CN113272246A - 用于生产合成气的方法和等离子体反应器 - Google Patents

用于生产合成气的方法和等离子体反应器 Download PDF

Info

Publication number
CN113272246A
CN113272246A CN201980078888.1A CN201980078888A CN113272246A CN 113272246 A CN113272246 A CN 113272246A CN 201980078888 A CN201980078888 A CN 201980078888A CN 113272246 A CN113272246 A CN 113272246A
Authority
CN
China
Prior art keywords
plasma
gas
flow rate
vng
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980078888.1A
Other languages
English (en)
Other versions
CN113272246B (zh
Inventor
A·雷斯达科斯塔拉班卡
A·贡萨尔维斯库尼亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Fed Do Espirito Santo
Petroleo Brasileiro SA Petrobras
Original Assignee
University Fed Do Espirito Santo
Petroleo Brasileiro SA Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Fed Do Espirito Santo, Petroleo Brasileiro SA Petrobras filed Critical University Fed Do Espirito Santo
Publication of CN113272246A publication Critical patent/CN113272246A/zh
Application granted granted Critical
Publication of CN113272246B publication Critical patent/CN113272246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/18Heating by arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Plasma Technology (AREA)

Abstract

本发明描述使用等离子体炬用于加工天然气和/或轻质烃(包括生物甲烷和生物气)的等离子体反应器,其不需要使用阴极保护气体(屏蔽气体),并且本发明还描述重整方法,其涉及使用等离子体反应器用于从天然气和/或轻质烃生产合成气和含碳材料。

Description

用于生产合成气的方法和等离子体反应器
技术领域
本发明涉及用于生产合成气的方法和反应器。更具体地说,本发明建议利用放电和二氧化碳的反应器,以及使用该反应器用于生产具有高热功率的合成气和纳米结构的碳的重整方法。
背景技术
大规模生产氢和富氢气体(称为合成气)以用于精炼工业,用于从“费-托”方法生产氨、甲醇、液态烃,用于溶剂、石蜡和食品工业中所用产品的几种石化方法和氢化方法。为了获得它,可以使用一些烃重整(例如天然气和/或其它轻质烃)方法,例如蒸汽重整、部分氧化、自热重整或干法重整。目前,天然气(甲烷和/或其它轻质烃)的蒸汽重整方法是工业规模上最常用的生产氢的方法。
然而,这样的方法具有可能使得该方法昂贵或损害该方法的参数,例如需要购买和/或制造、再生、置换和处置适用于每个重整方法的催化剂,以及使用水(在蒸汽重整的情况下)或氧气(在自热或部分氧化重整的情况下)。在后一种情况下,一些方法使用大气作为氧源,由于存在于空气中的氮含量高,产生具有低热值的合成气。另一方面,尽管生产中等热值的合成气,但使用纯氧将使得该方法甚至更昂贵,这是由于需要空气分离单元来向该方法供应氧。
因此,需要找到通过重整天然气(和/或其它轻质烃)生产合成气和纳米结构的碳的方法,该方法可以干燥地进行,但不使用催化剂或稀释气体,或甚至不使用空气分离单元将氧供应到中等热功率的合成气的产生中。
等离子体方法是用于产生具有高热值的合成气的可靠的替代方案。在热电弧区域中的电弧反应器(也称为热等离子体)的基本目的是将电能有效地转化为热能,这将使得重整方法可行,因为炬包含以下特征:
·电弧温度高(超过11,000K);
·电能到热能的转化效率高,达到95%;
·使用任何气体:氧化的、中性的或还原的;
·等离子体流的焓高;
·功率密度高;
·尺寸小;
·等离子体流的热导率高。
在这个意义上,文献CEVOLANI等人在“Enriquecimento de gás naturalveicular via plasma de dióxido de carbono”, 6º Congresso Brasileiro do Carbono – Carbono 2015, Resumo - P55 (2015)中还涉及热等离子体在加工由VNG和二氧化碳组成的气体中的用途,然而,其目的仅在于富集VNG,即,将降低百分比的氢加入到VNG中,仅用于发动机,而在本发明中,没有气体(在这种情况下为VNG)的“富集”,并且是,实际上存在于加工的装料的分子中的所有氢原子将被转化为分子氢(H2),通过本发明获得的气体可用于燃料电池,这不同于本文上面引用的文献,并且也可用于发动机。
另一方面,文献CUNHA, A.G和MAROTTA, A.在“Low erosion rate of zirconiumcathode in a plasma torch”, IEEE International Conference on Plasma Science,2C8 (1989) 第66-67页. DOI: 10.1109 / PLASMA.1989.166038中试图解决等离子体炬中高速率阴极腐蚀的问题。在该工作中,作者揭示了锆阴极的研究,其中在与空气反应时,在阴极表面上形成ZrO2和ZrN的保护膜,该膜具有良好的耐火和电子发射性质。发现为了降低腐蚀速率,必须保持锆阴极的表面温度尽可能低,改进冷却。然而,反应介质中碳的存在产生碳化锆,这使阴极劣化。在本发明中,既不使用空气也不使用空气中的氧。
文献CHEN, L., PERSHIN, L.和MOSTAGHIMI, J.在“A New Highly EfficientHigh-Power DC Plasma Torch”, IEEE TRANSACTIONS ON PLASMA SCIENCE, 第36卷, 第4期, 2008年8月中涉及等离子体炬,其使用二氧化碳和烃例如甲烷(天然气的主要组分)的混合物操作。根据作者,具有CH4的CO2等离子体的焓和热导率显著高于具有氩的等离子体,氩通常用作阴极的保护气体并限制该方法的热效率。然而,由于在等离子体中产生的不稳定性,在该文献中应用的构造不允许在所应用的甲烷的量方面有很大的灵活性。此外,甲烷必须存在于阴极区域中用于碳置换。
因此,在现有技术中没有预期由二氧化碳等离子体提供动力的反应器和使用该反应器用于生产具有高热功率的合成气和纳米结构的碳的重整方法的报道。
发明内容
本发明涉及具有高热值的合成气和纳米结构的碳的生产。
本发明的第一目的是开发利用等离子体炬用于加工天然气和/或轻质烃的等离子体反应器,其不需要使用阴极屏蔽气体(屏蔽气体)。
本发明的第二个目的是开发使用等离子体反应器由天然气和/或轻质烃生产合成气的重整方法。
为了实现上述目的,本发明提出由二氧化碳等离子体和含有锆阴极的炬提供动力的反应器,以及使用该反应器的干法重整方法。
根据本发明的方法产生一氧化碳和氢气,其目的还在于富集具有氢气的天然气至少10%。这样富集的天然气将使得具有不良混合物(与通常相比,空气相对于燃料的百分比更高)的内燃机能够运行,呈现各种积极的方面,其中有该发动机的排放的减少和燃烧效率的改进。
有利地,根据本发明的方法获得高纯度以及纳米结构的碳(石墨烯和其它含碳材料),其具有高附加值和大的工业需求。商业上称为炭黑(Carbon Black)或炭黑(carbonblack)的碳在轮胎工业作为其主要市场,并且其世界需求在每年10,000,000吨的量级。此外,来自等离子体热解的碳是最纯的已知碳之一,因此,它可用于几种贵重应用,例如,用于特殊钢的生产。
本发明的反应器所提出的构造消除了对阴极屏蔽气体(屏蔽气体)的需要,因此产生具有更高CO和H2含量的合成气,在所有合成气产生技术中具有最高热功率。
由于本发明的一组特征(即,由所产生的等离子体电弧提供的热作用和催化作用、电极中使用的材料的构造和类型、等离子体炬的几何形状、气体注入的形式、等离子体炬的功率的变化、气体的变化以及所使用的气体之间的比例),消除了对反应中的催化剂以及氢气产生中水的需要。CO2用作等离子体气体解决了在电源中维持等离子体放电和技术操作困难的问题,还消除了产生等离子体气体的需要,然后在方法本身中使用它,如在使用氢气作为等离子体气体的情况下。另外,CO2(一种容易获得的工业和方法气体)具有产生的合成气无污染或稀释的优点,因为它转化成CO,此外其电离比氢气更简单。
本发明可应用于由产生的CO和H2气体的化学或合成燃料工业,以及氢气产生单元,其中使用CO和该集成方法的能感觉到的热。CO和H2之间的比例可以通过反应物气体(天然气和/或其它轻质烃和CO2)的比例来控制。也可以控制固态碳的形成。
本发明的这些目的和其它优点将从下面的描述和附图中变得更加明显。
附图说明
下面呈现的详细描述参考附图,其中:
图1描述根据本发明所使用的电弧炬。
图2描述根据本发明的等离子体炬的内部尺寸。
图3描述在HZR11测试中由VNG与CO2等离子体反应产生的几种气体的输出流速的图,其中主要是流速保持固定,CO2的流速变化,并且VNG流速变化。
图4描述在HZR11测试中干法重整产物的选择性的图,其中CO2流速保持固定,而VNG流速变化。
图5表示由HZR13测试产生的几种气体的输出流速的图,其中电弧电流和CO2流速固定,而VNG流速变化。
图6描述对于HZR13测试,VNG到H2的转化率和从初始气体中CO2减少的结果的图,其涉及形成固相的碳并且其是从VNG中提取的,其中电弧的电流、CO2的流保持固定,而VNG的流变化。
图7描述HZR13测试的H2、CO和C2H2的能量产率的结果的图,其中电弧电流、CO2的流速保持固定,而VNG的流速变化。
图8描述在HZR13测试中重整产物的选择性图,其中电弧电流、CO2的流速是固定的,而VNG的流速变化。
图9描述在HZR13测试中每摩尔产生的H2和CO,电消耗(在等离子体中消耗的电能)的图,其中电弧电流和CO2流速固定,并且VNG的流固定。
图10描述对于HZR13测试,试剂(CNG和CO2)到CO、H2和碳的转化百分比的图,其中电弧的电流和CO2的流速固定,而VNG的流变化。
图11描述在HZR13测试中由VNG与CO2等离子体反应产生的几种气体的输出流速的图,其中VNG和CO2的流速固定,而等离子体电流变化。
图12描述在HZR13测试中VNG到H2的转化率和CO2减少的结果的图,其涉及形成固相的碳并且其是从VNG中提取的,其中VNG和CO2的流速固定,而等离子体电流变化。
图13描述HZR13测试的H2、CO和C2H2的能量产率的结果的图,其中VNG和CO2的流速固定,而等离子体电流变化。
图14描述在HZR13测试中产物的选择性的图,其中VNG和CO2的流速固定,而等离子体电流变化。
图15描述
Figure DEST_PATH_IMAGE002
在HZR13测试中产生的CO和碳的H2的摩尔数,电消耗(在等离子体中消耗的电能)的图,其中VNG和CO2的流速固定,而等离子体电流变化。
图16描述对于HZR13测试,试剂到CO、H2和碳的转化百分比的图,其中CNG和CO2的流速固定,而等离子体电流变化。
具体实施方式
本发明涉及由二氧化碳等离子体提供动力的反应器和用于加工天然气和/或轻质烃的含有电极的等离子体炬。
本发明还涉及重整方法,其利用二氧化碳等离子体反应器和含有电极的等离子体炬,用于加工天然气和/或轻质烃(包括生物气),目的是由天然气和/或轻质烃生产合成气和固体碳,优选纳米结构的碳。
在本发明的范围内,等离子体炬具有以下构造元件
·电极:阴极和阳极;
·用于气体通过的管,在非转移电弧的情况下所述管可以容纳在阳极中;
·气体入口室(涡流室);
·电弧稳定系统(通常在涡流中);
·电弧旋转系统(磁性或涡流);
·电极的冷却系统。
根据本发明,炬显示选自直阳极、锥形阳极或阶梯式阳极的阳极。在优选的模式中,炬具有直阳极或阶梯式阳极。
根据本发明,气体注入可以在阴极或阳极区域中发生。优选地,将CO2注入阴极区域,这首先引起CO2电离。此外,优选地,将CH4在阳极出口处注入,这允许:
·注入任何CH4流而不影响电弧的稳定性;
·获得CO2的高转化百分比(从75%至100%,优选在90-100%之间),而与该方法中应用的CH4流速无关;
·获得75%至100%,优选在90-100%之间的CO2+CH4至2H2+2CO的转化率。
在本发明的一个实施方案中,阳极和/或阴极的直径可以在2 mm至100 mm之间的范围内,优选在5-50 mm之间。
在本发明的范围内,可以使用现有技术中描述的阴极
Figure DEST_PATH_IMAGE004
。优选地,使用选自铜和氧化锆的阴极。
根据本发明,等离子体中使用的功率可以在1-6,000 kW之间变化,优选在20-200kW之间。
为了进行根据本发明的方法,使用在2-60,000 mol/hr之间的范围内的气体流速,优选使用在10-2000 mol/hr之间的气体流速。
下面的描述将从本发明的优选实施方案开始。对于任何本领域技术人员来说显而易见的是,本发明并不限于那些特定实施方案。
实施例:
为了更好地理解在等离子体炬内部发生的过程,使用Computational FluidDynamics (CFD - Computational Fluid Dynamics)模拟资源。所提供的在氢气生产中显示良好的能量效率,然而,CO2的转化率低。就效率和规模而言,电弧热等离子体炬在将天然气转化为CO2等离子体中实现了优异的结果。
HZR11测试
为了观察气体限制的作用,将第二阳极的内径减小。在该测试中,CO2保持131mol/hr的固定流速,而VNG的流速从112 mol/hr到639 mol/hr变化。电弧的电流保持恒定在103 A,但是由于第二阳极的小直径引起第一阳极的输出处的压力增加,功率随着VNG的流速增加而减小。第二阳极直径的减小除了引起更大的压降之外,还增加了通过它的气体的温度。这个事实反映在随着VNG流速的增加而减小的CO流速。这种行为可以在图4所示的选择性图中可见。
HZR13测试
由于第二阳极直径的减小降低H2生产中的能量产率,在HZR13测试中,直径恢复到25 mm。作为增加等离子体温度的新尝试,在该测试中,第一阳极的直径减小。将该测试的结果分成两组。首先,程序与HZR11测试的程序相同,其中CO2流速固定在135 mol/hr,使VNG流速变化至103 A的恒定电流。在这种情况下,由于VNG的流速的增加,功率没有减小。在第二组中,VNG流速设定为312 mol/hr,并且CO2流速设定为135 mol/hr,使电流变化70 A、103A、125 A和150 A,从而改变等离子体功率和温度。
VNG流速的变化
图5-11中的图显示测试结果,其中电流和作为工作气体的CO2的流速保持恒定,而VNG的流速变化。
图5显示进入和离开等离子体炬的气体的流速以及VNG的每个流速的功率的图。电弧功率随着VNG的流的增加而略微增加,这与测试11中发现的行为相反,其中由于第一阳极输出处的压力增加而功率减小,这是由于第二阳极的小直径引起的压力损失引起的。当VNG的流速大约是CO2的流速的2.3倍时,H2的流速达到最大值。相同的最大值应用于H2生产中的能量效率及其选择性,如在图8和图9中可见。图7显示对于H2生产中的最高能量效率,VNG到H2的转化率为约58%,并且CO2减少为10%。图10显示用于生产H2的电消耗比CO的电消耗低得多。对于H2生产中最大能量效率的条件,根据图11,试剂到CO、H2和碳的转化百分比为60%,而对于VNG的流速低于CO2的流速,最大转化率为92%。
等离子体功率的变化
图12-17中的图是通过电弧电流的变化等离子体功率的变化的测试结果,其中VNG与CO2的流速之间的比率对应于H2生产中的最大能量效率,比率[CO2的流速/(CO2的流速+VNG的流速)]=0.30。图12中的图显示反应物气体和产物的流速,其中观察到功率的增加降低CH4和CO2的剩余流速。对于产物,C2H2和CO的流速略微增加,而H2流速的增加大得多。图13显示VNG到H2的转化率在所研究的功率范围内从40%到77%变化,并且曲线的行为指示对于较高的功率该结果可能更大。该图还表示CO2减少应随着等离子体功率的增加而增加。
图14显示产物的能量产率,CO的能量产率减小,C2H2的能量产率连续增加,而H2的能量产率达到最大值。这种性能的下降可能与等离子体的特征曲线有关,随着电流的增加,电弧电压降低,随后电弧长度降低,引起等离子体炬离开最大性能点。因此,为了使等离子体炬以最大效率继续操作,需要增加CO2的流速,使得电弧电压返回到初始值,并因此电弧长度返回到初始值。
图15所示的选择性图显示功率的增加有利于H2的形成,减少CO的形成,其中C2H2和碳的流速变化很小。
图16所示的H2的电消耗指示随着功率的增加几乎察觉不到降低,而CO的电消耗增加,并且碳的电消耗达到最大值。
图17中的图显示增加等离子体功率增加试剂到CO、H2和碳的转化百分比。
到目前为止对本发明的目的所作的描述应仅被认为是一种或多种可能的实施方案,并且其中介绍的任何特定特征应仅被理解为已被写成便于理解的内容。因此,它们不能以任何方式被认为是对本发明的限制,本发明被限制在所附权利要求的范围内。

Claims (8)

1.用于生产合成气的等离子体反应器,其特征在于包含:
炬,其包含直阳极或阶梯式阳极;
阳极和/或阴极直径在2 mm至100 mm之间的范围内,
等离子体功率在1-6,000 kW之间。
2.根据权利要求1所述的反应器,其特征在于具有气体出口流速在2-60,000 mol/h之间的范围内。
3.根据权利要求1或2所述的反应器,其特征在于包含选自铜和氧化锆的电极。
4.根据权利要求3所述的反应器,其特征在于包含氧化锆阴极。
5.根据权利要求1-4中任一项所述的反应器,其特征在于它允许在所述阳极和/或阴极的区域中注入气体。
6.用于生产合成气的方法,其特征在于包括通过以下步骤重整天然气和/或轻质烃:
以一定的气体流速在权利要求1所限定的反应器的阴极区域中注入CO2,并且在阳极出口处注入CH4
其中所述气体出口流速在2-60,000 mol/h之间的范围内,
其中所述功率在1-6,000 kW之间的范围内。
7.根据权利要求6所述的方法,其特征在于CO2的转化率在50-100%之间的范围内。
8.根据权利要求6或7所述的方法,其特征在于使用在20-250 A之间的范围内的电弧电流。
CN201980078888.1A 2018-11-29 2019-11-29 用于生产合成气的方法和等离子体反应器 Active CN113272246B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BR102018074753-3A BR102018074753B1 (pt) 2018-11-29 2018-11-29 Processo e reator a plasma para produção de gás de síntese
BRBR1020180747533 2018-11-29
PCT/BR2019/050510 WO2020107090A1 (pt) 2018-11-29 2019-11-29 Processo e reator a plasma para produção de gás de síntese

Publications (2)

Publication Number Publication Date
CN113272246A true CN113272246A (zh) 2021-08-17
CN113272246B CN113272246B (zh) 2023-12-22

Family

ID=70852478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980078888.1A Active CN113272246B (zh) 2018-11-29 2019-11-29 用于生产合成气的方法和等离子体反应器

Country Status (9)

Country Link
US (1) US20220023823A1 (zh)
EP (1) EP3889104A4 (zh)
JP (1) JP2022509980A (zh)
CN (1) CN113272246B (zh)
BR (1) BR102018074753B1 (zh)
CA (1) CA3121560A1 (zh)
DE (1) DE112019005941T5 (zh)
GB (1) GB2595067B (zh)
WO (1) WO2020107090A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022226384A1 (en) * 2021-04-22 2022-10-27 Bionatus, LLC Systems and methods for producing hydrogen and byproducts from natural gas at fixed points

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596019A (en) * 1982-09-29 1986-06-17 Chemische Werke Huls Aktiengesellschaft Method and apparatus for the generation of hot gases with an electric arc
US6395197B1 (en) * 1999-12-21 2002-05-28 Bechtel Bwxt Idaho Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US20080149050A1 (en) * 2006-12-22 2008-06-26 Industrial Technology Research Institute Plasma reformer and internal combustion engine system having the same
CN102057222A (zh) * 2007-02-27 2011-05-11 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 具有加工过的原料/焦炭转化和气体重组的气化系统
CN103140606A (zh) * 2010-07-09 2013-06-05 赫多特普索化工设备公司 将沼气转化为富含甲烷的气体的方法
CN103395743A (zh) * 2006-05-05 2013-11-20 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 使用等离子体炬热的气体重整系统
US20150210930A1 (en) * 2012-09-05 2015-07-30 Powerdyne, Inc. Fuel generation using high-voltage electric fields methods
CN108328571A (zh) * 2018-03-16 2018-07-27 中国科学院合肥物质科学研究院 一种等离子体煤气化制富氢合成气的装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503748B1 (zh) * 1966-12-28 1975-02-08
JPS60144953U (ja) * 1984-03-09 1985-09-26 三菱重工業株式会社 プラズマ溶射ガン
US6187226B1 (en) * 1995-03-14 2001-02-13 Bechtel Bwxt Idaho, Llc Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases
US20070108165A1 (en) * 2005-11-17 2007-05-17 Petrik Viktor I Configurations and methods for improved plasma torch
KR100807806B1 (ko) * 2006-04-04 2008-02-27 제주대학교 산학협력단 직류 아크 플라즈마트론 장치 및 사용 방법
US9212058B2 (en) * 2009-04-19 2015-12-15 Christopher Lawrence de Graffenried, SR. Synthetic hydrogen-based gas manufacture and use
DE102011002617A1 (de) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Verfahren zur Herstellung von Synthesegas enthaltend Kohlenmonoxid (CO) und Wasserstoff (H2)
ES2639664B1 (es) * 2016-04-27 2018-09-21 Blueplasma Power, S.L. Procedimiento para la oxidación parcial de combustibles, dispositivo para aplicar dicho procedimiento y gas obtenido con dicho procedimiento
US10612122B2 (en) * 2017-08-25 2020-04-07 Vladimir E. Belashchenko Plasma device and method for delivery of plasma and spray material at extended locations from an anode arc root attachment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596019A (en) * 1982-09-29 1986-06-17 Chemische Werke Huls Aktiengesellschaft Method and apparatus for the generation of hot gases with an electric arc
US6395197B1 (en) * 1999-12-21 2002-05-28 Bechtel Bwxt Idaho Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US20020151604A1 (en) * 1999-12-21 2002-10-17 Detering Brent A. Hydrogen and elemental carbon production from natural gas and other hydrocarbons
CN103395743A (zh) * 2006-05-05 2013-11-20 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 使用等离子体炬热的气体重整系统
US20080149050A1 (en) * 2006-12-22 2008-06-26 Industrial Technology Research Institute Plasma reformer and internal combustion engine system having the same
CN102057222A (zh) * 2007-02-27 2011-05-11 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 具有加工过的原料/焦炭转化和气体重组的气化系统
CN103140606A (zh) * 2010-07-09 2013-06-05 赫多特普索化工设备公司 将沼气转化为富含甲烷的气体的方法
US20150210930A1 (en) * 2012-09-05 2015-07-30 Powerdyne, Inc. Fuel generation using high-voltage electric fields methods
CN108328571A (zh) * 2018-03-16 2018-07-27 中国科学院合肥物质科学研究院 一种等离子体煤气化制富氢合成气的装置及方法

Also Published As

Publication number Publication date
GB2595067A (en) 2021-11-17
GB202108353D0 (en) 2021-07-28
GB2595067B (en) 2022-09-07
CN113272246B (zh) 2023-12-22
WO2020107090A1 (pt) 2020-06-04
DE112019005941T5 (de) 2021-08-12
US20220023823A1 (en) 2022-01-27
EP3889104A4 (en) 2022-08-10
BR102018074753A2 (pt) 2020-06-09
CA3121560A1 (en) 2020-06-04
EP3889104A1 (en) 2021-10-06
BR102018074753B1 (pt) 2023-11-21
JP2022509980A (ja) 2022-01-25

Similar Documents

Publication Publication Date Title
Cormier et al. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors
Zhu et al. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma
Mizeraczyk et al. Plasma processing methods for hydrogen production
Hrabovsky et al. Steam plasma methane reforming for hydrogen production
Jasiński et al. Production of hydrogen via conversion of hydrocarbons using a microwave plasma
US20150299871A1 (en) Partial oxidation of methane (pom) assisted solid oxide co-electrolysis
EA007663B1 (ru) Устройство и способ преобразования углеродсодержащего сырья в углеродсодержащие материалы, имеющие заданную наноструктуру
Chao et al. Hydrogen production via partial oxidation of methane with plasma-assisted catalysis
Hu et al. Hydrogen generation from hydro-ethanol reforming by DBD-plasma
Pacheco et al. Greenhouse gas treatment and H2 production, by warm plasma reforming
Hoang et al. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor
CN113272246B (zh) 用于生产合成气的方法和等离子体反应器
Xiang et al. Carbon dioxide reforming of methane to synthesis gas by an atmospheric pressure plasma jet
CN112250040A (zh) 一种通过低温等离子体重整有机化合物的制氢装置及制氢方法
Rutberg et al. Investigation of parameters of the three phase high-voltage alternating current plasma generator with power up to 100 kW working on steam
Horng et al. A study of the hydrogen production from a small plasma converter
Tamošiūnas et al. Syngas production from hydrocarbon-containing gas in ambient of water vapor plasma
Xu et al. Recent development of CO2 reforming of CH4 by “arc” plasma
Wang et al. N-dodecane partial oxidative reforming in gliding arc discharge plasma and kinetic model
KR20140108461A (ko) 글라이딩 아크 플라즈마트론 및 이를 이용한 이산화탄소 저감 시스템
Nakanishi et al. Comparison of reforming behaviors of hexane and isooctane in microwave steam plasma
Horng et al. Plasma-assisted catalytic reforming of propane and an assessment of its applicability on vehicles
LI Hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma
Al-Mayman et al. Syngas production in methane decomposition in the plasma of atmospheric pressure high-voltage discharge
Tianying et al. Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant