CN113253792B - 一种控制ldo压降状态静态功耗的电路 - Google Patents

一种控制ldo压降状态静态功耗的电路 Download PDF

Info

Publication number
CN113253792B
CN113253792B CN202110689324.0A CN202110689324A CN113253792B CN 113253792 B CN113253792 B CN 113253792B CN 202110689324 A CN202110689324 A CN 202110689324A CN 113253792 B CN113253792 B CN 113253792B
Authority
CN
China
Prior art keywords
ldo
vout
source
bias current
vin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110689324.0A
Other languages
English (en)
Other versions
CN113253792A (zh
Inventor
丁敏
杨琨
黄桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING MICRO ONE ELECTRONICS Inc
Original Assignee
NANJING MICRO ONE ELECTRONICS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING MICRO ONE ELECTRONICS Inc filed Critical NANJING MICRO ONE ELECTRONICS Inc
Priority to CN202110689324.0A priority Critical patent/CN113253792B/zh
Publication of CN113253792A publication Critical patent/CN113253792A/zh
Application granted granted Critical
Publication of CN113253792B publication Critical patent/CN113253792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及LDO技术领域,公开了一种控制LDO压降状态静态功耗的电路,包括电源VDD,偏置电流源I,运算放大器EA、基准电压VREF,输出电压VOUT,反馈电压FB,信号线OP、供电信号VIN,接地信号GND,N型MOS管M1,P型MOS管M2、M3、M4,P型功率管Power,电阻R1、R2、R3、R4,VOUT与GND之间接入的二极管连接的P型MOS管M4,且M4与偏置电流源I形成偏置电流信号线SP,信号线SP送入M3的栅极。本发明在使用时,仅用M3、M4及偏置电流I即解决LDO压降状态静态功耗大的问题,有效提高了现有技术的使用效果。

Description

一种控制LDO压降状态静态功耗的电路
技术领域
本发明涉及LDO技术领域,具体为一种控制LDO压降状态静态功耗的电路。
背景技术
传统LDO结构中(图1),当VIN<VOUT(NOM)+VDROP时,即压降状态,VOUT<VOUT(NOM),其中VOUT(NOM)为LDO的正常输出电压,VDROP为一定带载情况下VOUT正常输出时,Power管必须的源漏电压,经反馈电阻产生的反馈信号FB<VREF,运算放大器EA输出即M1栅极电位升高,M1所在支路电流升高,M2的栅极电位拉低,即Power管栅极电位拉低,促使VOUT抬升,但VOUT依然达不到VOUT(NOM),M1栅极电位继续升高,所以运放第二级(M1所在支路)的电流非常大,这就造成LDO压降状态静态电流非常大,图3是基于图1的LDO静态功耗随VIN电压变化的波形图,充分说明了这一点,LDO压降状态的静态功耗由正常工作的477nA升高至755uA。
随着电子产品的广泛应用,人们对功耗的要求越来越高,尤其对便携类产品以及长期待机产品的静态功耗要求更是苛刻,在设计师不断追求超低功耗的道路上,LDO压降状态静态功耗较大的问题,给电路带来不可忽视的影响,为解决这一问题,本发明提出了一种控制LDO压降状态静态功耗的电路。
发明内容
本发明的目的在于提供一种控制LDO压降状态静态功耗的电路,解决背景技术中所提出的问题。
为实现上述目的,本发明提供如下技术方案:一种控制LDO压降状态静态功耗的电路,包括电源VDD,偏置电流源I,运算放大器EA、基准电压VREF,输出电压VOUT,反馈电压FB,信号线OP、供电信号VIN,接地信号GND,N型MOS管M1,P型MOS管M2、M3、M4,P型功率管Power,电阻R1、R2、R3、R4,VOUT与GND之间接入的二极管连接的P型MOS管M4,且M4与偏置电流源I形成偏置电流信号线SP;
电源VDD的正端接VIN,负端接GND,GND接大地;
运算放大器EA的正端接基准电压VREF,负端接VOUT的反馈端FB,输出端接N型MOS管M1的栅极,VIN给EA供电;
运算放大器第二级为M1形成的共源极放大,M1的源极和衬底接GND,M1的漏极接信号线OP;
P型MOS管M2的栅极和漏极短接至OP,P型功率管Power的栅极、电阻R4的一端接OP,M2的衬底和R4的另一端接VIN;
M2的源极接电阻R3的一端,R3的另一端接P型MOS管M3的漏极;
M3的源极接VIN,栅极接SP,SP同时与P型MOS管M4的栅极和漏极相接,偏置电流源I的正端接SP,负端接GND;
P型功率管Power的源极和衬底接VIN,漏极接VOUT,且与M4的源极相接;
电阻R2的一端接VOUT,另一端接电阻R1的一端,并连接到FB,R1的另一端接GND。
作为本发明的一种优选实施方式,偏置电流源I为nA级别。
作为本发明的一种优选实施方式,M4的源极接VOUT,且栅极和漏极短接。
作为本发明的一种优选实施方式,M3的源极的位置在运算放大器的第二级,且与运算放大器的第二级串联。
作为本发明的一种优选实施方式,M3和M4的衬底均接VIN,M3的栅极、M4的栅极和漏极均接SP,M3和M4的宽长比相同,个数比为n:1,用于实现在LDO的压降状态中,偏置电流源I的电流镜像。
与现有技术相比,本发明提供了一种控制LDO压降状态静态功耗的电路,具备以下有益效果:
该一种控制LDO压降状态静态功耗的电路,在使用时,当VIN≥VOUT(NOM)+VDROP时,VOUT正常输出时,M3工作在线性区,可以看作导通状态的开关管,LDO整个控制环路不受影响,当VIN<VOUT(NOM)+VDROP,即LDO进入压降状态,M3与M4近似电流镜像,镜像偏置电流I,I一般取几十nA,选择合适的M3、M4比例关系,即可控制M3所在支路的电流,从而控制LDO在压降状态的静态功耗,此方法简单实用,仅用M3、M4及偏置电流I即解决LDO压降状态静态功耗大的问题,有效提高了现有技术的使用效果。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为传统LOD的电路结构图;
图2为本发明一种控制LDO压降状态静态功耗的电路的结构图;
图3为传统LOD输出电压和静态功耗随输入电压的波形图;
图4为本发明一种控制LDO压降状态静态功耗的电路的输出电压和静态功耗随输入电压的波形图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
请参阅图1-4,本发明提供一种技术方案:一种控制LDO压降状态静态功耗的电路,包括电源VDD,偏置电流源I,运算放大器EA、基准电压VREF,输出电压VOUT,反馈电压FB,信号线OP、供电信号VIN,接地信号GND,N型MOS管M1,P型MOS管M2、M3、M4,P型功率管Power,电阻R1、R2、R3、R4,VOUT与GND之间接入的二极管连接的P型MOS管M4,且M4与偏置电流源I形成偏置电流信号线SP,信号线SP送入M3的栅极,偏置电流源I为nA级别,SP=VOUT-VGS;
电源VDD的正端接VIN,负端接GND,GND接大地;
运算放大器EA的正端接基准电压VREF,负端接VOUT的反馈端FB,输出端接N型MOS管M1的栅极,VIN给EA供电;
运算放大器第二级为M1形成的共源极放大,M1的源极和衬底接GND,M1的漏极接信号线OP;
P型MOS管M2的栅极和漏极短接至OP,P型功率管Power的栅极、电阻R4的一端接OP,M2的衬底和R4的另一端接VIN;
M2的源极接电阻R3的一端,R3的另一端接P型MOS管M3的漏极;
M3的源极接VIN,栅极接SP,SP同时与P型MOS管M4的栅极和漏极相接,偏置电流源I的正端接SP,负端接GND,M3的源极的位置在运算放大器的第二级,且与运算放大器的第二级串联;
P型功率管Power的源极和衬底接VIN,漏极接VOUT,且与M4的源极相接,M4的源极接VOUT,且栅极和漏极短接,M3和M4的衬底均接VIN,M3的栅极、M4的栅极和漏极均接SP,M3和M4的宽长比相同,个数比为n:1,用于实现在LDO的压降状态中,偏置电流源I的电流镜像;
电阻R2的一端接VOUT,另一端接电阻R1的一端,并连接到FB,R1的另一端接GND,当VIN≥VOUT(NOM)+VDROP时,M3工作在线性区,对整个环路不产生影响;当VIN接近VOUT(NOM)或小于VOUT(NOM),M3和M4通过信号线SP形成电流镜像,镜像I的电流,所以M3所在支路的电流限制在n*I以内。
工作时,当VIN≥VOUT(NOM)+VDROP时,VOUT经电阻R1、R2分压,产生FB信号送入运放EA的负端,与正端的VREF进行比较,输出控制M1的栅极电位,经M2将信号传递到Power管的栅极,调节VOUT,形成回路,VOUT稳定输出:VOUT=(R1+R2)FB/R1=(R1+R2)VREF/R1=VOUT(NOM);
当VIN<VOUT(NOM)+VDROP时,LDO进入压降状态,VIN和VOUT接近,VOUT<VOUT(NOM),FB<VREF,EA输出升高,M1的电流升高,由于M3的存在,这一支路电流不会超过n*I,因为VIN接近VOUT,M3和M4的衬底均接VIN,M3的栅极、M4的栅极和漏极均接SP,两者宽长比一致,个数比n:1,近似电流镜像,M4的漏电流为偏置电流源I,所以M3所在支路的电流限制在n*I以内,根据需要选择合适的n和I,为降低静态功耗,一般I取值较小,在几十nA左右,由此可见,LDO压降状态静态功耗得到控制,而为了进一步证明上述结论,如图3,为基于图1传统LOD的输出电压和静态功耗随输入电压的波形图,LDO压降状态静态电流由477nA增加至755uA,而图4为基于图2的输出电压和静态功耗随输入电压的波形图,LDO压降状态静态功耗仅为2.2uA,可以进一步证实上述结论。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

1.一种控制LDO压降状态静态功耗的电路,包括电源VDD,偏置电流源I,运算放大器EA、基准电压VREF,输出电压VOUT,反馈电压FB,信号线OP、供电信号VIN,接地信号GND,N型MOS管M1,P型MOS管M2、M3、M4,P型功率管Power,电阻R1、R2、R3、R4,其特征在于:
VOUT与GND之间接入的二极管连接的P型MOS管M4,且M4与偏置电流源I形成偏置电流信号线SP;
电源VDD的正端接VIN,负端接GND,GND接大地;
运算放大器EA的正端接基准电压VREF,负端接VOUT的反馈端FB,输出端接N型MOS管M1的栅极,VIN给EA供电;
运算放大器第二级为M1形成的共源极放大,M1的源极和衬底接GND,M1的漏极接信号线OP;
P型MOS管M2的栅极和漏极短接至OP,P型功率管Power的栅极、电阻R4的一端接OP,M2的衬底和R4的另一端接VIN;
M2的源极接电阻R3的一端,R3的另一端接P型MOS管M3的漏极;
M3的源极接VIN,栅极接SP,SP同时与P型MOS管M4的栅极和漏极相接,偏置电流源I的正端接SP,负端接GND;
P型功率管Power的源极和衬底接VIN,漏极接VOUT,且与M4的源极相接;
电阻R2的一端接VOUT,另一端接电阻R1的一端,并连接到FB,R1的另一端接GND。
2.根据权利要求1所述的一种控制LDO压降状态静态功耗的电路,其特征在于:偏置电流源I为nA级别。
3.根据权利要求1所述的一种控制LDO压降状态静态功耗的电路,其特征在于:M4的源极接VOUT,且栅极和漏极短接。
4.根据权利要求1所述的一种控制LDO压降状态静态功耗的电路,其特征在于:M3的源极的位置在运算放大器的第二级,且与运算放大器的第二级串联。
5.根据权利要求1所述的一种控制LDO压降状态静态功耗的电路,其特征在于:M3和M4的衬底均接VIN,M3的栅极、M4的栅极和漏极均接SP,M3和M4的宽长比相同,个数比为n:1,用于实现在LDO的压降状态中,偏置电流源I的电流镜像。
CN202110689324.0A 2021-06-22 2021-06-22 一种控制ldo压降状态静态功耗的电路 Active CN113253792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110689324.0A CN113253792B (zh) 2021-06-22 2021-06-22 一种控制ldo压降状态静态功耗的电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110689324.0A CN113253792B (zh) 2021-06-22 2021-06-22 一种控制ldo压降状态静态功耗的电路

Publications (2)

Publication Number Publication Date
CN113253792A CN113253792A (zh) 2021-08-13
CN113253792B true CN113253792B (zh) 2022-07-26

Family

ID=77189029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110689324.0A Active CN113253792B (zh) 2021-06-22 2021-06-22 一种控制ldo压降状态静态功耗的电路

Country Status (1)

Country Link
CN (1) CN113253792B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895743A (zh) * 2022-05-25 2022-08-12 无锡迈尔斯通集成电路有限公司 一种用于动态偏置电流ldo的低启动电流电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134743B2 (en) * 2012-04-30 2015-09-15 Infineon Technologies Austria Ag Low-dropout voltage regulator
CN108235744B (zh) * 2017-12-19 2020-06-23 深圳市汇顶科技股份有限公司 低压差线性稳压电路
CN108227816B (zh) * 2018-01-26 2019-03-08 武汉新芯集成电路制造有限公司 低电压降落稳压器
US10345840B1 (en) * 2018-02-07 2019-07-09 Hua Cao Low dropout regulator (LDO)
CN208477417U (zh) * 2018-08-06 2019-02-05 厦门安斯通微电子技术有限公司 一种不增加静态电流的ldo限流结构
CN111522383A (zh) * 2020-05-20 2020-08-11 上海维安半导体有限公司 一种应用于超低功耗ldo中的动态偏置电流提升方法

Also Published As

Publication number Publication date
CN113253792A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
US6703815B2 (en) Low drop-out regulator having current feedback amplifier and composite feedback loop
JP6545692B2 (ja) バッファ回路および方法
CN109656299B (zh) Ldo电路
US9977441B2 (en) Low dropout regulator and related method
CN113703513B (zh) 防倒灌保护模块、低压差线性稳压器、芯片及供电系统
CN112068627B (zh) 一种电压输出调节模块
CN117155123B (zh) 一种适用于ldo的瞬态跳变过冲抑制电路及其控制方法
US7541796B2 (en) MOSFET triggered current boosting technique for power devices
CN113253792B (zh) 一种控制ldo压降状态静态功耗的电路
CN112684846B (zh) 低压差线性稳压器的误差放大器以及低压差线性稳压器
JP3356223B2 (ja) 降圧回路及びこれを内蔵した半導体集積回路
CN115079762B (zh) 低压差线性稳压器电路
US6812678B1 (en) Voltage independent class A output stage speedup circuit
CN114489213B (zh) 线性稳压电路
CN114895743A (zh) 一种用于动态偏置电流ldo的低启动电流电路
US11669115B2 (en) LDO/band gap reference circuit
CN112667018B (zh) 基于ldo的电源上电防过冲电路
CN113031694B (zh) 一种低功耗的低压差线性稳压器及其控制电路
CN116088620A (zh) 参考电压产生系统及其启动电路
CN112667019A (zh) 一种运用于ldo的省电省面积的软启动电路
CN117059020B (zh) 一种低转折电压的led显示屏驱动电路及led显示屏
CN115185329B (zh) 一种带隙基准结构
CN114115415B (zh) 一种低压差线性稳压电路
CN215117306U (zh) 一种运用于ldo的省电省面积的软启动电路
CN219122609U (zh) 超低功耗带隙基准启动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant