CN113279085B - 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备 - Google Patents

原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备 Download PDF

Info

Publication number
CN113279085B
CN113279085B CN202110286550.4A CN202110286550A CN113279085B CN 113279085 B CN113279085 B CN 113279085B CN 202110286550 A CN202110286550 A CN 202110286550A CN 113279085 B CN113279085 B CN 113279085B
Authority
CN
China
Prior art keywords
polylactic acid
acid fiber
dope
fully
dyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110286550.4A
Other languages
English (en)
Other versions
CN113279085A (zh
Inventor
朱金唐
吴鹏飞
崔华帅
史贤宁
崔宁
李�杰
黄庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Textile Academy
Original Assignee
China Textile Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Textile Academy filed Critical China Textile Academy
Priority to CN202110286550.4A priority Critical patent/CN113279085B/zh
Publication of CN113279085A publication Critical patent/CN113279085A/zh
Application granted granted Critical
Publication of CN113279085B publication Critical patent/CN113279085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Coloring (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种原液着色全立构复合聚乳酸纤维、制备方法、结晶行为测试方法、装置、存储介质及设备,属于高分子纤维技术领域。将左旋聚乳酸切片和左旋聚乳酸色母粒,右旋聚乳酸切片和右旋聚乳酸色母粒分别制备成有色熔体并按比例挤出,经由挤出制得原液着色立构复合初生纤维,经后处理得到原液着色全立构复合聚乳酸纤维。制备原料中左旋聚乳酸和右旋聚乳酸切片质量比取值范围为(4:6)‑(6:4),色母粒总质量占比范围为0.5%~5%。该制备方法能够制得原位着色的原液着色全立构复合聚乳酸纤维。该制备方法能够降低色母粒尾料的废弃率。该结晶行为测试方法、装置、存储介质及设备能够对该纤维的结晶行为进行测试。

Description

原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方 法、装置、存储介质及设备
技术领域
本发明涉及高分子纤维技术领域,特别是涉及原液着色全立构复合聚乳酸纤维、制备方法、结晶行为测试方法、装置、存储介质及设备。
背景技术
聚乳酸纤维具有高结晶性和高取向性,因此具有较好的机械性能;同时,聚乳酸纤维表面呈弱酸性,与皮肤亲和性较好,具有天然抗菌的性能;聚乳酸纤维还具有较好的滑爽性、柔软舒适、干爽透气和抗紫外线功能,并有良好的光泽弹性和膨松性,是一种极具有发展前景的可持续性纺织材料。
但是,聚乳酸纤维的耐热性较差,高温下容易收缩变形。因此,聚乳酸纤维不适合高温染色,高温染色过程中存在变硬变脆、染色均匀性差、上染率低等问题;同时聚乳酸纤维制备的衣物严禁高温熨烫。因此,提高聚乳酸的耐热性是拓宽聚乳酸纤维使用领域的重要因素之一。
发明内容
有鉴于此,本发明提供了一种原液着色全立构复合聚乳酸纤维及其制备方法,其可以灵活实现原位配色,尾料复用,完全适用于大规模工业化生产原液着色全立构复合聚乳酸纤维,从而更加适于实用。
为了达到上述第一个目的,本发明提供的原液着色全立构复合聚乳酸纤维的技术方案如下:
本发明提供一种原液着色全立构复合聚乳酸纤维,所述原液着色全立构复合聚乳酸纤维的制备原料中,左旋聚乳酸切片与右旋聚乳酸切片之间的质量比的取值范围为(4:6)-(6:4),其中,所述原液着色全立构复合聚乳酸纤维的制备原料中,色母粒的添加量与所述左旋/右旋聚乳酸切片的总质量比取值范围为0.5%-5%。
为了达到上述第二个目的,本发明提供的原液着色全立构复合聚乳酸纤维的制备方法的技术方案如下:
本发明提供的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,包括以下步骤:
将左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒一起熔融形成有色左旋聚乳酸熔体;
将右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒一起熔融形成有色右旋聚乳酸熔体;
所述有色左旋聚乳酸熔体、有色右旋聚乳酸熔体按照设定的比例挤出,得到挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体,其中,所述有色左旋聚乳酸熔体与有色右旋聚乳酸熔体的质量比取值范围为(4:6)-(6:4);
所述挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体混合,得到预定颜色的混合熔体;
所述预定颜色的混合熔体进入纺丝组件并再次挤出,得到原液着色初生纤维;
所述原液着色初生纤维经过后处理后,制得所述原液着色全立构复合聚乳酸纤维。
为了达到上述第三个目的,本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试方法的技术方案如下:
本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试方法,其特征在于,包括以下步骤:
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第一设定升温速率从室温升温至第一设定温度,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第一次升温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第一设定降温速率从所述第一设定温度降温至室温,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第一次降温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第二设定升温速率从室温升温至第二设定温度,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第二次升温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第二设定降温速率从所述第二设定温度降至室温,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第二次降温曲线;
如此循环往复,直至获取所述待测试原液着色全立构复合聚乳酸纤维切片的第N次升温曲线和第N次降温曲线,其中,N为大于1的正整数;
根据所述升温曲线和降温曲线,得到所述待测试原液着色全立构复合聚乳酸纤维切片的结晶行为曲线;
根据所述待测试原液着色全立构复合聚乳酸纤维切片的结晶行为曲线,分析所述原液着色全立构复合聚乳酸纤维的结晶行为。
为了达到上述第四个目的,本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试装置的技术方案如下:
本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试装置包括:
升温速率设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的环境升温速率;
降温速率设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的环境降温速率;
环境温度设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的升温终点温度;
温度曲线绘制模块,用于根据所述待测试原液着色全立构复合聚乳酸纤维切片随环境温度变化的实时温度,绘制所述待测试复合聚乳酸切片的结晶行为曲线。
为了达到上述第五个目的,本发明提供的计算机可读存储介质的技术方案如下:
本发明提供的计算机可读存储介质上存储有原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序,
所述原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序在被处理器执行时,实现本发明提供的原液着色全立构复合聚乳酸纤维结晶行为测试方法的步骤。
为了实现上述第六个目的,本发明提供的电子设备的技术方案如下:
本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试设备,其特征在于,包括存储器、处理器、加热装置、冷却装置和本发明提供的原液着色全立构复合聚乳酸纤维的结晶行为测试装置,
所述存储器上存储有原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序,
所述加热装置用于响应所述升温速率设定模块和环境温度设定模块的控制命令,执行所述待测试原液着色全立构复合聚乳酸纤维切片的环境升温动作;
所述冷却装置用于响应所述降温速率设定模块的控制命令,执行所述待测试原液着色全立构复合聚乳酸纤维切片的环境降温动作;
所述原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序在被所述处理器执行时,实现本发明提供的的原液着色全立构复合聚乳酸纤维结晶行为测试方法的步骤。
本发明提供的原液着色全立构复合聚乳酸纤维通过将有色左旋聚乳酸熔体与有色右旋聚乳酸熔体等比例混合,制备了具有立构复合结构的聚乳酸原液着色初生纤维,然后通过热牵伸和热定型等工艺处理,最终制得原液着色全立构复合纤维。该原液着色全立构复合纤维的熔点比均相聚乳酸纤维的熔点高出约50℃,并表现出了优异的耐热性和力学性能。该原液着色全立构复合聚乳酸纤维的立构晶含量高,耐热性能和耐水解性能都比较好;该方法实施简单,成本低廉,可降低有色尾料的废弃率,并且制备过程中降低了聚乳酸的降解量。该方法简化了耐温聚乳酸纤维的加工工艺,增强了其环保替代性,拓宽了聚乳酸的使用范围,可以实现工业级的无缝切换,完全适用于大规模的工业化原液着色全立构复合聚乳酸纤维生产。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本发明实施例提供的原液着色全立构复合聚乳酸纤维的制备方法流程图;
图2示出了本发明实施例提供的原液着色全立构复合聚乳酸纤维的结晶行为测试方法的步骤流程图;
图3示出了本发明实施例提供的原液着色全立构复合聚乳酸纤维的结晶行为测试装置中各功能模块之间的信号流向关系示意图;
图4示出了应用本发明实施例提供的原液着色全立构复合聚乳酸纤维的结晶测试设备执行本发明实施例提供的原液着色全立构复合聚乳酸纤维的结晶行为测试方法过程中,各装置之间的控制关系示意图;
附图5为本发明实施例提供的动态混合装置第一典型方向的立体图;
附图6为本发明实施例提供的动态混合装置第二典型方向的立体图;
附图7为本发明实施例提供的动态混合装置的俯视图;
附图8为附图7的C-C向剖视图;
附图9为本发明实施例提供的动态混合装置拆卸上盖后的典型方向立体图;
附图10为在附图9的基础上拆卸掉本发明实施例提供的动态混合装置中应用的密封板之后的典型方向立体图;
附图11为在附图10的基础上拆卸掉本发明实施例提供的动态混合装置中应用的底壳之后的典型方向立体图;
附图12为本发明实施例提供的动态混合装置中应用的底壳的典型方向立体图;
附图13为本发明实施例提供的动态混合装置中应用的第二混合器、底壳装配后的附图;
附图14为附图13的A-A向剖视图;
附图15为附图11的俯视图;
附图16为附图15的B-B向剖视图;
附图17为本发明实施例提供的动态混合装置中应用的第二混合器的仰视图;
附图18为本发明实施例提供的动态混合装置中应用的第一混合器的一个典型方向立体图;
附图19为本发明实施例提供的动态混合装置中应用的第二混合器的一个典型方向的立体图;
附图20为本发明实施例提供的动态混合装置中应用的第二混合器的半剖结构立体图;
图21为本发明实施例提供的动态混合装置中应用的上盖的俯视图;
图22为图21的D-D向剖视图。
具体实施方式
本发明提供了原液着色全立构复合聚乳酸纤维及其制备方法,其可以灵活实现原位配色,尾料复用,完全适用于大规模工业化生产原液着色全立构复合聚乳酸纤维。
发明人经过艰苦卓绝的努力,发现,近年来,我国原液着色纤维产业快速发展。所谓原液着色,即在纺丝溶液或熔体中加入着色剂,经纺丝过程得到的有色纤维,可以省去印染工序,避免产生大量印染废水。传统的原液着色工艺往往需要先配色制备指定颜色的母粒,在实际加工过程中往往有分散不均,尾料废弃率高等问题。采用合理的原液着色技术制备原液着色的耐温聚乳酸将会大大提高聚乳酸纤维的环保替代应用范围。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的原液着色全立构复合聚乳酸纤维及其制备方法,其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,具体的理解为:可以同时包含有A与B,可以单独存在A,也可以单独存在B,能够具备上述三种任一种情况。
原液着色全立构复合聚乳酸纤维实施例
本发明提供了一种原液着色全立构复合聚乳酸纤维,其中,原液着色全立构复合聚乳酸纤维的制备原料中,左旋聚乳酸切片与右旋聚乳酸切片之间的质量比的取值范围为(4:6)-(6:4),色母粒的总添加量与左旋/右旋聚乳酸切片的总质量比值范围为0.5%-5%。其中,用差示扫描量热法测得原液着色全立构复合聚乳酸纤维只有一个立构结晶熔融峰取值范围为220℃~225℃;原液着色全立构复合聚乳酸纤维的广角X射线衍射一维图谱在2θ为12°、21°和24°处存在立构晶的晶面衍射特征峰;原液着色全立构复合聚乳酸纤维的立构晶含量为40%~48%。
本发明提供的原液着色全立构复合聚乳酸纤维通过将左旋聚乳酸切片所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸母粒混合后制备的熔体;右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸母粒混合后制备的熔体等比例混合,制备了具有立构复合结构的聚乳酸原液着色初生纤维,然后通过热牵伸和热定型等工艺处理,最终制得原液着色全立构复合纤维。该原液着色全立构复合纤维的熔点比均相聚乳酸纤维的熔点高出约50℃,并表现出了优异的耐热性和力学性能,拓宽了聚乳酸纤维的使用范围。该原液着色全立构复合聚乳酸纤维的立构晶含量高,耐热性能和耐水解性能都比较好;该方法实施简单,成本低廉,可制备多种颜色的原液着色全立构复合聚乳酸纤维,并且制备过程中降低了聚乳酸的降解量,拓宽了聚乳酸的使用范围。该方法可以降低色母粒尾料的废弃率,完全适用于大规模的工业化原液着色全立构复合聚乳酸纤维生产。其中,由于聚乳酸立构复合晶体熔融后的再生过程是立构晶和均相α晶相互竞争的过程,并且立构晶还对α晶具有很强的成核作用,即立构晶熔融后,再生过程中会形成以大量的α晶和少量的立构晶共存的混合物,所以本发明选择单相熔体混合的工艺制备原液着色全立构复合聚乳酸纤维的工艺路线,同时,由于色母粒制备时所用分散剂对立构复合聚乳酸具有成核剂作用,使得制备的原液着色全立构复合聚乳酸纤维具有较快的结晶速率和较高的结晶度。
本实施例中,左旋聚乳酸切片的重均分子量为10-30万Da,左旋聚乳酸切片中L旋光异构体的摩尔含量为95%~99%,左旋聚乳酸切片的含水量低于50ppm;右旋聚乳酸切片的重均分子量为10-30万Da,右旋聚乳酸切片中D旋光异构体的摩尔含量为95%~99%,右旋聚乳酸切片的含水量低于50ppm。本实施例中,左旋聚乳酸和右旋聚乳酸均为市售产品。
本实施例中,色母粒是分别用左旋聚乳酸和右旋聚乳酸配制的单色母粒,其中采用的分散剂里包括聚乙二醇。色母粒的总添加量为左旋旋聚乳酸切片和右旋聚乳酸切片的总质量比值范围为0.5%-5%。
原液着色全立构复合聚乳酸纤维的制备方法实施例
本发明提供的原液着色全立构复合聚乳酸纤维的制备方法包括以下步骤:
步骤S1:将左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒混合后熔融形成有色左旋聚乳酸熔体;
将右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒混合后熔融形成有色右旋聚乳酸熔体。
步骤S2:有色左旋聚乳酸熔体、有色右旋聚乳酸熔体按照设定的比例挤出,得到挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体,其中,左旋聚乳酸熔体与右旋聚乳酸熔体的质量比取值范围为(4:6)-(6:4),色母粒的总含量占左旋与右旋聚乳酸切片总质量的0.5%~5%。其中,左旋聚乳酸熔体与右旋聚乳酸熔体的质量比通过对计量泵的转速进行调节调整,在这种情况下,只需要调整左旋聚乳酸熔体挤出的单螺杆挤出机的计量泵的转速,右旋聚乳酸熔体挤出的单螺杆挤出机的计量泵转速,即可调整左旋聚乳酸熔体的挤出质量与右旋聚乳酸熔体的基础质量之比。如果制备复配色纤维,需要在保证左旋聚乳酸/右旋聚乳酸的比例的同时保证颜料量的配比的情况下调整计量泵的转数。
步骤S3:挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体混合,得到预定颜色的混合熔体,本实施例中,为了保证有色左旋聚乳酸熔体和有色右旋聚乳酸熔体充分混合,需要有色左旋聚乳酸熔体与有色右旋聚乳酸熔体汇入到动态混合装置中,实现充分混合,除此之外,在这种情况下,还能够减少聚乳酸在加工过程中的降解程度。
步骤S4:预定颜色的混合熔体进入纺丝组件并再次挤出,得到原液着色初生纤维;
步骤S5:原液着色初生纤维经过后处理后,制得原液着色全立构复合聚乳酸纤维。
本发明提供的原液着色全立构复合聚乳酸纤维通过将左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒混合后制备的熔体;右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒混合后制备的熔体等比例混合,制备了具有立构复合结构的聚乳酸原液着色初生纤维,然后通过热牵伸和热定型等工艺处理,最终制得原液着色全立构复合纤维。该原液着色全立构复合纤维的熔点比均相聚乳酸纤维的熔点高出约50℃,并表现出了优异的耐热性和力学性能,拓宽了聚乳酸纤维的使用范围。该原液着色全立构复合聚乳酸纤维的立构晶含量高,耐热性能和耐水解性能都比较好;该方法实施简单,成本低廉,可制备多种颜色的原液着色全立构复合聚乳酸纤维,并且制备过程中降低了聚乳酸的降解量,拓宽了聚乳酸的使用范围。该方法可以降低色母粒尾料的废弃率,完全适用于大规模的工业化原液着色全立构复合聚乳酸纤维生产。其中,由于聚乳酸立构复合晶体熔融后的再生过程是立构晶和均相α晶相互竞争的过程,并且立构晶还对α晶具有很强的成核作用,即立构晶熔融后,再生过程中会形成以大量的α晶和少量的立构晶共存的混合物,所以本发明选择单相熔体混合的工艺制备原液着色全立构复合聚乳酸纤维的工艺路线,同时,由于色母粒制备时所用分散剂对立构复合聚乳酸具有成核剂作用,使得制备的原液着色全立构复合聚乳酸纤维具有较快的结晶速率和较高的结晶度。
其中,左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒在第一单螺杆挤出机内熔融形成有色左旋聚乳酸熔体;右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒在第二单螺杆挤出机内熔融形成有色右旋聚乳酸熔体。在这种情况下,由于左旋聚乳酸切片与一定比例的色母粒混合料和右旋聚乳酸切片和一定比例的色母粒混合料分别单独挤出,能够保证两种有色混合熔体通过各自的熔体管道汇入到动态混合装置中充分混合。
参见附图5-附图22,本发明实施例提供的动态混合装置包括第一混合器13、第二混合器17、扰流件18、转轴16和旋转动力原动件。转轴16的一端固定连接于第一混合器13的顶面,转轴16的另一端固定连接于旋转动力原动件的输出轴。第一混合器13的底面35与第二混合器17的顶面23相对应配合形成混合组件,于第一混合器13的底面35与第二混合器17的顶面23之间形成第一容置空间31。扰流件18偏心设置于第一容置空间31内。第一容置空间31的上、下两侧均与外界连通。
本发明提供的动态混合装置通过第一容置空间31上侧接收待混合介质,该待混合介质在第一容置空间31内混合后,由于转轴16与旋转动力原动件的输出轴之间固定连接,因此,在旋转动力原动件启动后,随着旋转动力原动件的输出轴旋转,转轴16和与转轴16固定连接的第一混合器13也随之旋转,在这种情况下,由于扰流件18偏心设置于第一容置空间31内,因此,扰流件18能够随旋转动力输出轴的旋转,以转轴16为旋转中心进行圆周运动,从而实现对容置于第一容置空间31内的待混合介质进行搅拌,因此,其能够对第一容置空间31内的待混合介质提供剪切作用力,同时实现对第一容置空间31内的待混合介质进行搅拌,从而实现第一容置空间31内的待混合介质的均匀搅拌,并且,其操作简单,应用前景好。
其中,动态混合装置还包括上盖1。上盖1上开设有第一通孔34,转轴16穿设于第一通孔34中。上盖1上设有多个第二通孔4。第二通孔4的一端外界连通,第二通孔4的另一端于第一容置空间31的上侧连通。其中,在未设置上盖1时,待混合介质需要通过第一混合器13的顶面承接待混合介质,然后,通过该第一混合器31的上侧与第一容置空间31之间的连通,使得承接于第一混合器13顶面的待混合介质进入到第一容置空间31内,由于第一混合器13的顶面面积较大,承接待混合介质的面积较大,容易产生待混合介质跑偏的问题。再此基础上,当设置了上盖1,并通过多个第二通孔4,能够使得待混合介质分别经由其中一个通孔4到达第一混合器13的承接点,本实施例中,第二通孔4为两个,待混合介质分两路分别到达第一混合器13的承接点后,通过其与第一容置空间31的上侧实现待混合介质进入到第一容置空间31内,能够减小待混合介质与第一混合器13之间的承接点的面积,相当于通过该第二通孔4进行待混合介质的导流,能够避免待混合介质跑偏的问题。本实施例中,第二通孔4首先在水平方向行走,然后转弯至竖直状态,形成待混合介质的进入通路,能够使得待混合介质被有效地收集并承接在第一混合器13的上侧。
其中,动态混合装置还包括底壳6。底壳6与第二混合器17之间设置有第二容置空间30。底壳6上设置有第三通孔27。第一容置空间31的下侧与第二容置空间30连通。第三通孔27的一端与第二容置空间30连通,第三通孔27的另一端与外界连通。在未设置底壳6的情况下,由于第一容置空间31通过第二混合器17的下侧与外界连通收集经过混合介质,由于第二混合器17的底面28的面积较大,因此,需要较大口径的承接容器,在这种情况下,由于承接容器的口径较大,容易导致收集在承接容器中的混合介质溅出的问题。在设置了该底壳6之后,能够使得混合后的介质在第二容置空间30内首先聚集后,聚集后的混合介质再进一步通过第三通孔27被收集,在这种情况下,第二容置空间30又再一次对混合后的介质实现又一次混合,因此,能够使得混合后的介质混合更加充分。除此之外,由于第三通孔27的口径较小,所使用的承接容器的承接口的口径也可以缩小,在这种情况下,能够避免由于实用口径较大的承接容器而导致的混合后的介质溅出的问题。
其中,动态混合装置还可以同时包括上盖1和底壳6。在这种情况下,上盖1与底壳6之间形成第三容置空间19,混合组件容置于第三容置空间19内。其中,上盖1上开设有第一通孔34,转轴16穿设于第一通孔34中。上盖1上设有多个第二通孔4。第二通孔4的一端外界连通,第二通孔4的另一端于第一容置空间31的上侧连通。其中,在未设置上盖1时,待混合介质需要通过第一混合器13的顶面承接待混合介质,然后,通过该第一混合器31的上侧与第一容置空间31之间的连通,使得承接于第一混合器13顶面的待混合介质进入到第一容置空间31内,由于第一混合器13的顶面面积较大,承接待混合介质的面积较大,容易产生待混合介质跑偏的问题。再此基础上,当设置了上盖1,并通过多个第二通孔4,能够使得待混合介质分别经由其中一个通孔4到达第一混合器13的承接点,本实施例中,第二通孔4为两个,待混合介质分两路分别到达第一混合器13的承接点后,通过其与第一容置空间31的上侧实现待混合介质进入到第一容置空间31内,能够减小待混合介质与第一混合器13之间的承接点的面积,相当于通过该第二通孔4进行待混合介质的导流,能够避免待混合介质跑偏的问题。本实施例中,第二通孔4首先在水平方向行走,然后转弯至竖直状态,形成待混合介质的进入通路,能够使得待混合介质被有效地收集并承接在第一混合器13的上侧。底壳6与第二混合器17之间设置有第二容置空间30。底壳6上设置有第三通孔27。第一容置空间31的下侧与第二容置空间30连通。第三通孔27的一端与第二容置空间30连通,第三通孔27的另一端与外界连通。在未设置底壳6的情况下,由于第一容置空间31通过第二混合器17的下侧与外界连通收集经过混合介质,由于第二混合器17的底面28的面积较大,因此,需要较大口径的承接容器,在这种情况下,由于承接容器的口径较大,容易导致收集在承接容器中的混合介质溅出的问题。在设置了该底壳6之后,能够使得混合后的介质在第二容置空间30内首先聚集后,聚集后的混合介质再进一步通过第三通孔27被收集,在这种情况下,第二容置空间30又再一次对混合后的介质实现又一次混合,因此,能够使得混合后的介质混合更加充分。除此之外,由于第三通孔27的口径较小,所使用的承接容器的承接口的口径也可以缩小,在这种情况下,能够避免由于实用口径较大的承接容器而导致的混合后的介质溅出的问题。在这种情况下,综合了上盖1和底壳6的优点,能够保证本发明实施例提供的动态混合器对待混合介质、混合后的介质的汇集作用和导流作用。
其中,上盖1的其中一相对应的侧面设置有向下的凸缘7。在这种情况下,能够通过该凸缘7对上盖1和底壳6之间的装配位置进行限位,保证上盖1与底壳6之间的对中装配。
其中,两个凸缘7的内侧间距大于底壳6在同一方向的宽度,使得当上盖1与底壳6相盖合后,至少一侧凸缘7与底壳6的外侧边缘之间具有空隙33。在这种情况下,能够使得上盖1与底壳6之间的形状出现少许误差的情况下,依然能够装配在一起,能够增强本发明实施例提供的动态混合装置各零件之间的转配效果。
其中,动态混合装置还包括密封板10。密封板10上设置有第四通孔11,第四通孔11的数量与第二通孔4的数量一一对应。密封板10设置于上盖1之间,于密封板10、第一混合器13之间设置有流道14。流道14内设有多个第五通孔15。第二通孔4通过第四通孔11与流道14连通,流道14通过第五通孔15与第一容置空间31的上侧连通。在这种情况下,待混合介质经过第二通孔4后,通过第四通孔11被引流至流道14内,在密封板10的密封作用下,能够避免待混合介质泄漏。
其中,上盖1的底面设置有第一凹槽12,密封板10的顶面设置有第一凸起32,第一凹槽12的形状与第一凸起32的形状相适配。或者,上盖1的底面设置有第二凸起,密封板10的顶面设置有第二凹槽,第二凸起的形状与第二凹槽的形状相适配。在这种情况下,通过第一凹槽12与第一凸起32之间的装配,或者,通过第二凸起与第二凹槽之间的装配,保证盖1与密封板10之间的对中。
其中,密封板10与底壳6在竖直方向的正投影的相同。在这种情况下,能够更好地保证待混合介质在流道14内的密封效果。
其中,流道14在竖直方向的正投影呈迷宫形状。在这种情况下,由于流道的长度较大,能够延长待混合介质在流道内的流程,增加待混合介质在流道内混合的机会,因此,能够更好地保证待混合介质的混合效果。
其中,流道14整体连通形成通路。在这种情况下,同一流道14内可以同时承载有待混合介质中的每一个组分,更加能够保证待混合介质的混合效果。
其中,第二混合器17的顶面23的边缘设置有斜面21,斜面21的顶部边缘与第一混合器13的底面35相接触。在这种情况下,能够借助斜面21造成的重力作用,在不增设密封圈的情况下,减少待混合介质在第一混合器13、第二混合器17相接触的位置的泄漏。
其中,第二混合器17的顶面23的中心处设有锥形凸起22,锥形凸起22容置于第一容置空间31内。在这种情况下,能够使得第一容置空间31中心处承接的待混合介质通过锥形凸起22产生的重力作用,被驱赶到该锥形凸起22以外的容置空间,能够与偏心设置的扰流件18相适应,使得待混合介质与扰流件18接触的机会增加,从而增加待混合介质18被搅拌的机会,从而增加待混合介质的混合均匀性。
其中,扰流件18包括第一组扰流件和第二组扰流件。第一组扰流件固定连接于第一混合器13的底面35,第二组扰流件固定连接于第二混合器17的顶面23,第一组扰流件与第二组扰流件彼此错位设置,使得当其中一组扰流件相对于另一组扰流件做圆周运动时,第一组扰流件与第二组扰流件彼此之间无干涉。在这种情况下,能够更进一步增加待混合介质与扰流件18接触的机会,能够更加增强待混合介质被扰流件18搅拌的机会,从而使得待混合介质的混合效果更好。
其中,底壳6的内侧上表面边缘25与第二混合器17的底面28的边缘相接触。从而,借助该底壳6的内侧上表面边缘25对第二混合器17提供支持力,保证第一混合器13与第二混合器17之间的装配效果。底壳6的内侧上表面中心呈现从边缘向中心逐渐降低的内锥面26。第二容置空间30形成于第二混合器17的底面28和底壳6的内侧上表面之间。第三通孔27设置于内锥面26的中心处。第二混合器17上,沿轴向设置有多个第六通孔20,第一容置空间31通过第六通孔20与第二容置空间30连通。在这种情况下,能够利用内锥面26本身提供的重力效果,对混合后的介质进行导流,使得混合后的介质能够顺利地被导流至第三通孔27,从而顺利地被承接容器承接。
其中,第六通孔20布设于靠近边缘25的圆周上。在这种情况下,能够使得在第一容置空间31内混合的介质从中心位置流动到靠近边缘25的位置才能被第二容置空间30收集,进一步延长了混合介质的流程,增加了混合介质的混合效果。
其中,转轴16的顶部设有第二段轴2,第二段轴2的直径大于转轴16的直径,第一通孔34的直径等于转轴16的直径。在这种情况下,能够通过第二端州2的卡置作用力,将上盖1与第一混合器13在竖直方向上的装配效果。
本实施例中,上盖1在竖直方向的正投影为第一多边形,底壳6在竖直方向的正投影为第二多边形,第一混合器13、第二混合器17在竖直方向的正投影为圆形。在这种情况下,能够避免它们之间由于第一混合器13被旋转动力原动件带动旋转而产生联动的技术问题。
其中,旋转动力原动件为旋转电机。在这种情况下,无需手动操作,而只需要通过给旋转电机上电,即可实现第一混合器13旋转,能够节约人力资源。
其中,旋转电机为正反转旋转电机。在这种情况下,能够通过对旋转电机设定正反转,使得扰流件18也实现正反转,从而增加扰流件18的搅拌效果,使得扰流件18对待混合介质的搅拌效果更好。
其中,上盖1上还设置有盲孔8。在这种情况下,可以通过在该盲孔8中设置一固定件,使得上盖1能够在径向被固定,从而避免由于第一混合器13在旋转的过程中,上盖1被联动旋转。
其中,动态混合装置还包括联轴器3,联轴器3的一端固定连接于转轴16,联轴器3的另一端固定连接于旋转动力原动件的输出轴,其中,联轴器3在竖直方向的正投影的形状为第三多边形。在这种情况下,能够保证联轴器3的联动效果。
其中,底壳6的内侧壁24的高度等于混合组件的高度。在这种情况下,能够保证党第一混合器13与第二混合器17在装配后,能够正好容置在底壳6的第三容置空间19内,从而保证装配效果。
其中,混合熔体进入纺丝组件并再次挤出,得到初生纤维的步骤中,混合熔体流过纺丝组件内的静态混合器和滤砂后,经由喷丝板毛细孔挤出,得到初生纤维。本实施例中,喷丝板的毛细孔长径比取值范围为2-4,其中,经过对喷丝板毛细孔及毛细孔长径比的选择进行研究后,发现,同样的单孔挤出量下,选取较小的毛细孔,熔体更稳定;同样的单孔挤出量和相同直径的毛细孔,长径比增大,纺况会更稳定,但是长径比达到5时,纺况又难以为继。本实施例中,选取长径比为3时,效果最好。
其中,原液着色初生纤维经过后处理后,制得原液着色全立构复合聚乳酸纤维的步骤中,后处理选自一步法或者两步法之一:
一步法包括依次冷却、上油、热牵伸和热定型;
两步法包括依次冷却、上油、卷绕之后再进行热牵伸变形处理。
其中,第一单螺杆挤出机、第二单螺杆挤出机处于N2氛围中保护。
其中,一步法的参数取值范围分别包括:牵伸温度的取值范围为70℃-90℃;热定型温度的取值范围为140℃-200℃;牵伸倍数的取值范围为1.5倍-3.5倍,牵伸过程中的卷绕速率的取值范围为2500m/min-4000m/min。
其中,两步法的参数取值范围分别包括:热牵伸变形处理过程中,牵伸温度的取值范围为70℃-90℃,热定型温度的取值范围为140℃-200℃,牵伸倍数的取值范围为1.5倍-3.5倍;卷绕速率的取值范围为2500m/min-3000m/min。
全立构复合聚乳酸纤维结晶行为测试方法实施例
参见附图2,本发明实施例提供的全立构复合聚乳酸纤维的结晶行为测试方法包括以下步骤
步骤S1:待测试全立构复合聚乳酸纤维切片的环境温度以第一设定升温速率从室温升温至第一设定温度,获取待测试全立构复合聚乳酸纤维切片的第一次升温曲线;
步骤S2:待测试全立构复合聚乳酸纤维切片的环境温度以第一设定降温速率从第一设定温度降温至室温,获取待测试全立构复合聚乳酸纤维切片的第一次降温曲线;
步骤S3:待测试全立构复合聚乳酸纤维切片的环境温度以第二设定升温速率从室温升温至第二设定温度,获取待测试全立构复合聚乳酸纤维切片的第二次升温曲线;
步骤S4:待测试全立构复合聚乳酸纤维切片的环境温度以第二设定降温速率从第二设定温度降至室温,获取待测试全立构复合聚乳酸纤维切片的第二次降温曲线;
如此循环往复,直至获取待测试全立构复合聚乳酸纤维切片的第N次升温曲线和第N次降温曲线,其中,N为大于1的正整数;
步骤S5:根据升温曲线和降温曲线,得到待测试全立构复合聚乳酸纤维切片的结晶行为曲线;
步骤S6:根据待测试全立构复合聚乳酸纤维切片的结晶行为曲线,分析全立构复合聚乳酸纤维的结晶行为。
其中,待测试全立构复合聚乳酸纤维切片的熔融结晶测试过程采用差示扫描量热仪实现。
其中,
第一设定升温速率、第一设定降温速率、第二设定升温速率、第二设定降温速率、第N设定升温速率、第N设定降温速率的取值范围为10℃/min-30℃/min;
第一设定温度、第二设定温度、第三设定温度的取值范围高于待测试全立构复合聚乳酸纤维切片的熔点。
其中,全立构复合聚乳酸纤维结晶行为测试方法还包括获取待测试全立构复合聚乳酸熔点的步骤,具体包括以下步骤:
在待测试全立构复合聚乳酸纤维切片升温过程中,观察待测试聚乳酸纤维切片;
以待测试聚乳酸切片开始具有熔融趋势的温度点作为待测试全立构复合聚乳酸的熔点。
全立构复合聚乳酸纤维的结晶行为测试装置实施例
参见附图3,本发明提供的全立构复合聚乳酸纤维的结晶行为测试装置包括:
升温速率设定模块,用于设定待测试全立构复合聚乳酸纤维切片的环境升温速率;
降温速率设定模块,用于设定待测试全立构复合聚乳酸纤维切片的环境降温速率;
环境温度设定模块,用于设定待测试全立构复合聚乳酸纤维切片的升温终点温度;
温度曲线绘制模块,用于根据待测试全立构复合聚乳酸纤维切片随环境温度变化的实时温度,绘制待测试复合聚乳酸切片的结晶行为曲线。
计算机可读存储介质实施例
本发明提供的计算机可读存储介质上存储有转盘式生物反应装置的运行方法的控制程序,转盘式生物反应装置的运行方法的控制程序在被处理器执行时,实现本发明提供的转盘式生物反应装置的运行方法的步骤。
全立构复合聚乳酸纤维的结晶行为测试设备实施例
参见附图4,本发明提供的全立构复合聚乳酸纤维的结晶行为测试设备包括存储器、处理器、加热装置、冷却装置和本发明提供的全立构复合聚乳酸纤维的结晶行为测试装置,
存储器上存储有全立构复合聚乳酸纤维结晶行为测试方法的控制程序,
加热装置用于响应升温速率设定模块和环境温度设定模块的控制命令,执行待测试全立构复合聚乳酸纤维切片的环境升温动作;
冷却装置用于响应降温速率设定模块的控制命令,执行待测试全立构复合聚乳酸纤维切片的环境降温动作;
全立构复合聚乳酸纤维结晶行为测试方法的控制程序在被处理器执行时,实现本发明提供的全立构复合聚乳酸纤维结晶行为测试方法的步骤。
实施例
以下通过具体实例进一步描述本发明。不过这些实例仅仅是范例性的,并不对本发明的保护范围构成任何限制。
结晶行为测试:
采用美国PerkinElmer公司的DSC-8000型差示扫描量热仪(DSC)进行熔融结晶过程测试,测试在氮气氛围下进行。切片样品以20℃/min从室温升温至250℃,然后再以20℃/min从250℃降至某一温度,等温结晶,之后降至室温,而后再以20℃/min从室温升温至250℃,记录样品的升降温曲线,确定样品二次熔融的情况;纤维样品以20℃/min升温至250℃,记录样品的升温曲线。氮气流速为50mL/min,样品用量为5mg。
采用荷兰帕纳科(HollandPanalytical)公司X’Pert Pro MPD X射线衍射仪进行测试,测试电压为40kV,电流为40mA;采用CuKα射线,X射线波长0.154nm;Ni滤波。
着色效果测试:
着色均匀性测试在室温(23~25℃),正常光照(100~300lux)的室内环境中进行。将每种原液着色全立构复合聚乳酸纤维制成色卡,然后使用NH310电脑色差仪(测试孔径8mm,D65光源)进行黑白校正后测试每个色卡的色值,每个样品取5个点求取平均值。
实施例1
PLLA,PDLA切片及PLLA黑色母粒和PDLA黑色母分别在真空烘箱中干燥,干燥设定温度为110℃,干燥时间为12小时,最终含水量为PLLA:25ppm;PDLA:31ppm;PLLA黑色母粒:49ppm;PDLA黑色母粒:51ppm。
加料配比:PLLA黑色母粒:PLLA=1:99;PDLA黑色母粒:PDLA=1:99(PLLA:PDLA=1:1)。
纺丝温度设定,其中包括:(1)螺杆设定温度:1区210℃,2区215℃,3区220℃,4区220℃;(2)计量泵温度:220℃;(3)熔体管道温度235℃;(4)箱体/组件温度235℃。
喷丝板:PRB-φ85-48H-0.3x0.9。
侧吹风设定:(1)风温/风湿:20℃/90RH%;(2)风速:0.5m/s。
集束高度:1300mm。
卷绕速度:2800m/min。
后处理:牵伸温度80℃,定型温度180℃,牵伸倍数1.8。
DSC测试显示,熔点为220℃;XRD测试显示全为立构复合晶体结构,计算所得全立构复合聚乳酸的结晶度为43%。
所得纤维为黑色,色差仪测试结果显示平均色差ΔE为0.4%。
实施例2
PLLA、PDLA切片及PLLA黄色母粒和PDLA红色母粒分别在真空烘箱中干燥,干燥设定温度为110℃,干燥时间为12小时,最终含水量为PLLA:30ppm;PDLA:29ppm;黄色母粒:27ppm;红色母粒:31ppm。
加料配比:PLLA黄色母粒:PLLA=1:99;PDLA红色母粒:PDLA=1:99(PLLA:PDLA=1:1)。
纺丝温度设定,其中包括:(1)螺杆设定温度:1区210℃,2区220℃,3区220℃,4区220℃;(2)计量泵温度:220℃;(3)熔体管道温度230℃;(4)箱体/组件温度240℃。
喷丝板:PRB-φ85-48H-0.3x0.9。
侧吹风设定:(1)风温/风湿:20℃/90RH%;(2)风速:0.5m/s。
集束高度:1300mm。
卷绕速度:2800m/min。
后处理:牵伸温度80℃,定型温度180℃,牵伸倍数1.8。
DSC测试显示,熔点为225℃;XRD测试显示全为立构复合晶体结构,计算所得全立构复合聚乳酸的结晶度为47%。
所得纤维为橙色,色差仪测试结果显示平均色差ΔE为0.4%。
对比例
PLLA切片在真空烘箱中干燥,干燥设定温度为110℃,干燥时间为12小时,最终含水量为25ppm。
纺丝温度设定,其中包括:(1)螺杆设定温度:1区210℃,2区215℃,3区220℃,4区220℃;(2)计量泵温度:220℃;(3)熔体管道温度220℃;(4)箱体/组件温度220℃。
喷丝板:PRB-φ85-48H-0.3x0.9。
侧吹风设定:(1)风温/风湿:20℃/90RH%;(2)风速:0.5m/s。
集束高度:1300mm。
卷绕速度:2800m/min。
后处理:牵伸温度80℃,定型温度120℃,牵伸倍数1.8。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (40)

1.一种原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述原液着色全立构复合聚乳酸纤维的制备原料中,左旋聚乳酸切片与右旋聚乳酸切片之间的质量比的取值范围为(4:6)-(6:4),其中,所述原液着色全立构复合聚乳酸纤维的制备原料中,色母粒的添加量占所述左旋与右旋聚乳酸切片的总质量比取值范围为0.5% - 5%;
所述原液着色全立构复合聚乳酸纤维的制备方法包括以下步骤:
将左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒一起熔融形成有色左旋聚乳酸熔体;
将右旋聚乳酸切片、所述右旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒一起熔融形成有色右旋聚乳酸熔体;
所述有色左旋聚乳酸熔体、有色右旋聚乳酸熔体按照设定的比例挤出,得到挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体,其中,所述有色左旋聚乳酸熔体与有色右旋聚乳酸熔体的质量比取值范围为(4:6)-(6:4);
所述挤出的有色左旋聚乳酸熔体和挤出的有色右旋聚乳酸熔体混合,得到预定颜色的混合熔体;
所述预定颜色的混合熔体进入纺丝组件并再次挤出,得到原液着色初生纤维;
所述原液着色初生纤维经过后处理后,制得所述原液着色全立构复合聚乳酸纤维;
所述挤出的有色左旋聚乳酸切片熔体和挤出的有色右旋聚乳酸切片熔体混合,得到混合熔体的步骤中,选用的熔体混合装置为动态混合装置,所述动态混合装置包括第一混合器(13)、第二混合器(17)、扰流件(18)、转轴(16)和旋转动力原动件,
所述转轴(16)的一端固定连接于所述第一混合器(13)的顶面,所述转轴(16)的另一端固定连接于所述旋转动力原动件的输出轴;
所述第一混合器(13)的底面(35)与所述第二混合器(17)的顶面(23)相对应配合形成混合组件,于所述第一混合器(13)的底面(35)与所述第二混合器(17)的顶面(23)之间形成第一容置空间(31);
所述扰流件(18)偏心设置于所述第一容置空间(31)内;
第一容置空间(31)的上、下两侧均与外界连通;
所述扰流件(18)包括第一组扰流件和第二组扰流件;
所述第一组扰流件固定连接于所述第一混合器(13)的底面(35),
所述第二组扰流件固定连接于所述第二混合器(17)的顶面(23),
所述第一组扰流件与所述第二组扰流件彼此错位设置,使得当其中一组扰流件相对于另一组扰流件做圆周运动时,所述第一组扰流件与所述第二组扰流件彼此之间无干涉;
所述动态混合装置还包括底壳(6),
所述底壳(6)与所述第二混合器(17)之间设置有第二容置空间(30);
所述底壳(6)上设置有第三通孔(27);
所述第一容置空间(31)的下侧与所述第二容置空间(30)连通;
所述第三通孔(27)的一端与所述第二容置空间(30)连通,所述第三通孔(27)的另一端与外界连通。
2.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述左旋聚乳酸切片的重均分子量为10-30万Da,所述左旋聚乳酸切片中L旋光异构体的摩尔含量为95%~99%,所述左旋聚乳酸切片的含水量低于50ppm;
所述右旋聚乳酸切片的重均分子量为10-30万Da,所述右旋聚乳酸切片中D旋光异构体的摩尔含量为95%~99%,所述右旋聚乳酸切片的含水量低于50ppm。
3.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,用差示扫描量热法测得所述原液着色全立构复合聚乳酸纤维只有一个立构结晶熔融峰取值范围为220℃~225℃。
4.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,所述原液着色全立构复合聚乳酸纤维的广角X射线衍射一维图谱在2θ为12°、21°和24°处存在立构晶的晶面衍射特征峰;所述原液着色全立构复合聚乳酸纤维的立构晶含量为40%~48%。
5.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述左旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的左旋聚乳酸色母粒混合后在第一单螺杆挤出机内熔融;
所述右旋聚乳酸切片、所述左旋聚乳酸切片质量百分含量取值范围为0.25%~2.5%的右旋聚乳酸色母粒混合后在第二单螺杆挤出机内熔融。
6.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述预定颜色混合熔体进入纺丝组件并再次挤出,得到原液着色初生纤维的步骤中,所述预定颜色混合熔体流过所述纺丝组件内的静态混合器和滤砂后,经由喷丝板毛细孔挤出,得到原液着色初生纤维。
7.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述原液着色初生纤维经过后处理后,制得所述原液着色全立构复合聚乳酸纤维的步骤中,所述后处理选自一步法或者两步法之一:
所述一步法包括依次冷却、上油、热牵伸和热定型;
所述两步法包括依次冷却、上油、卷绕之后再进行热牵伸变形处理。
8.根据权利要求5所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述第一单螺杆挤出机、所述第二单螺杆挤出机处于N2氛围中保护。
9.根据权利要求7所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述一步法的参数取值范围分别包括:
牵伸温度的取值范围为70℃-90℃;
所述热定型温度的取值范围为140℃-200℃;
牵伸倍数的取值范围为1.5倍-3.5倍,牵伸过程中的卷绕速率的取值范围为2500m/min-4000m/min。
10.根据权利要求7所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述两步法的参数取值范围分别包括:
所述热牵伸变形处理过程中,
牵伸温度的取值范围为70℃-90℃,
热定型温度的取值范围为140℃-200℃,
牵伸倍数的取值范围为1.5倍-3.5倍;
卷绕速率的取值范围为2500m/min-3000m/min。
11.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述动态混合装置还包括上盖(1),
所述上盖(1)上开设有第一通孔(34),所述转轴(16)穿设于所述第一通孔(34)中;
所述上盖(1)上设有多个第二通孔(4);
所述第二通孔(4)的一端外界连通,所述第二通孔(4)的另一端于所述第一容置空间(31)的上侧连通。
12.根据权利要求11所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述动态混合装置还包括底壳(6),所述上盖(1)与所述底壳(6)之间形成第三容置空间(19),
所述混合组件容置于所述第三容置空间(19)内;
所述底壳(6)与所述第二混合器(17)之间设置有第二容置空间(30);
所述底壳(6)上设置有第三通孔(27);
所述第一容置空间(31)的下侧与所述第二容置空间(30)连通;
所述第三通孔(27)的一端与所述第二容置空间(30)连通,所述第三通孔(27)的另一端与外界连通。
13.根据权利要求12所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述上盖(1)的其中一相对应的侧面设置有向下的凸缘(7)。
14.根据权利要求13所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,两个所述凸缘(7)的内侧间距大于所述底壳(6)在同一方向的宽度,使得当所述上盖(1)与底壳(6)相盖合后,至少一侧所述凸缘(7)与所述底壳(6)的外侧边缘之间具有空隙(33)。
15.根据权利要求11所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述动态混合装置,还包括密封板(10),
所述密封板(10)上设置有第四通孔(11),所述第四通孔(11)的数量与所述第二通孔(4)的数量一一对应;
所述密封板(10)设置于所述上盖(1)之间,于所述密封板(10)、所述第一混合器(13)之间设置有流道(14);
所述流道(14)内设有多个第五通孔(15);
所述第二通孔(4)通过所述第四通孔(11)与所述流道(14)连通,所述流道(14)通过所述第五通孔(15)与所述第一容置空间(31)的上侧连通。
16.根据权利要求15所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述上盖(1)的底面设置有第一凹槽(12),所述密封板(10)的顶面设置有第一凸起(32),所述第一凹槽(12)的形状与所述第一凸起(32)的形状相适配。
17.根据权利要求15所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述上盖(1)的底面设置有第二凸起,所述密封板(10)的顶面设置有第二凹槽,所述第二凸起的形状与所述第二凹槽的形状相适配。
18.根据权利要求15所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述密封板(10)与所述底壳(6)在竖直方向的正投影的相同。
19.根据权利要求15所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述流道(14)在竖直方向的正投影呈迷宫形状。
20.根据权利要求15或19所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述流道(14)整体连通形成通路。
21.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述第二混合器(17)的顶面(23)的边缘设置有斜面(21),
所述斜面(21)的顶部边缘与所述第一混合器(13)的底面(35)相接触。
22.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述第二混合器(17)的顶面(23)的中心处设有锥形凸起(22),所述锥形凸起(22)容置于所述第一容置空间(31)内。
23.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述底壳(6)的内侧上表面边缘(25)与所述第二混合器(17)的底面(28)的边缘相接触;
所述底壳(6)的内侧上表面中心呈现从边缘向中心逐渐降低的内锥面(26);
所述第二容置空间(30)形成于所述第二混合器(17)的底面(28)和所述底壳(6)的内侧上表面之间;
所述第三通孔(27)设置于所述内锥面(26)的中心处;
所述第二混合器(17)上,沿轴向设置有多个第六通孔(20),
所述第一容置空间(31)通过所述第六通孔(20)与所述第二容置空间(30)连通。
24.根据权利要求23所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述第六通孔(20)布设于靠近所述边缘(25)的圆周上。
25.根据权利要求11所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述转轴(16)的顶部设有第二段轴(2),所述第二段轴(2)的直径大于所述转轴(16)的直径,
所述第一通孔(34)的直径等于所述转轴(16)的直径。
26.根据权利要求11所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述上盖(1)在竖直方向的正投影为第一多边形。
27.根据权利要求1或12所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述底壳(6)在竖直方向的正投影为第二多边形。
28.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述第一混合器(13)、第二混合器(17)在竖直方向的正投影为圆形。
29.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述旋转动力原动件为旋转电机。
30.根据权利要求29所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述旋转电机为正反转旋转电机。
31.根据权利要求11所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述上盖(1)上还设置有盲孔(8)。
32.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述动态混合装置,还包括联轴器(3),所述联轴器(3)的一端固定连接于所述转轴(16),所述联轴器(3)的另一端固定连接于所述旋转动力原动件的输出轴,其中,所述联轴器(3)在竖直方向的正投影的形状为第三多边形。
33.根据权利要求1或12所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述底壳(6)的内侧壁(24)的高度等于所述混合组件的高度。
34.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述原液着色全立构复合聚乳酸纤维的结晶行为测试方法包括以下步骤:
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第一设定升温速率从室温升温至第一设定温度,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第一次升温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第一设定降温速率从所述第一设定温度降温至室温,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第一次降温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第二设定升温速率从室温升温至第二设定温度,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第二次升温曲线;
待测试原液着色全立构复合聚乳酸纤维切片的环境温度以第二设定降温速率从所述第二设定温度降至室温,获取所述待测试原液着色全立构复合聚乳酸纤维切片的第二次降温曲线;
如此循环往复,直至获取所述待测试原液着色全立构复合聚乳酸纤维切片的第N次升温曲线和第N次降温曲线,其中,N为大于1的正整数;
根据所述升温曲线和降温曲线,得到所述待测试原液着色全立构复合聚乳酸纤维切片的结晶行为曲线;
根据所述待测试原液着色全立构复合聚乳酸纤维切片的结晶行为曲线,分析所述原液着色全立构复合聚乳酸纤维的结晶行为。
35.根据权利要求34所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述待测试原液着色全立构复合聚乳酸纤维切片的熔融结晶测试过程采用差示扫描量热仪实现。
36.根据权利要求35所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,
所述第一设定升温速率、第一设定降温速率、第二设定升温速率、第二设定降温速率、第N设定升温速率、第N设定降温速率的取值范围为10℃/min-30℃/min;
所述第一设定温度、第二设定温度、第三设定温度的取值范围高于所述待测试原液着色全立构复合聚乳酸纤维切片的熔点。
37.根据权利要求35所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,原液着色全立构复合聚乳酸纤维结晶行为测试方法还包括获取待测试原液着色全立构复合聚乳酸熔点的步骤,具体包括以下步骤:
在所述待测试原液着色全立构复合聚乳酸纤维切片升温过程中,观察待测试聚乳酸纤维切片;
以待测试聚乳酸切片开始具有熔融趋势的温度点作为待测试全立构复合聚乳酸的熔点。
38.根据权利要求34所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,所述原液着色全立构复合聚乳酸纤维的结晶行为测试装置包括:
升温速率设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的环境升温速率;
降温速率设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的环境降温速率;
环境温度设定模块,用于设定所述待测试原液着色全立构复合聚乳酸纤维切片的升温终点温度;
温度曲线绘制模块,用于根据所述待测试原液着色全立构复合聚乳酸纤维切片随环境温度变化的实时温度,绘制待测试复合聚乳酸切片的结晶行为曲线。
39.根据权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,还包括计算机可读存储介质,所述计算机可读存储介质上存储有原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序,
所述原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序在被处理器执行时,实现权利要求35-38中任一所述的原液着色全立构复合聚乳酸纤维结晶行为测试方法的步骤。
40.权利要求1所述的原液着色全立构复合聚乳酸纤维的制备方法,其特征在于,还包括原液着色全立构复合聚乳酸纤维的结晶行为测试设备,所述原液着色全立构复合聚乳酸纤维的结晶行为测试设备包括存储器、处理器、加热装置、冷却装置和权利要求38所述的原液着色全立构复合聚乳酸纤维的结晶行为测试装置,
所述存储器上存储有原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序,
所述加热装置用于响应所述升温速率设定模块和环境温度设定模块的控制命令,执行所述待测试原液着色全立构复合聚乳酸纤维切片的环境升温动作;
所述冷却装置用于响应所述降温速率设定模块的控制命令,执行所述待测试原液着色全立构复合聚乳酸纤维切片的环境降温动作;
所述原液着色全立构复合聚乳酸纤维结晶行为测试方法的控制程序在被所述处理器执行时,实现权利要求34-37中任一所述的原液着色全立构复合聚乳酸纤维结晶行为测试方法的步骤。
CN202110286550.4A 2021-03-17 2021-03-17 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备 Active CN113279085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110286550.4A CN113279085B (zh) 2021-03-17 2021-03-17 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110286550.4A CN113279085B (zh) 2021-03-17 2021-03-17 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备

Publications (2)

Publication Number Publication Date
CN113279085A CN113279085A (zh) 2021-08-20
CN113279085B true CN113279085B (zh) 2023-02-24

Family

ID=77276127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110286550.4A Active CN113279085B (zh) 2021-03-17 2021-03-17 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备

Country Status (1)

Country Link
CN (1) CN113279085B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123565A1 (ja) * 2007-03-30 2008-10-16 Teijin Limited ポリ乳酸組成物およびそれよりなる繊維
CN105401259A (zh) * 2015-12-28 2016-03-16 上海新宁生物材料有限公司 高立构化率聚乳酸立构复合物及其制备方法
CN105463624A (zh) * 2015-12-28 2016-04-06 上海新宁生物材料有限公司 高立构化率聚乳酸立构复合物的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160971A (zh) * 2011-03-15 2011-08-24 中国纺织科学研究院 一种动态混合器
CN103436972A (zh) * 2013-08-22 2013-12-11 东华大学 一种多组分复合纤维的制备方法
CN105729745B (zh) * 2016-04-15 2017-11-14 河南省龙都生物科技有限公司 聚乳酸双组份复合纤维纺丝生产设备
DE102017213641A1 (de) * 2017-08-07 2019-02-07 Robert Bosch Gmbh Mischvorrichtung, Verfahren zum Mischen und Verfahren zum Reinigen einer Mischvorrichtung
CN211514352U (zh) * 2019-12-02 2020-09-18 博勒流体科技(杭州)有限公司 一种高粘度介质动态混合器
CN110791818A (zh) * 2019-12-04 2020-02-14 中国纺织科学研究院有限公司 一种停留时间可控的熔体纺丝组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123565A1 (ja) * 2007-03-30 2008-10-16 Teijin Limited ポリ乳酸組成物およびそれよりなる繊維
CN105401259A (zh) * 2015-12-28 2016-03-16 上海新宁生物材料有限公司 高立构化率聚乳酸立构复合物及其制备方法
CN105463624A (zh) * 2015-12-28 2016-04-06 上海新宁生物材料有限公司 高立构化率聚乳酸立构复合物的制备方法

Also Published As

Publication number Publication date
CN113279085A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN102400236B (zh) 一种固体色母粒组合物、其制备方法及应用
US7687568B2 (en) Polyester colorant concentrate
CN113279085B (zh) 原液着色全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、存储介质及设备
CN106700439A (zh) 适用于纺前着色工艺的扁平涤纶纤维母粒及该母粒的制备方法
CN102529056A (zh) 一种高熔体强度聚乳酸的制备方法及挤出机
CN107970782A (zh) 具有高连通孔结构的聚合物膜及其制备方法
CN112626638B (zh) 全立构复合聚乳酸纤维、制备方法,结晶行为测试方法、装置、计算机可读存储介质及设备
CN103242660A (zh) 一种制备高介电薄膜的方法
CN108724507A (zh) 一种耐腐蚀高分子材料制备装置
CN105780177A (zh) 一种聚酰亚胺色丝的生产方法
CN109294075A (zh) 一种pp-rct冷水管材专用混配料级标识线色母粒及其制备方法
CN116905113A (zh) 一种阳离子咖啡碳保暖纤维的生产工艺
CN108796634A (zh) 一种三元聚酯共混纺丝及其制备方法
CN108486666B (zh) 一种离心纺丝成絮成型设备
CN204914312U (zh) 一种搅拌型结晶干燥机
CN219689949U (zh) 一种双向搅拌机构及聚酯熔体混炼桶
CN212253532U (zh) 纯棉纱的快捷均匀烘干装置
CN110129915B (zh) 一种原液着色制备黑色聚乳酸纤维的方法
CN213925139U (zh) 一种短纤维热熔均化器
CN216361491U (zh) 一种旋转式色母粒烘干装置
CN216040195U (zh) 一种用于涤纶热熔丝生产的染色装置
CN202367928U (zh) 挤出机
CN116676676B (zh) 一种变色丝的加工方法
CN215849061U (zh) 一种绝缘材料塑炼、加料、超声、蒸发及挤出预处理系统
CN213919507U (zh) 一种短纤维热熔均化螺杆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant