煅烧温度为500℃,起始温度为50℃,加热时间2h,在500℃保持2h后自然冷却到常温。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述乙二胺在步骤二中未添加,其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中搅拌溶胶的温度为室温。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中通电时间为0.5h。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中通电电压为15V。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三中提拉次数为二次。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤四中所述煅烧温度为450℃,时间为1.5h。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
(1)将8ml钛酸四丁酯溶解于40ml无水乙醇中,溶解在烧杯中用磁力搅拌器搅拌形成混合溶液,将混合溶液用醋酸水溶液和3ml乙二胺进行滴定,在50℃条件下磁力搅拌,制成溶胶A,即为二氧化钛溶胶;
(2)将长为2cm宽为4cm石墨箔作为阳极,长为2cm宽为4cm泡沫镍作为阴极,电解液为0.1mM(NH4)2SO4和30ml氨水,在10V电压下剥离组装石墨烯20min,阳极电离石墨烯向泡沫镍上移动,制成B膜;
(3)将B膜在溶胶A中浸渍提拉3次,提拉速度为每秒3cm,得到膜C;
(4)在马弗炉中通入氮气3min后将膜C移入马弗炉,高温煅烧膜C,后得到N-TiO2/Gr-Ni膜,煅烧温度为500℃,起始温度为50℃,加热2h匀速升温到500℃,在500℃保持2h后自然冷却到常温。
图1为实施例1制备的N-TiO2/Gr-Ni膜电极的扫描电镜图像 (观察到突出圆亮点为氮掺杂二氧化钛,表面裂痕处为石墨烯片层,底层基底为泡沫镍);
图2为实施例1制备的TiO2和N-TiO2的XRD谱图,图中二者峰值接近,均为锐钛矿型二氧化钛的标准出峰位置,表明氮掺杂二氧化钛的降解能力依旧很强,且扩展到可见光区;
图3是实施例1制备的复合膜的光电混合催化降解曲线(PEC)与单独光(PC)电(EC)催化比对,从图中可以看出,PEC催化效率高于二者的简单叠加,60minPEC几乎完全降解印染废水,而PC和EC仍有一定差距。
实施例2:
(1)将8ml钛酸四丁酯溶解于40ml无水乙醇中,溶解在烧杯中用磁力搅拌器搅拌形成混合溶液,将混合溶液用醋酸水溶液和3ml乙二胺进行滴定,在常温条件下磁力搅拌,制成溶胶A,即为二氧化钛溶胶;
(2)将长为2cm宽为4cm石墨箔作为阳极,长为2cm宽为4cm泡沫镍作为阴极,电解液为0.1mM(NH4)2SO4和30ml氨水,在15V电压下剥离组装石墨烯30min,阳极电离石墨烯向泡沫镍上移动,制成B膜;
(3)将B膜在溶胶A中浸渍提拉2次,提拉速度为每秒3cm,得到膜C;
(4)在马弗炉中通入氮气3min后将膜C移入马弗炉,高温煅烧膜C,后得到N-TiO2/Gr-Ni膜,煅烧温度为450℃,起始温度为50℃,加热2h匀速升温到450℃,在450℃保持2h后自然冷却到常温。

Claims (7)

1.一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于该方法包括以下步骤:
(1)将钛酸四丁酯溶解于无水乙醇中,溶解形成混合溶液,将混合溶液用醋酸水溶液和乙二胺进行滴定,制成溶胶A;其中钛酸四丁酯与无水乙醇体积比为(8)ml:(40)mL;醋酸和水的体积比为(6)ml:(12)ml;醋酸和乙二胺的体积比为(6)ml:(3)ml;
(2)将石墨箔作为阳极,泡沫镍作为阴极,电解液为(NH4)2SO4和氨水,在10V电压下剥离组装石墨烯,制备Gr-Ni膜B:(NH4)2SO4和氨水的比值为(0.1)mM:(30)mL;
(3)将B在溶胶A中浸渍提拉数次,得到膜C;
(4)在马弗炉中N2条件下高温煅烧膜C,后得到N-TiO2/Gr-Ni膜,煅烧温度为500℃,起始温度为50℃,加热时间2h,在500℃保持2h后自然冷却到常温。
2.根据权利要求1所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤一所述滴定过程要求每4秒一滴速度滴定。
3.根据权利要求2所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤一中溶胶形成过程中要持续搅拌,且形成溶胶后继续搅拌5min。
4.根据权利要求3所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤一中搅拌过程中,溶液温度保持在50℃。
5.根据权利要求4所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤二中阴阳两极石墨箔片和泡沫镍大小相同,且距离为3cm。
6.根据权利要求5所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤三中所述提拉速度为每秒3cm左右。
7.根据权利要求6所述的一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极的制备方法,其特征在于:步骤四中所述N2要在反应开始前通入,且时间持续3min。
CN202110716742.4A 2021-06-28 2021-06-28 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用 Pending CN113292140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110716742.4A CN113292140A (zh) 2021-06-28 2021-06-28 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110716742.4A CN113292140A (zh) 2021-06-28 2021-06-28 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用

Publications (1)

Publication Number Publication Date
CN113292140A true CN113292140A (zh) 2021-08-24

Family

ID=77329723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110716742.4A Pending CN113292140A (zh) 2021-06-28 2021-06-28 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用

Country Status (1)

Country Link
CN (1) CN113292140A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772664A (zh) * 2021-09-08 2021-12-10 长春工业大学 一种镍黑-石墨烯复合光热转换膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334562A (zh) * 2016-09-21 2017-01-18 郑州峰泰纳米材料有限公司 石墨烯‑泡沫镍负载纳米TiO2的光催化材料及其制备方法
KR20180012525A (ko) * 2016-07-27 2018-02-06 인하대학교 산학협력단 침전 방법을 이용한 TiO2/환원된 그래핀 옥사이드 복합체의 제조방법
CN107876078A (zh) * 2017-11-06 2018-04-06 西南石油大学 一种石墨烯、TiO2‑氮化碳负载泡沫镍的光催化材料及其制备方法与应用
CN108117066A (zh) * 2017-12-19 2018-06-05 浙江工业大学 一种掺氮石墨烯量子点电化学制备方法
WO2018175594A1 (en) * 2017-03-21 2018-09-27 William Marsh Rice University Thin films of transition metal phosphides coated on a semiconductor core from organometallic precursors for oxygen evolution and hydrogen evolution catalysis
CN109316976A (zh) * 2018-10-25 2019-02-12 长春工业大学 一种电化学法制备超疏水超亲油仿生石墨烯复合膜
CN110983360A (zh) * 2019-12-13 2020-04-10 中国人民大学 多孔氮掺杂石墨烯复合磷化钴纳米片及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012525A (ko) * 2016-07-27 2018-02-06 인하대학교 산학협력단 침전 방법을 이용한 TiO2/환원된 그래핀 옥사이드 복합체의 제조방법
CN106334562A (zh) * 2016-09-21 2017-01-18 郑州峰泰纳米材料有限公司 石墨烯‑泡沫镍负载纳米TiO2的光催化材料及其制备方法
WO2018175594A1 (en) * 2017-03-21 2018-09-27 William Marsh Rice University Thin films of transition metal phosphides coated on a semiconductor core from organometallic precursors for oxygen evolution and hydrogen evolution catalysis
CN107876078A (zh) * 2017-11-06 2018-04-06 西南石油大学 一种石墨烯、TiO2‑氮化碳负载泡沫镍的光催化材料及其制备方法与应用
CN108117066A (zh) * 2017-12-19 2018-06-05 浙江工业大学 一种掺氮石墨烯量子点电化学制备方法
CN109316976A (zh) * 2018-10-25 2019-02-12 长春工业大学 一种电化学法制备超疏水超亲油仿生石墨烯复合膜
CN110983360A (zh) * 2019-12-13 2020-04-10 中国人民大学 多孔氮掺杂石墨烯复合磷化钴纳米片及其制备方法与应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FAN,GF等: "TiO2-graphene 3D hydrogel supported on Ni foam for photoelectrocatalysis Removal of organic contaminants", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *
SIRAPRAPA BOOBPHAHOM等: "TiO2 sol/graphene modified 3D porous Ni foam: A novel platform for enzymatic electrochemical biosensor", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
吴改: "光电催化还原二氧化碳制化工品的机理研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
朱宁芳: "TiO2基纳米复合材料的制备及性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
王欢等: "石墨烯基半导体复合光电极研究进展", 《化工新型材料》 *
王琳等: "填料型La_2O_3/Al_2O_3-Al催化剂的制备及其催化性能", 《精细化工》 *
谭玉琪等: "石墨烯/TiO_2复合材料的制备及其在超级电容器中的应用", 《化学与黏合》 *
金振兴等: "纳米掺N TiO2的制备及光谱分析", 《光谱学与光谱分析》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772664A (zh) * 2021-09-08 2021-12-10 长春工业大学 一种镍黑-石墨烯复合光热转换膜及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics
Zhao et al. Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system
Qin et al. Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol
CN108191075B (zh) 一种微生物电解池中MoS2/过渡金属/石墨烯复合析氢电极的制备方法及应用
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
Wu et al. Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode
Yu et al. Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite
CN111533223A (zh) 一种FeS2阴极非均相电芬顿水处理方法
CN102424465A (zh) 一种电催化氧化和电Fenton技术协同降解酚类废水的方法
Zhou et al. New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2
CN108675382B (zh) 一种基于TiO2纳米管光催化剂的集成催化系统及其降解处理方法
CN105024086A (zh) 一种钯/氮掺杂石墨烯复合电极催化剂及其制备方法
CN115069269B (zh) CoMoSxOy电催化剂及其制备方法和在电活化过硫酸盐体系降解有机污染物中的应用
Li et al. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell
Yang et al. Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells
CN104659379A (zh) 纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用
Zheng et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2
Zhou et al. Preparation of Co3O4/NiCo2O4@ NC double-shelled catalyst and its high performance for degradation of levodopa in Electro-Fenton system
He et al. A feasible hydrogen evolution process of water electrolysis assisted by TiO2 nanotube photocatalysis
CN113292140A (zh) 一种氮掺杂二氧化钛颗粒负载石墨烯-泡沫镍膜电极制备方法及应用
JP2004256378A (ja) 水素及び酸素の製造方法及びその装置
Matsuoka et al. The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films
Zhou et al. Preparation and electrochemical property of TiO 2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation
Zhang et al. Flower-like CN layer-doped WO3/W photoanode as an efficient sun-light photoelectrocatalyst for PFOA degradation and electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210824