CN113249395B - 大豆凝集素受体激酶Rsc7-1编码基因的应用 - Google Patents
大豆凝集素受体激酶Rsc7-1编码基因的应用 Download PDFInfo
- Publication number
- CN113249395B CN113249395B CN202110528344.XA CN202110528344A CN113249395B CN 113249395 B CN113249395 B CN 113249395B CN 202110528344 A CN202110528344 A CN 202110528344A CN 113249395 B CN113249395 B CN 113249395B
- Authority
- CN
- China
- Prior art keywords
- rsc7
- soybean
- smv
- leu
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8283—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8291—Hormone-influenced development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/1103—Receptor protein serine/threonine kinase (2.7.11.30)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Endocrinology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了大豆凝集素受体激酶Rsc7‑1编码基因的应用。大豆Rsc7‑1蛋白编码基因Rsc7‑1,其核苷酸序列为:SEQ ID NO.1。将构建的植物过量表达载体PTF101‑Rsc7‑1和敲除载体Rsc7‑1‑CRISPR转化到大豆中。用SMV‑SC7处理21天后发现,在过表达Rsc7‑1的大豆中,SMV含量显著降低。Rsc7‑1‑CRISPR敲除材料中,活性氧积累降低,水杨酸含量降低,用SMV‑SC7处理21天后发现,在Rsc7‑1敲除大豆中的SMV含量显著增加。总的来说,Rsc7‑1可能通过正调节大豆中的活性氧和水杨酸积累来正调控大豆对SMV的抗性。
Description
技术领域
本发明涉及大豆凝集素受体激酶Rsc7-1编码基因的应用,属于基因工程领域,具体地讲大豆凝集素受体激酶Rsc7-1基因影响大豆水杨酸和活性氧积累,进而改变大豆对大豆花叶病毒的抗性。
背景技术
大豆花叶病毒病是由大豆花叶病毒(Soybean Mosaic Virus,SMV)引起的严重病害。对不同发育期的大豆在不同环境下接种病毒,将感染SMV的大豆发病症状总结如下。叶片症状:轻度花叶、花叶、有黄色斑点花叶、叶片卷曲、叶片畸型皱缩;种子和荚症状:褐斑种粒、荚畸形、单株荚数降低;植株形态:株高降低、分支减少、生长延缓(Adams et al.2005)。目前,根据智海剑等提出大豆对SMV的抗性分为两种,一种是抗侵染,属于质量抗性或者垂直抗性。抗侵染属于一种极端抗性,是指病原物不能够侵染寄主。但是时间一长,抗性材料对病原物生理小种的选择压力增大,导致生理小种变异,没有发生变异的小种或者株系被筛选掉,从而产生越来越多的优势小种,如果长期种植单一的抗性材料,缺乏对新变异的小种或者株系的抗性材料,就会在田间造成抗性丧失,使原本的抗性材料变成了感病材料。另一种是抗扩展,属于数量抗性或水平抗性。抗扩展是指病原物能够成功侵染寄主,并建立寄生关系,但是寄主能够对病原物产生防御反应,分泌抗毒素或者寄主能够抑制病原物的复制和扩散,降低病原物的繁殖,减少危害。虽然具有数量抗性的品种在田间会感病,但是它不会对病原物造成选择压力,不会丧失抗性而颗粒无收,也会在疾病大爆发的情况下取得满意的产量(智海剑等,2005)。
大豆Rsc7-1是凝集素受体激酶。凝集素类受体激酶CrRLK1L亚家族的所有成员都具有类似的结构域,包括凝集素类蛋白结构域,跨膜结构域和胞内丝氨酸和苏氨酸激酶结构域。受体激酶在植物形态发生、繁殖、免疫、激素信号传导和应激反应中具有多种作用。研究表明,拟南芥受体激酶FERONIA(FER)可以正向影响病原菌相关分子模式(PathogenAssociated Molecular Patterns,PAMP)触发的免疫反应(PAMPs-triggered immunity,PTI)。拟南芥突变体fer-2和fer-4对elf18和flg22诱导的活性氧爆发不敏感,对丁香假单胞菌更敏感。此外,在响应elf18和flg22处理下,FER提高了鞭毛蛋白FLS2与油菜素类固醇受体激酶BAK1及延伸因子TU受体EFR与BAK1的结合。FER作为一个细胞质膜定位的模式识别受体复合物支架,正向调节了免疫反应(Stegmann et al.2017)。
而在大豆中没有Rsc7-1基因功能的相关报道。利用基因工程技术,分别构建了过表达和CRISPR敲除载体,转化大豆后发现Rsc7-1正向调控大豆对SMV的抗性。这些结果将有助于理解大豆抗SMV的分子机制,同时可以加快大豆抗病品种的育种进程。
发明内容
本发明的目的在于公开大豆Rsc7-1是凝集素受体激酶的抗病性基因工程应用,该基因可作为目的基因导入大豆中,通过影响大豆中活性氧和水杨酸含量来调控大豆对SMV的抗性。
本发明的目的可通过以下技术方案实现:
大豆凝集素受体激酶Rsc7-1,其核苷酸序列为:SEQ ID NO.1。
大豆凝集素受体激酶Rsc7-1,其氨基酸序列为:SEQ ID NO.2。
大豆凝集素受体激酶Rsc7-1在调节大豆对SMV抗性中的应用,所述的大豆凝集素受体激酶Rsc7-1基因,其核苷酸序列为:SEQ ID NO.1。
所述的应用优选,在大豆中过表达Rsc7-1降低大豆中SMV积累量。
使用Rsc7-1构建植物过表达载体或干扰载体时,可在其转录起始核苷酸前加上任何一种增强型启动子或诱导型启动子。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如在植物中加入选择性标记基因(GUS基因、荧光素酶基因等)。从转基因植物的安全性角度考虑,可不加任何选择性标记基因,而通过逆境筛选转化植株。
本发明所述的大豆Rsc7-1蛋白编码基因Rsc7-1在通过基因工程转化大豆后,过表达该基因,增加大豆中活性氧积累,降低大豆中SMV含量;CRISPR介导将该基因敲除后,降低大豆中活性氧、水杨酸积累,SMV生物量增加。
携带有本发明Rsc7-1的植物过表达载体和敲除载体可通过使用Ti质粒、Ri质粒、植物病毒载体、DNA直接转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是高粱、水稻、小麦、玉米等单子叶植物,也可以是花生、大豆、油菜、番茄、杨树、草坪草、苜蓿等双子叶植物。
有益效果
大豆Rsc7-1是一个编码凝集素受体激酶的基因,包含malectin和Ser/Thrdomain,属于CrRLK1L家族基因。CrRLK1L家族在拟南芥模式作物中仅有FER,ANX1和ANX2和被报道参与植物免疫。在大豆中我们发现Rsc7-1的表达量与大豆对SMV抗性呈正相关。Rsc7-1在过表达材料中表达量显著升高,敲除材料中表达量显著降低。同时通过对Rsc7-1敲除材料活性氧染色和水杨酸含量测定发现Rsc7-1通过影响大豆中活性氧和水杨酸来影响大豆对SMV的抗性。因此,Rsc7-1可以用于大豆抗SMV品种选育。
附图说明
图1Rsc7-1基因的PCR扩增。Marker:DL2000,Rsc7-1基因目标条带1944bp。
图2Rsc7-1基因在过表达和敲除材料中相对表达量。OE1,OE2代表两个Rsc7-1过表达株系,KO1代表Rsc7-1敲除突变体株系。三个生物学平均值±标准误差(SE),*和**分别在0.05和0.01概率水平上显著。
图3Rsc7-1的亚细胞定位。
(a):GFP;(b):GFP明场图;(c):GFP融合图;(d):Rsc7-1-GFP;(e):Rsc7-1-GFP明场图;(f):Rsc7-1-GFP融合图;白色Bars=50μm.
图4.Rsc7-1基因过表达大豆试纸条检测结果。Control为对照野生型,非转基因植株一条带,positive转基因检测阳性条带。OE1株系检测了9株阳性苗,OE2株系检测了8株阳性苗。
图5.CRISPR介导的Rsc7-1敲除材料DNA测序结果。WT为野生型,KO1(knock out 1)敲除突变体在编码区缺失4个碱基,测序峰图结果是单峰。
图6.Rsc7-1的过表达株系材料对SMV-SC7抗性表型。(a)接种后21天拍照,mock对照只涂抹0.01mol/l磷酸缓冲液,SMV为接种SC7病毒,白色Bar=5cm。(b)上位非接种叶片表型,白色Bar=1.5cm。
图7.Rsc7-1的敲除材料对SMV抗性水平。(a)接种后21天拍照,mock对照只涂抹0.01mol/l磷酸缓冲液,SMV为接种SC7病毒,白色Bar=5cm。(b)为上位非接种叶表型,白色Bar=1.5cm。
图8.WT和KO1株系接种21天后株高数据。*代表在0.05概率水平上显著。
图9.过表达株系和敲除株系的病毒CP含量测定。qRT-PCR检测SMV病毒CP表达量。三个生物学平均值±标准误差(SE),*和**分别在0.05和0.01概率水平上显著。
图10.过表达株系和敲除株系的活性氧染色。NBT,硝基蓝四氮唑,可以将受到超氧阴离子O2 -的还原,产生不溶性蓝黑色色素沉淀,来定性检测组织细胞内超氧阴离子活性氧族的生成和增加,黑色Bar=1.5cm。
图11.过表达株系和敲除株系的水杨酸含量测定。(a)利用液相色谱测量叶片中SA(游离水杨酸)和(b)SAG(束缚水杨酸)含量。三个生物学平均值±标准误差(SE),*在0.05概率水平上显著。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
下述实施例中所用方法如无特别说明,均为常规方法。
1)大豆凝集素受体激酶Rsc7-1基因的克隆
以大豆栽培品种科丰一号为取材对象,取其叶片,用研钵研碎,加入盛有裂解液的1.5mL EP管,充分振荡后,移至1.5mL EP管中,抽提总RNA(Total RNA Kit(天根,北京,中国)。用甲醛变性胶电泳鉴定总RNA质量,分光光度计测定RNA含量。以获得的总RNA为模板,按照日本TaKaRa公司提供的反转录试剂盒(TaKaRa Primer ScriptTMRT reagent kit,日本)的说明书进行反转录,得到cDNA第一链后,进行PCR扩增,引物见SEQ ID NO.3和SEQ IDNO.4,PCR程序如下:95℃预变性3min,95℃变性15sec,58℃退火15sec,72℃延伸1min,共35个循环,最后72℃保温5min,随后12℃恒温。随后进行PCR产物割胶纯化、连接及转化工作,挑取阳性单克隆测序。测序后获得具有完整编码区的长度为1944bp的大豆Rsc7-1基因的CDS序列,其中编码区序列见SEQ ID NO.1,命名为Rsc7-1,由1944bp组成(图1)。
2)Rsc7-1的亚细胞定位研究
设计包含Rsc7-1基因完整ORF的引物(不包含终止密码子),引物序列见SEQ IDNO.9和SEQ ID NO.10,具体的PCR过程与步骤1)相同。然后利用XbaI和KpnI双酶切将不包含终止密码子的Rsc7-1基因完整的ORF同源重组到表达载体pSuper1300中,这样就把Rsc7-1基因完整的ORF与表达载体pSuper1300上的报告基因GFP的3’端融合,形成一个35S-Rsc7-1-GFP的嵌合基因,构建了亚细胞定位载体pSuper1300-Rsc7-1。将其和空载体分别利用农杆菌转化方法将目的基因Rsc7-1转入烟草叶片细胞,结果表明Rsc7-1蛋白定位在细胞质和细胞核中(图3)。
实施例2基因Rsc7-1的基因工程应用
1)大豆凝集素受体激酶Rsc7-1的克隆
以大豆(Glycine max)抗SMV品种科丰一号的叶片总RNA为模板,经反转录合成cDNA第一链后,进行PCR扩增,引物序列见SEQ ID NO.3和SEQ ID NO.4,PCR程序如下:95℃预变性3分钟,95℃变性15秒,60℃退火15秒,72℃延伸1分钟,共35个循环,最后72℃保温5分钟,随后12℃恒温,将PCR产物克隆至PUC19-T Vector,测序后获得具有完整编码区的长度为1944bp的大豆Rsc7-1基因的CDS序列,其中编码区序列见SEQ ID NO.1。
2)植物表达载体的构建
将Rsc7-1基因序列从PUC19-T Vector中进行PCR扩增,利用重组反应将Rsc7-1连接到PTF101载体中,得到PTF101-Rsc7-1植物过表达载体,引物序列见SEQ ID NO.11和SEQID NO.12。植物转化载体PTF101含有2x 35S强启动子,可强烈诱导目的基因Rsc7-1在受体中表达。然后通过冻融法将载体转入根癌农杆菌菌株EHA105中,利用大豆子叶节转化法,转化大豆。
根据网站CRISPR-P(http://cbi.hzau.edu.cn/crispr/)设计的sgRNA,对Rsc7-1选择了2个sgRNA,从而设计了2对打靶序列,引物序列见SEQ ID NO.13和SEQ ID NO.14,SEQID NO.15和SEQ ID NO.16。将2个sgRNA连接到pSC-M载体上,连接产物转入大肠杆菌,涂板挑单克隆进行菌检。菌检检测出条带,并且测序得到2个sgRNA序列均正确,表明载体pSC-M-Rsc7-1构建成功。然后通过冻融法将载体转入根癌农杆菌菌株EHA105中,利用大豆子叶节转化法,转化大豆。
3)Rsc7-1基因在过表达和敲除材料中的相对表达量
通过组织培养的方法,获得稳定转化的阳性植株。将Rsc7-1的过表达和敲除大豆材料在恒温光照培养箱中种植,20天后取叶片,液氮速冻后于-80℃保存。总RNA的提取同步骤1)。以大豆组成型表达的Tubulin作为内部参照,引物序列见SEQ ID NO.7和SEQ IDNO.8,以来自Rsc7-1的过表达和敲除大豆材料总RNA为模板,反转为cDNA之后进行实时荧光定量PCR反应(Real-time RT-PCR),引物序列见SEQ ID NO.5和SEQ ID NO.6,检测Rsc7-1基因在不同品种中表达量变化,从图中可以看出Rsc7-1过表达株系表达量比野生型显著提高,敲除株系表达量显著降低(图2)。
4)表型鉴定
获得两个过表达株系,命名为OE1和OE2。通过bar试纸条检测过表达阳性苗(图4)。通过组织培养,获得一个敲除株系,再将样品目的基因的sgRNA片段扩PCR送测序,测序结果结合峰图进行分析,在第一个sgRNA存在4个碱基的缺失(图5)。将这个株系命名为KO1(knock out 1)。在第一对真叶展开后,对野生型WT,过表达株系和敲除KO1株系接种SMV-SC7病毒。接种病毒21天后观察发病情况。对照植株WT叶片出现明显皱缩,过表达株系叶片出现轻微花叶症状(图6)。相较于野生型WT,KO1上位非接种叶片比野生型出现更严重的花叶症状(图7)。并且接种病毒后,KO1株高比野生型显著变高(图8),对病毒CP基因表达量分析发现,两个过表达株系中SMV-CP基因的表达量均显著低于野生型,KO1突变体中病毒CP含量比野生型显著提高(图9)引物序列见SEQ ID NO.17和SEQ ID NO.18,以上结果表明,KO1突变体比野生型WT更感病。过表达Rsc7-1基因降低了病毒的积累,提高了大豆对SMV-SC7的抗性。
5)活性氧染色和水杨酸含量测定
活性氧的爆发是植物抵抗病虫害侵染的重要防御反应。四唑氮蓝(NBT)染料可将O2 -染成深蓝色,使得活性氧爆发点肉眼可视。对长势一致,生长良好的KO1、OE1、OE2和WT的植株,取同一部位叶片进行NBT染色,结果和对照相比,过表达OE1,OE2株系的叶片上深蓝色点增加,而敲除株系KO1叶片上的深蓝色点减少(图10),说明过表达Rsc7-1能够促进植株体内活性氧的增加,而敲除Rsc7-1会减少活性氧的积累,表明基因Rsc7-1可以正向调控活性氧的积累。
抗病反应通常与水杨酸激素相关。通过液相色谱分析法检测了KO1株系中水杨酸SA和水杨酸2-O-β-Glucoside(SAG)的含量(图11)。检测结果显示与WT对照相比,KO1敲除突变体中SA与SAG含量降低,SAG含量显著降低,表明Rsc7-1可能是通过影响水杨酸含量参与抗病反应
参考文献:
Adams,M.J.,Antoniw,J.F.,and Fauquet,C.M.(2005).Molecular criteria forgenus and species discrimination within the familyPotyviridae.Arch.Virol.150,459–479.
Zhi H,Gai J,He X.2005.Inheritance of resistance in infection andresistance in development to soybean mosaic virus in soybeans.ActaAgron.Sin.31:1260–1264.
Stegmann M,Monaghan J,Smakowska-Luzan E,Rovenich H,Lehner A,Holton N,Belkhadir Y,Zipfel C.2017.The receptor kinase FER is a RALF-regulatedscaffold controlling plant immune signaling.Science 355:287–289.
序列表
<110> 南京农业大学
<120> 大豆凝集素受体激酶Rsc7-1编码基因的应用
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1944
<212> DNA
<213> 大豆(Glycine max)
<400> 1
atgccacttg gtttatacag tcgtggtgat gatgctcctc ttcctttagt tggtcactat 60
cccgagcttg tgtacatcta taatgattct gccatggaaa acatatgcag attgaaagta 120
ggaggcgagc aaattccacc caaatatgac acaggcatgt ttcgcacttg ggacactgat 180
ggtgcttaca ttttagggag tgatactggt attgaaccct ttaatatgag catgccagtt 240
ttgtatgatg gtaatgctcc accatattta gccccggcag atgtctaccg cacatctcgt 300
tcaatgcgta cttttgaaaa aggccttgtc aatttaaatt acaacatgac atggtttttt 360
cccgttgatt caggtttttt ttatctagtt aggcttcact tctgtgaaat ttatcacggt 420
ataacaaggg tcaatgaggt agtttttact gtgtttttaa ataatcaaac agctgaagaa 480
caatttgatc caattgcttg gagtgggagg ccaggagttg ctatacaacg agactatgtc 540
gtgatggttc ccaaagttaa cgaggcaaag caggatttgt ggcttgatct acacccatac 600
aaggattcta aacctatgat gtattataat tctttctcga atggtgtgga gatctttaaa 660
ctgagcaatt ttgatgatag gaatcttgca gggcccaacc cttctcaaag cttcgtgtct 720
ggatcagatg taaagcctca ccatgttgca caatttaaga aaagttcaga gaaattaaaa 780
ttcatcataa ttggatgtgg acttggtaca gtggtactac caattctcct ttgcttagtt 840
ctattcaggt taaaggtgat tagacctaga aaggtcatgt catggtgcgg tcttgctgtc 900
cacactccta atcaaattga aaaggcaaag aagtcatcat tttgcagtca tttcccaata 960
agagagataa aagtggcaac aaatgacttc gatgaggctc tacttatagg cactggtgga 1020
tttggaagtg tttacaaggg tagctttgat ggtggggcaa cttctgtggc cataaaacgt 1080
gccaatccaa tgtcacacca aggtgtttca gaattcgaga cagagatcct ttggctctca 1140
cagcttaggc atgccaacct agtctcactt ttgggttact gcaatgaaga tggggagatg 1200
atattggtct atgacttcat ggacaatgga actctatatg aacatcttca tttgaggcag 1260
agagatcaac cccctttgtc ttggattcaa cgtcttgaga tatgcattgg agttgcaagg 1320
ggtttacact acctacacac tggcacaaag cacaggatca tccaccgtga cataaagaca 1380
accaacatac tcttagatca taattgggtg ccaaaaattt cagattttgg tttgtcaaag 1440
gcaggttacc cttccatact catcaccaat gtcaagggta gtattggtta cctagatcct 1500
gagtgttttc aaagccacaa gttgactgag aaatctgatc tatactcact tggggtggtg 1560
ttactcgaga ttctaagcac aaggcctgcg gtaattgtag gtgaagatga tgagcatgta 1620
aacttggccg aatgggctat gttgtgcttt gagaatggca acttggagca aatagttgac 1680
cccaacttga aaggaaacat agttgaagag tgctttgagt tatatttagg atttgcaatg 1740
aaatgtttgg ctgaaagagg ggtggagagg ccatccattg gtgaagtgct acagaacctt 1800
gttttagcga tgcatcttca gaaaaagggt ggtgttgtcc ccgatggaaa tgttcaaaga 1860
aatgataatt ctggtttaca gggttattca gatttgacac ctggggtcga gttctctgaa 1920
atcatgatgc ctgttggtcg gtga 1944
<210> 2
<211> 647
<212> PRT
<213> 大豆(Glycine max)
<400> 2
Met Pro Leu Gly Leu Tyr Ser Arg Gly Asp Asp Ala Pro Leu Pro Leu
1 5 10 15
Val Gly His Tyr Pro Glu Leu Val Tyr Ile Tyr Asn Asp Ser Ala Met
20 25 30
Glu Asn Ile Cys Arg Leu Lys Val Gly Gly Glu Gln Ile Pro Pro Lys
35 40 45
Tyr Asp Thr Gly Met Phe Arg Thr Trp Asp Thr Asp Gly Ala Tyr Ile
50 55 60
Leu Gly Ser Asp Thr Gly Ile Glu Pro Phe Asn Met Ser Met Pro Val
65 70 75 80
Leu Tyr Asp Gly Asn Ala Pro Pro Tyr Leu Ala Pro Ala Asp Val Tyr
85 90 95
Arg Thr Ser Arg Ser Met Arg Thr Phe Glu Lys Gly Leu Val Asn Leu
100 105 110
Asn Tyr Asn Met Thr Trp Phe Phe Pro Val Asp Ser Gly Phe Phe Tyr
115 120 125
Leu Val Arg Leu His Phe Cys Glu Ile Tyr His Gly Ile Thr Arg Val
130 135 140
Asn Glu Val Val Phe Thr Val Phe Leu Asn Asn Gln Thr Ala Glu Glu
145 150 155 160
Gln Phe Asp Pro Ile Ala Trp Ser Gly Arg Pro Gly Val Ala Ile Gln
165 170 175
Arg Asp Tyr Val Val Met Val Pro Lys Val Asn Glu Ala Lys Gln Asp
180 185 190
Leu Trp Leu Asp Leu His Pro Tyr Lys Asp Ser Lys Pro Met Met Tyr
195 200 205
Tyr Asn Ser Phe Ser Asn Gly Val Glu Ile Phe Lys Leu Ser Asn Phe
210 215 220
Asp Asp Arg Asn Leu Ala Gly Pro Asn Pro Ser Gln Ser Phe Val Ser
225 230 235 240
Gly Ser Asp Val Lys Pro His His Val Ala Gln Phe Lys Lys Ser Ser
245 250 255
Glu Lys Leu Lys Phe Ile Ile Ile Gly Cys Gly Leu Gly Thr Val Val
260 265 270
Leu Pro Ile Leu Leu Cys Leu Val Leu Phe Arg Leu Lys Val Ile Arg
275 280 285
Pro Arg Lys Val Met Ser Trp Cys Gly Leu Ala Val His Thr Pro Asn
290 295 300
Gln Ile Glu Lys Ala Lys Lys Ser Ser Phe Cys Ser His Phe Pro Ile
305 310 315 320
Arg Glu Ile Lys Val Ala Thr Asn Asp Phe Asp Glu Ala Leu Leu Ile
325 330 335
Gly Thr Gly Gly Phe Gly Ser Val Tyr Lys Gly Ser Phe Asp Gly Gly
340 345 350
Ala Thr Ser Val Ala Ile Lys Arg Ala Asn Pro Met Ser His Gln Gly
355 360 365
Val Ser Glu Phe Glu Thr Glu Ile Leu Trp Leu Ser Gln Leu Arg His
370 375 380
Ala Asn Leu Val Ser Leu Leu Gly Tyr Cys Asn Glu Asp Gly Glu Met
385 390 395 400
Ile Leu Val Tyr Asp Phe Met Asp Asn Gly Thr Leu Tyr Glu His Leu
405 410 415
His Leu Arg Gln Arg Asp Gln Pro Pro Leu Ser Trp Ile Gln Arg Leu
420 425 430
Glu Ile Cys Ile Gly Val Ala Arg Gly Leu His Tyr Leu His Thr Gly
435 440 445
Thr Lys His Arg Ile Ile His Arg Asp Ile Lys Thr Thr Asn Ile Leu
450 455 460
Leu Asp His Asn Trp Val Pro Lys Ile Ser Asp Phe Gly Leu Ser Lys
465 470 475 480
Ala Gly Tyr Pro Ser Ile Leu Ile Thr Asn Val Lys Gly Ser Ile Gly
485 490 495
Tyr Leu Asp Pro Glu Cys Phe Gln Ser His Lys Leu Thr Glu Lys Ser
500 505 510
Asp Leu Tyr Ser Leu Gly Val Val Leu Leu Glu Ile Leu Ser Thr Arg
515 520 525
Pro Ala Val Ile Val Gly Glu Asp Asp Glu His Val Asn Leu Ala Glu
530 535 540
Trp Ala Met Leu Cys Phe Glu Asn Gly Asn Leu Glu Gln Ile Val Asp
545 550 555 560
Pro Asn Leu Lys Gly Asn Ile Val Glu Glu Cys Phe Glu Leu Tyr Leu
565 570 575
Gly Phe Ala Met Lys Cys Leu Ala Glu Arg Gly Val Glu Arg Pro Ser
580 585 590
Ile Gly Glu Val Leu Gln Asn Leu Val Leu Ala Met His Leu Gln Lys
595 600 605
Lys Gly Gly Val Val Pro Asp Gly Asn Val Gln Arg Asn Asp Asn Ser
610 615 620
Gly Leu Gln Gly Tyr Ser Asp Leu Thr Pro Gly Val Glu Phe Ser Glu
625 630 635 640
Ile Met Met Pro Val Gly Arg
645
<210> 3
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ggatcttcca gagattcagt gtttccctca acgctga 37
<210> 4
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ctgccgttcg acgatacatt caccgaccaa caggcat 37
<210> 5
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gcagattgaa agtaggaggc g 21
<210> 6
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tgaacgagat gtgcggtaga c 21
<210> 7
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ggagttcaca gaggcagag 19
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
cacttacgca tcacatagca 20
<210> 9
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
tacaaatcta tctctctcga gatgccactt ggtttatac 39
<210> 10
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tgctcaccat ggatccccgg gccgaccaac aggcatcatg 40
<210> 11
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gactctagac ttaagcctag gatgccactt ggtttataca 40
<210> 12
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
atcgtatggg tacatacgcg tccgaccaac aggcatcatg 40
<210> 13
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
atgtgcggta gacatctgcc ggttttagag ctagaaatag caag 44
<210> 14
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
cggcagatgt ctaccgcaca ttgaccagac atgtcacgct tagt 44
<210> 15
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gatggttccc aaagttaacg gttttagagc tagaaatagc aag 43
<210> 16
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
cgttaacttt gggaaccatc aatccatatg ttttcctggg ac 42
<210> 17
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
cagatgggcg tggttatga 19
<210> 18
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
acaatgggtt tcagcggata 20
Claims (2)
1.大豆凝集素受体激酶基因Rsc7-1在调节大豆对SMV的抗性中的应用,所述的大豆凝集素受体激酶基因Rsc7-1,其核苷酸序列为:SEQ ID NO. 1。
2.根据权利要求1所述的应用,其特征在于,大豆中过表达所述的大豆凝集素受体激酶基因Rsc7-1,降低大豆中SMV的含量,增强大豆材料对SMV的抗性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110528344.XA CN113249395B (zh) | 2021-05-14 | 2021-05-14 | 大豆凝集素受体激酶Rsc7-1编码基因的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110528344.XA CN113249395B (zh) | 2021-05-14 | 2021-05-14 | 大豆凝集素受体激酶Rsc7-1编码基因的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113249395A CN113249395A (zh) | 2021-08-13 |
CN113249395B true CN113249395B (zh) | 2022-04-29 |
Family
ID=77181971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110528344.XA Active CN113249395B (zh) | 2021-05-14 | 2021-05-14 | 大豆凝集素受体激酶Rsc7-1编码基因的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113249395B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588087B (zh) * | 2018-05-16 | 2022-06-03 | 南京农业大学 | 一种提高植物抗病性的基因GmLecRK-R及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110241121A (zh) * | 2019-05-21 | 2019-09-17 | 南京农业大学 | 大豆E3泛素连接酶GmNLA1编码基因的应用 |
-
2021
- 2021-05-14 CN CN202110528344.XA patent/CN113249395B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110241121A (zh) * | 2019-05-21 | 2019-09-17 | 南京农业大学 | 大豆E3泛素连接酶GmNLA1编码基因的应用 |
Non-Patent Citations (1)
Title |
---|
PREDICTED: Glycine max receptor-like protein kinase FERONIA (LOC100776859), mRNA;NCBI;《NCBI》;20210419;第1-2页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113249395A (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11130958B2 (en) | Plants having increased tolerance to heat stress | |
CN109321582B (zh) | 粗山羊草Yr4DS基因在麦族植物抗条锈病育种的应用 | |
Zhu et al. | The wheat NB‐LRR gene Ta RCR 1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis | |
Song et al. | Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps 1k-mediated disease resistance | |
CN114410651B (zh) | 玉米灰斑病抗性相关蛋白及其编码基因与应用 | |
CN111574605B (zh) | 水稻基因OsLAT5在调节敌草快的吸收积累中的应用 | |
CN113646326A (zh) | 用于抗植物病害的基因 | |
CN113249395B (zh) | 大豆凝集素受体激酶Rsc7-1编码基因的应用 | |
CN117264964A (zh) | 小麦TaGSKB蛋白及其编码基因在调控植物耐逆性中的应用 | |
CN113403308B (zh) | 一种提高水稻抗白叶枯病的方法 | |
CN110818784B (zh) | 水稻基因OsATL15在调节农药的吸收转运中的应用 | |
CN111826364B (zh) | 一种抗病虫害相关基因及其应用 | |
AU2003259011A1 (en) | Nucleic acids from rice conferring resistance to bacterial blight disease caused by xanthomonas spp. | |
US10087461B2 (en) | Glycine max resistance gene(s) and use thereof to engineer plants with broad-spectrum resistance to fungal pathogens and pests | |
CN115044592B (zh) | 一种调控玉米株型和瘤黑粉病抗性的基因ZmADT2及其编码蛋白和应用 | |
CN103524608B (zh) | 水稻穗颈节调控基因sui1及其用途 | |
AU2004253987A1 (en) | Nod-factor perception | |
EP0967278A2 (en) | Flowering regulating gene and its use | |
CN112142853B (zh) | 真菌病害相关的甘蓝型油菜BnTLK1基因及其应用 | |
US20040107458A1 (en) | Gene encoding plant protein tm2a, conferring resistance to tomato mosaic virus | |
CN111154770B (zh) | 水稻基因OsABCC2在调节农药的吸收转运中的应用 | |
CN111560055B (zh) | 水稻基因OsLAT3在调节敌草快的吸收累积中的应用 | |
Di et al. | Complementary DNA (cDNA) cloning and functional verification of resistance to head smut disease (Sphacelotheca reiliana) of an NBS–LRR gene ZmNL in maize (Zea mays) | |
US6956149B1 (en) | Method of conveying BNYVV resistance to sugar beet plants | |
US6812338B2 (en) | Peroxisomal ascorbate peroxidase gene induced by high temperature stress and a transgenic plant exhibiting thermotolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |