CN113283043B - 一种适用于高维大规模场景的场景约简求解方法 - Google Patents

一种适用于高维大规模场景的场景约简求解方法 Download PDF

Info

Publication number
CN113283043B
CN113283043B CN202110670154.1A CN202110670154A CN113283043B CN 113283043 B CN113283043 B CN 113283043B CN 202110670154 A CN202110670154 A CN 202110670154A CN 113283043 B CN113283043 B CN 113283043B
Authority
CN
China
Prior art keywords
scene
typical
scenes
initial
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110670154.1A
Other languages
English (en)
Other versions
CN113283043A (zh
Inventor
孙英云
张姝
李洪裕
董骁翀
李烨
王新迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, North China Electric Power University filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN202110670154.1A priority Critical patent/CN113283043B/zh
Publication of CN113283043A publication Critical patent/CN113283043A/zh
Application granted granted Critical
Publication of CN113283043B publication Critical patent/CN113283043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/02CAD in a network environment, e.g. collaborative CAD or distributed simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种适用于高维大规模场景的场景约简求解方法,包括:定义场景约简模型;初始化典型场景集;求解传输矩阵,并得到离散概率分布;迭代求解典型场景集,直至Wasserstein距离变化小于某个阈值或迭代次数达到所设定的次数;从初始场景中选取与典型场景最近的场景实现典型场景集重构,将典型场景集及其离散概率分布用于电力系统的随机优化问题中。本发明的优点是:所求Wasserstein距离较小,拟合精度较高,并且具有较为优异的计算效率。面对大规模场景时具有较高的计算效率且不失拟合精度。

Description

一种适用于高维大规模场景的场景约简求解方法
技术领域
本发明涉及电力系统可再生能源出力不确定性建模中的场景分析领域,特别涉及一种适用于高维大规模场景的场景约简求解方法。
背景技术
大规模可再生能源的接入给电力系统带来了新的挑战,风电、光伏发电具有间歇性、波动性、随机性等特点,高渗透率的可再生能源使电力系统的不确定性增强。通常用场景分析法来描述可再生能源的不确定性特征,基于场景的概率预测方法能够通过确定的离散场景来描述可再生能源的不确定性特征,所形成的初始场景集可用于随机优化中。但场景数量过多将给电力系统随机优化问题带来巨大的计算量,故需对初始场景进行场景约简,从中选择具有代表性的典型场景从而提升随机优化的计算效率,同时也应保证选取的典型场景集与初始场景集之间的概率距离最小,即给随机优化带来的误差最小。
与本发明相关的现有技术一
软聚类方法/连续场景约简方法:模糊c均值法(Fuzzy c-means,FCM)、高斯混合模型(Gaussian mixture model,GMM)。但是FCM和GMM面对高维数据聚类效果不佳。
与本发明相关的现有技术二
硬聚类方法/离散场景约简方法:0-1规划法[一种基于Wasserstein距离及有效性指标的最优场景约简方法[J].中国电机工程学报,2019,39(16):4650-4658+4968],该方法适用于中小规模场景约简问题,面对大规模数据计算效率低。
发明内容
本发明针对现有技术的缺陷,提供了一种适用于高维大规模场景的场景约简求解方法。
为了实现以上发明目的,本发明采取的技术方案如下:
一种适用于高维大规模场景的场景约简求解方法,包括以下步骤:
1)定义场景约简模型;
场景分析法可用来描述电力系统中可再生能源的不确定性,通过对概率模型抽样形成大量的场景,即初始场景集。将初始场景集用表示,其中/>为初始场景集中的第i个场景,n为初始场景集的场景个数,假设其服从离散均匀分布其中δ为指示函数,/>约简后的典型场景集用表示,其中/>为典型场景集中的第j个场景,m为典型场景集的场景个数,假设其服从离散分布/>其中/>表示第j个典型场景的概率。Wasserstein距离可用来描述两个概率分布之间的距离,2-Wasserstein距离定义为:
式中,Π(Ps,Ps′)为满足边缘分布Ps和Ps′的联合分布,D(x,y)为场景间的距离测度。场景约简目的在于寻找一个数目较少的典型场景集来代替初始场景集,并使两者之间的Wasserstein距离最小。场景约简问题本质上是一个变分问题,其数学模型可定义为:
arg min W(Ps,Ps′)
2)初始化典型场景集Xs′
3)利用式求解传输矩阵T,其中dij∈D(x,y),由ps′=TT1n得到离散概率分布Ps′
4)利用式X←YT*Tdiag((ps′)-1)迭代求解Xs′直至Wasserstein距离变化小于某个阈值或迭代次数达到所设定的次数。
5)从初始场景中选取与典型场景最近的场景实现Xs′重构。
6)通过(1)-(5)求得约简后的典型场景集Xs′及其离散概率分布Ps′,用于电力系统的随机优化问题包括:电力系统机组组合、经济调度和规划运行等问题。
与现有技术相比,本发明的优点在于:
本发明所求Wasserstein距离较小,拟合精度较高,并且具有较为优异的计算效率。面对大规模场景时具有较高的计算效率且不失拟合精度。
附图说明
图1为本发明实施例风电初始场景集曲线图;
图2为本发明实施例风电典型场景集曲线图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下列举实施例,对本发明做进一步详细说明。
一种适用于高维大规模场景的场景约简求解方法,包括以下步骤:
1)实例数据及场景生成;
本实施例以爱尔兰岛2010年2月2日至2012年4月23日全岛风功率预测和实测数据构建风电功率的不确定性特征。使用人工智能法条件生成对抗网络生成日前型初始场景集,如图1所示,初始场景集中共包含1000个风电出力场景。
2)定义场景约简模型;
将(1)中生成的风电初始场景集用表示,其中/>为初始场景集中的第i个场景,n为初始场景集的场景个数,假设其服从离散均匀分布/>其中δ为指示函数,/>约简后的典型场景集用/>表示,其中/>为典型场景集中的第j个场景,m为典型场景集的场景个数,假设其服从离散分布其中/>表示第j个典型场景的概率。Wasserstein距离可用来描述两个概率分布之间的距离,2-Wasserstein距离定义为:
式中,Π(Ps,Ps′)为满足边缘分布Ps和Ps′的联合分布,D(x,y)为场景间的距离测度。场景约简问题本质上是一个变分问题,其数学模型可定义为:
arg min W(Ps,Ps′) (2)
3)场景约简问题求解;
Wasserstein距离又称为最优传输问题,其中两个要素分别为代价矩阵MXY和传输多面体U(ps,ps′),分别定义为:
可将W(Ps,Ps′)看作关于边缘分布Ps、Ps′和代价矩阵MXY的线性规划问题的最优值,即:
Wasserstein距离是非凸优化问题,求解起来十分复杂,考虑将其熵正则化后求解[车令夫,田宇坤,朱海平,等.基于最优输运的迁移学习[J].模式识别与人工智能,2019,32(06):481-493]:
式中,h(T)为正则化的代价函数,λ为正则化系数。
①考虑场景集Xs′已知离散概率分布Ps′的求解
考虑场景集Xs′已知,但其服从的离散概率分布Ps′未知。熵正则化最优传输问题的数学模型变为如下形式:
构建拉格朗日函数可求解传输矩阵T:
再由ps′=TT1n可求得场景集Xs′的离散概率分布Ps′
②场景集Xs′的求解
假定典型场景集为初始场景集为/>定义
MXY是关于X的函数。
忽略关于y和ps的常数项,最优传输问题等价于
假设T*是p(ps,ps′,MXY)的最优传输矩阵,利用二次逼近法,则式(12)变为
故利用牛顿迭代法可求解X
X←YT*Tdiag((ps′)-1) (14)
③Sinkhorn迭代法
结合②和③的内容,本发明提出一种新颖的求解场景约简的方法,即Sinkhorn迭代法。主要包括求解离散概率分布Ps′和迭代离散场景Xs′两步。Sinkhorn迭代法为连续场景约简方法。可选取初始场景集中距离所得典型场景最近的场景代替原典型场景集,实现典型场景集重选,将连续场景约简转化为离散场景约简。Sinkhorn迭代法的具体步骤如下:
(1)初始化典型场景集Xs′
(2)利用式(14)求解传输矩阵T,由ps′=TT1n得到离散概率分布Ps′
(3)利用式(19)迭代求解Xs′直至Wasserstein距离变化小于某个阈值或迭代次数达到所设定的次数。
(4)从初始场景中选取与典型场景最近的场景实现Xs′重构。
利用Sinkhorn迭代法对(1)中的初始场景集进行约简,约简后典型场景集及各场景的概率如图2所示。
图2中给出了初始场景数量为1000时的场景约简结果,图中包含日前风电典型场景预测场景及各场景发生的概率。计算时间为1.642s。表明本发明所提Sinkhorn迭代法能有效应对大规模及高维场景。
将本发明所提Sinkhorn迭代法与软聚类方法FCM和GMM从计算时间及拟合精度上进行对比分析,三种方法的目标函数均为初始场景集与典型场景集之间最小的概率距离,计算结果如表1所示,其中N为初始场景集中场景个数,M为典型场景集中场景个数,W_dis表示Wasserstein距离,T表示计算时间。由表1可知,本发明所提Sinkhorn迭代法所求Wasserstein距离更小,拟合精度更高,并且具有较为优异的计算效率。0-1规划法为离散场景约简方法,具有较好的精确性和适用性,将本发明所提Sinkhorn迭代法与其进行对比分析,表2为离散场景约简的对比结果。尽管本发明所提Sinkhorn迭代法在拟合精度上的表现不及0-1规划模型,但面对大规模场景时计算效率远高于0-1规划模型。0-1规划模型适用于中小规模的场景集,而本发明所提方法面对大规模场景时具有较高的计算效率且不失拟合精度。
表1软聚类方法对比结果
表2与0-1规划对比结果
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (1)

1.一种适用于高维大规模场景的场景约简求解方法,其特征在于,包括以下步骤:
1)定义场景约简模型;
场景分析法可用来描述电力系统中可再生能源的不确定性,通过对概率模型抽样形成大量的场景,即初始场景集;将初始场景集用表示,其中/>为初始场景集中的第i个场景,n为初始场景集的场景个数,假设其服从离散均匀分布/>其中δ为指示函数,/>约简后的典型场景集用/>表示,其中/>为典型场景集中的第j个场景,m为典型场景集的场景个数,假设其服从离散分布/>其中/>表示第j个典型场景的概率;Wasserstein距离可用来描述两个概率分布之间的距离,2-Wasserstein距离定义为:
式中,Π(Ps,Ps′)为满足边缘分布Ps和Ps′的联合分布,D(x,y)为场景间的距离测度;场景约简目的在于寻找一个数目较少的典型场景集来代替初始场景集,并使两者之间的Wasserstein距离最小;场景约简问题本质上是一个变分问题,其数学模型可定义为:
argminW(Ps,Ps′)
2)初始化典型场景集Xs′
3)利用式求解传输矩阵T,其中dij∈D(x,y),由ps′=TT1n得到离散概率分布Ps′
4)利用式X←YT*Tdiag((ps′)-1)迭代求解Xs′直至Wasserstein距离变化小于某个阈值或迭代次数达到所设定的次数;
5)从初始场景中选取与典型场景最近的场景实现Xs′重构;
6)通过(1)-(5)求得约简后的典型场景集Xs′及其离散概率分布Ps′,用于电力系统的随机优化问题,包括:电力系统机组组合、经济调度和规划运行问题。
CN202110670154.1A 2021-06-17 2021-06-17 一种适用于高维大规模场景的场景约简求解方法 Active CN113283043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110670154.1A CN113283043B (zh) 2021-06-17 2021-06-17 一种适用于高维大规模场景的场景约简求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110670154.1A CN113283043B (zh) 2021-06-17 2021-06-17 一种适用于高维大规模场景的场景约简求解方法

Publications (2)

Publication Number Publication Date
CN113283043A CN113283043A (zh) 2021-08-20
CN113283043B true CN113283043B (zh) 2023-08-22

Family

ID=77284777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110670154.1A Active CN113283043B (zh) 2021-06-17 2021-06-17 一种适用于高维大规模场景的场景约简求解方法

Country Status (1)

Country Link
CN (1) CN113283043B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341762B (zh) * 2023-05-23 2023-07-25 武汉中元华电科技股份有限公司 高海拔风电供电系统最优能流求解方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110929399A (zh) * 2019-11-21 2020-03-27 国网江苏省电力有限公司南通供电分公司 基于BIRCH聚类和Wasserstein距离的风电出力典型场景生成方法
CN112271731A (zh) * 2020-10-29 2021-01-26 合肥工业大学 一种风电功率多时段时间序列场景的生成及消减方法
CN112865089A (zh) * 2021-01-30 2021-05-28 上海电机学院 一种改进的主动配电网大规模场景分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203946A (ja) * 2014-04-14 2015-11-16 国立大学法人京都大学 ヒストグラムの重心を計算する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110929399A (zh) * 2019-11-21 2020-03-27 国网江苏省电力有限公司南通供电分公司 基于BIRCH聚类和Wasserstein距离的风电出力典型场景生成方法
CN112271731A (zh) * 2020-10-29 2021-01-26 合肥工业大学 一种风电功率多时段时间序列场景的生成及消减方法
CN112865089A (zh) * 2021-01-30 2021-05-28 上海电机学院 一种改进的主动配电网大规模场景分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
风电和光伏随机场景生成的条件变分自动编码器方法;王守相;陈海文;李小平;舒欣;;电网技术(第06期);191-200 *

Also Published As

Publication number Publication date
CN113283043A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Zhang et al. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
Wu et al. A short-term load forecasting method based on GRU-CNN hybrid neural network model
CN111091233B (zh) 一种风电场短期风电预测建模方法
CN110187290B (zh) 一种基于融合型算法的锂离子电池剩余寿命预测方法
Fan et al. A novel deep generative modeling-based data augmentation strategy for improving short-term building energy predictions
CN111401755B (zh) 基于马尔科夫链的多新能源出力场景生成方法、装置及系统
CN109902340B (zh) 一种计及复杂气象耦合特性的多源-荷联合场景生成方法
CN110910004A (zh) 一种多重不确定性的水库调度规则提取方法及系统
Liu et al. A two-stage deep autoencoder-based missing data imputation method for wind farm SCADA data
CN113283043B (zh) 一种适用于高维大规模场景的场景约简求解方法
CN114925767A (zh) 一种基于变分自编码器的场景生成方法和装置
CN116245250A (zh) 一种用于电力系统优化的场景生成方法
CN116128544A (zh) 一种电力营销异常营业数据的主动稽核方法和系统
Liao et al. Scenario generation for cooling, heating, and power loads using generative moment matching networks
CN115936062A (zh) 基于场景生成与深度学习的光伏功率日前区间预测方法
CN116777066B (zh) 基于地基云图引导深度分解的光伏功率概率预测方法及装置
Liu et al. Embedded Scenario Clustering for Wind and Photovoltaic Power, and Load Based on Multi-Head Self-Attention
Zhang et al. A data transfer method based on one dimensional convolutional neural network for cross-building load prediction
Li et al. Short-Term Wind Power Forecast Based on Continuous Conditional Random Field
Ostrouchov et al. On FastMap and the convex hull of multivariate data: toward fast and robust dimension reduction
CN114897260A (zh) 基于lstm神经网络的短期风速预测模型建模方法及预测方法
Ji et al. Probabilistic optimal power flow considering the dependence of multiple wind farms using pair diffusive kernel copula
Geng et al. Study on index model of tropical cyclone intensity change based on projection pursuit and evolution strategy
Peng et al. Medium and Long Term Scenario Generation Method Based on Autoencoder and Generation Adversarial Network
CN116977652B (zh) 基于多模态图像生成的工件表面形貌生成方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant