CN113232380B - 一种高强高韧层状互通结构钢结硬质合金及其制备方法 - Google Patents

一种高强高韧层状互通结构钢结硬质合金及其制备方法 Download PDF

Info

Publication number
CN113232380B
CN113232380B CN202110485309.4A CN202110485309A CN113232380B CN 113232380 B CN113232380 B CN 113232380B CN 202110485309 A CN202110485309 A CN 202110485309A CN 113232380 B CN113232380 B CN 113232380B
Authority
CN
China
Prior art keywords
layer
sintering
furnace
powder
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110485309.4A
Other languages
English (en)
Other versions
CN113232380A (zh
Inventor
朱建雷
邱会
李锁牢
金莹
张姗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianyang Vocational Technical College
Original Assignee
Xianyang Vocational Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xianyang Vocational Technical College filed Critical Xianyang Vocational Technical College
Priority to CN202110485309.4A priority Critical patent/CN113232380B/zh
Publication of CN113232380A publication Critical patent/CN113232380A/zh
Application granted granted Critical
Publication of CN113232380B publication Critical patent/CN113232380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高强高韧层状互通结构钢结硬质合金,由硬质层和韧性层交替叠加组成,韧性层和硬质层的厚度比为1~2:8~9,韧性层由微孔铁基金属箔形成,硬质层中含有WC硬质相、亚微米级强化相和Fe粘结相,亚微米级强化相为NbC和TaC中的一种或多种,韧性层的厚度为50μm‑500μm,本发明还公开了一种高强高韧层状互通结构钢结硬质合金的制备方法,制备的高强高韧层状互通结构钢结硬质合金具有较高的界面结合强度。

Description

一种高强高韧层状互通结构钢结硬质合金及其制备方法
技术领域
本发明属于硬质合金技术领域,涉及一种高强高韧层状互通结构钢结硬质合金及其制备方法。
背景技术
对于层状复合材料来说,通过制备方法改进、结构设计优化、微观组织调控、界面设计,可以突破单一材料的强韧化局限,可使材料在提高强度的同时,获得良好的韧性。
在层状复合材料内,由于高强度层内裂纹敏感性高,裂纹易优先在高强度层内萌生、扩展。当扩展至层间界面时,高韧性层具有高的弹性和塑性形变能力,其高损伤容限能力可吸收裂纹尖端应力,结构化设计可使裂纹发生桥联或纹偏转,延长裂纹扩展路径,最终改善材料的韧性。另一方面,高强度层和高韧性层之间的应力分区机制协同耦合作用,可促使材料强度进一步提高。
现有硬质合金,本身脆性较高,为了改善其性能,提出了高强度层(硬质层)和高韧性层(金属层)叠层复合的思路,可实现硬质合金韧性的大幅提升。但现有的叠层复合硬质合金的层间界面结合强度较低,层离和各向异性问题突出,难以满足实际工况的需求。
发明内容
本发明的一个目的是提供一种高强高韧层状互通结构钢结硬质合金,解决了现有叠层硬质合金层间界面结合强度低导致的层离和各向异性问题。
本发明的另一个目的是提供一种高强高韧层状互通结构钢结硬质合金的制备方法。
本发明所采用的第一技术方案是,一种高强高韧层状互通结构钢结硬质合金,由硬质层和韧性层交替叠加组成,韧性层和硬质层的厚度比为1~2:8~9,韧性层由微孔铁基金属箔形成,硬质层中含有WC硬质相、亚微米级强化相和Fe粘结相,亚微米级强化相为NbC和TaC中的一种或多种。
本发明的技术特征还在于,韧性层的厚度为50μm-500μm。
一种高强高韧层状互通结构钢结硬质合金,按照质量百分比由以下组分组成,WC硬质相60-70%、亚微米级强化相0-20%、Fe粘结相5-10%和微孔铁基金属箔10-20%,以上各组分的质量百分比之和为100%。
本发明所采用的第二技术方案是,一种高强高韧层状互通结构钢结硬质合金的制备方法,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒60-70%、NbC/TaC粉末0-20%、Fe粉末5-10%和微孔铁基金属箔10-20%,以上各组分的质量百分比之和为100%;
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC/TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行1200-1280℃热压烧结,然后进行后续热处理,即得高强高韧层状互通结构钢结硬质合金,其中韧性层和硬质层的厚度比为1~2:8~9。
步骤1中,WC颗粒的粒径为5μm-30μm,Fe粉末的粒径为1μm-10μm,NbC/TaC粉末的粒径为200nm-900nm。
微孔铁基金属箔的厚度为50μm-500μm,微孔铁基金属箔中微孔的孔径为20μm-100μm,微孔间距为20μm-200μm。
所述步骤5的具体过程如下:将炉温升至1100-1150℃保温60min-90min进行预烧结,再将炉温升至1200-1280℃保温30min-120min进行准固态烧结,随后降温至1100-1160℃保温60min-120min进行致密化烧结,再降温至800-1000℃保温50min-70min进行应力松弛处理,最后随炉冷却至室温。
热压烧结过程中,烧结炉内升温速度不大于10℃/min,冷却过程中,烧结炉内降温速度不高于5℃/min。
步骤5中,1200-1280℃准固态烧结阶段的炉内压力为5-10MPa,1100-1160℃致密化烧结阶段的炉内压力为20-30MPa,800-1000℃应力松弛阶段的炉内压力为1-5MPa。
本发明的有益效果是,采用韧性层和硬质层交替叠加组成硬质合金,硬质层中含有WC硬质相、亚微米级强化相和Fe粘结相,韧性层和硬质层的厚度比为1~2:8~9,韧性层由微孔铁基金属箔形成,微孔铁基金属箔中含有孔洞,可使硬质层中组分进入孔洞中,在韧性层与硬质层间形成层状互通结构,层状互通结构的组分与硬质层的相同,该层状互通结构提高了层间结合力,改善了层离和各向异性的问题,使该硬质合金在具有良好的韧性和强度的同时,还具有良好的界面结合强度,可广泛应用于耐磨衬板、耐磨模具等具有一定抗冲击能力的耐磨部件,具有广阔的应用前景。
附图说明
图1是本发明一种高强高韧层状互通结构钢结硬质合金的组织结构示意图;
图2是本发明一种高强高韧层状互通结构钢结硬质合金的局部组织示意图;
图3是本发明实施例1制备的高强高韧层状互通结构钢结硬质合金的金相显微组织图。
图中,1.硬质层,2.韧性层,3.层间互通结构,4.亚微米级强化相,5.Fe粘结相,6.WC硬质相。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种高强高韧层状互通结构钢结硬质合金,参照图1和图2,由硬质层1和韧性层2交替叠加组成,韧性层2和硬质层1的厚度比为1~2:8~9,韧性层由微孔铁基金属箔形成,微孔铁基金属箔中的微孔与硬质层1形成层间互通结构3,韧性层的厚度为50μm-500μm,硬质层中含有WC硬质相6、亚微米级强化相4和Fe粘结相5,亚微米级强化相4为NbC和TaC中的一种或多种。
本发明一种高强高韧层状互通结构钢结硬质合金的制备方法,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒60-70%、NbC/TaC粉末0-20%、Fe粉末5-10%和微孔铁基金属箔10-20%,以上各组分的质量百分比之和为100%;WC颗粒的粒径为5μm-30μm,Fe粉末的粒径为1μm-10μm,NbC/TaC粉末的粒径为200nm-900nm。微孔铁基金属箔的厚度为50μm-500μm,微孔铁基金属箔中微孔的孔径为20μm-100μm,微孔间距为20μm-200μm,NbC/TaC粉末,即NbC和TaC粉末的一种或多种。
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC/TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1100-1150℃保温60min-90min进行预烧结,再将炉温升至1200-1280℃保温30min-120min进行准固态烧结,随后降温至1100-1160℃保温60min-120min进行致密化烧结,再降温至800-1000℃保温50min-70min进行应力松弛处理,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金,其中韧性层和硬质层的厚度比为1~2:8~9。
热压烧结过程中,烧结炉内升温速度不大于10℃/min,冷却过程中,烧结炉内降温速度不高于5℃/min,1200-1280℃准固态烧结阶段的炉内压力为5-10MPa,1100-1160℃致密化烧结阶段的炉内压力为20-30MPa,800-1000℃应力松弛阶段的炉内压力为1-5MPa。
实施例1
制备一种高强高韧层状互通结构钢结硬质合金,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒60%、NbC粉末10%、Fe粉末10%和微孔铁基金属箔20%,以上各组分的质量百分比之和为100%;WC颗粒的粒径约为10μm,Fe粉末的粒径约为5μm,NbC粉末的粒径为200nm。微孔铁基金属箔的厚度为100μm,微孔铁基金属箔中微孔的孔径为30μm,微孔间距为20μm。
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1100℃保温90min进行预烧结,再将炉温升至1200℃保温120min进行准固态烧结,准固态烧结阶段的炉内压力为6MPa,烧结炉内升温速度为3℃/min,随后降温至1120℃保温120min进行致密化烧结,致密化烧结阶段的炉内压力为20MPa,再降温至800℃保温70min进行应力松弛处理,应力松弛阶段的炉内压力为3MPa,烧结炉内降温速度为1℃/min,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金。
对制备的高强高韧层状互通结构钢结硬质合金进行金相组织观察,如图3所示,从图中可看出,层状互通结构钢结硬质合金的横截面组织由交替的硬质层1和韧性层2组成,且韧性层的微孔结构实现了硬质层的层间互通,形成层间互通结构3。其次,硬质层由亚微米级NbC强化相4、Fe粘结相5和WC硬质相6组成,亚微米级NbC强化相4呈灰色颗粒状,沿微米级WC硬质相6的晶界和Fe粘结相5混杂分布。
实施例2
制备一种高强高韧层状互通结构钢结硬质合金,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒62%、NbC粉末12%、Fe粉末8%和微孔铁基金属箔18%,以上各组分的质量百分比之和为100%;WC颗粒的粒径约为15μm,Fe粉末的粒径约为3μm,NbC粉末的粒径为600nm。微孔铁基金属箔的厚度为80μm,微孔铁基金属箔中微孔的孔径为50μm,微孔间距为80μm。
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1150℃保温60min进行预烧结,再将炉温升至1280℃保温30min进行准固态烧结,准固态烧结阶段的炉内压力为5MPa,烧结炉内升温速度为5℃/min,随后降温至1100℃保温100min进行致密化烧结,致密化烧结阶段的炉内压力为25MPa,再降温至850℃保温50min进行应力松弛处理,应力松弛阶段的炉内压力为2MPa,烧结炉内降温速度为2℃/min,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金。
实施例3
制备一种高强高韧层状互通结构钢结硬质合金,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒65%、TaC粉末18%、Fe粉末5%和微孔铁基金属箔12%,以上各组分的质量百分比之和为100%;WC颗粒的粒径约为20μm,Fe粉末的粒径约为7μm,TaC粉末的粒径为400nm。微孔铁基金属箔的厚度为200μm,微孔铁基金属箔中微孔的孔径为60μm,微孔间距为130μm。
步骤2,将步骤1称取的WC颗粒、Fe粉末和TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1130℃保温80min进行预烧结,再将炉温升至1250℃保温60min进行准固态烧结,准固态烧结阶段的炉内压力为8MPa,烧结炉内升温速度为8℃/min,随后降温至1140℃保温100min进行致密化烧结,致密化烧结阶段的炉内压力为25MPa,再降温至900℃保温60min进行应力松弛处理,应力松弛阶段的炉内压力为4MPa,烧结炉内降温速度为3℃/min,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金。
实施例4
制备一种高强高韧层状互通结构钢结硬质合金,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒60%、NbC粉末和TaC粉末各10%、Fe粉末5%和微孔铁基金属箔15%,以上各组分的质量百分比之和为100%;WC颗粒的粒径约为20μm,Fe粉末的粒径约为8μm,NbC粉末的粒径为500nm,TaC粉末的粒径为600nm。微孔铁基金属箔的厚度为400μm,微孔铁基金属箔中微孔的孔径为80μm,微孔间距为150μm。
步骤2,将步骤1称取的WC颗粒、Fe粉末、NbC粉末和TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1150℃保温70min进行预烧结,再将炉温升至1225℃保温120min进行准固态烧结,准固态烧结阶段的炉内压力为9MPa,烧结炉内升温速度为8℃/min,随后降温至1150℃保温110min进行致密化烧结,致密化烧结阶段的炉内压力为20MPa,再降温至950℃保温65min进行应力松弛处理,应力松弛阶段的炉内压力为4MPa,烧结炉内降温速度为4℃/min,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金。
实施例5
制备一种高强高韧层状互通结构钢结硬质合金,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:WC颗粒70%、TaC粉末10%、Fe粉末10%和微孔铁基金属箔10%,以上各组分的质量百分比之和为100%;WC颗粒的粒径约为30μm,Fe粉末的粒径约为10μm,NbC粉末的粒径为900nm。微孔铁基金属箔的厚度为500μm,微孔铁基金属箔中微孔的孔径为100μm,微孔间距为200μm。
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC/TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行热压烧结,先将炉温升至1120℃保温80min进行预烧结,再将炉温升至1200℃保温60min进行准固态烧结,准固态烧结阶段的炉内压力为10MPa,烧结炉内升温速度为10℃/min,随后降温至1160℃保温60min进行致密化烧结,致密化烧结阶段的炉内压力为30MPa,再降温至1000℃保温50min进行应力松弛处理,应力松弛阶段的炉内压力为5MPa,烧结炉内降温速度为5℃/min,最后随炉冷却至室温,即得高强高韧层状互通结构钢结硬质合金。

Claims (5)

1.一种高强高韧层状互通结构钢结硬质合金,其特征在于,由硬质层和韧性层交替叠加组成,韧性层和硬质层的厚度比为1~2:8~9,所述韧性层由微孔铁基金属箔形成,所述韧性层的厚度为50μm-500μm,硬质层中含有WC硬质相、亚微米级强化相和Fe粘结相,亚微米级强化相为NbC和TaC中的一种或多种,所述高强高韧层状互通结构钢结硬质合金按照质量百分比由以下组分组成,WC硬质相60-70%、亚微米级强化相10-20%、Fe粘结相5-10%和微孔铁基金属箔10-20%,以上各组分的质量百分比之和为100%,所述微孔铁基金属箔中微孔的孔径为20μm-100μm,微孔间距为20μm-200μm。
2.制备如权利要求1所述的一种高强高韧层状互通结构钢结硬质合金的制备方法,其特征在于,包括以下步骤:
步骤1,按照质量百分比分别称取以下组分:
WC颗粒60-70%、NbC/TaC粉末10-20%、Fe粉末5-10%和微孔铁基金属箔10-20%,以上各组分的质量百分比之和为100%;
步骤2,将步骤1称取的WC颗粒、Fe粉末和NbC/TaC粉末混合均匀,形成混合粉末;
步骤3,按照模具尺寸对步骤1称取的微孔铁基金属箔进行剪裁;
步骤4,在模具中逐层交替铺设混合粉末层和微孔铁基金属箔层,然后冷压预制成型,形成冷压预制体;
步骤5,将冷压预制体装入热压模具内,在高温烧结炉内进行1200-1280℃热压烧结,然后进行后续热处理,即得高强高韧层状互通结构钢结硬质合金,其中韧性层和硬质层的厚度比为1~2:8~9;所述的一种高强高韧层状互通结构钢结硬质合金制备方法具体过程如下:将炉温升至1100-1150℃保温60min-90min进行预烧结,再将炉温升至1200-1280℃保温30min-120min进行准固态烧结,随后降温至1100-1160℃保温60min-120min进行致密化烧结,再降温至800-1000℃保温50min-70min进行应力松弛处理,最后随炉冷却至室温。
3.根据权利要求2所述的一种高强高韧层状互通结构钢结硬质合金的制备方法,其特征在于,所述步骤1中,WC颗粒的粒径为5μm-30μm,Fe粉末的粒径为1μm-10μm,NbC/TaC粉末的粒径为200nm-900nm。
4.根据权利要求2所述的一种高强高韧层状互通结构钢结硬质合金的制备方法,其特征在于,所述热压烧结过程中,烧结炉内升温速度不大于10℃/min,冷却过程中,烧结炉内降温速度不高于5℃/min。
5.根据权利要求2所述的一种高强高韧层状互通结构钢结硬质合金的制备方法,其特征在于,所述步骤5具体过程如下,所述准固态烧结阶段的炉内压力为5-10MPa,所述致密化烧结阶段的炉内压力为20-30MPa,所述应力松弛阶段的炉内压力为1-5MPa。
CN202110485309.4A 2021-04-30 2021-04-30 一种高强高韧层状互通结构钢结硬质合金及其制备方法 Active CN113232380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110485309.4A CN113232380B (zh) 2021-04-30 2021-04-30 一种高强高韧层状互通结构钢结硬质合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110485309.4A CN113232380B (zh) 2021-04-30 2021-04-30 一种高强高韧层状互通结构钢结硬质合金及其制备方法

Publications (2)

Publication Number Publication Date
CN113232380A CN113232380A (zh) 2021-08-10
CN113232380B true CN113232380B (zh) 2023-03-28

Family

ID=77131917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110485309.4A Active CN113232380B (zh) 2021-04-30 2021-04-30 一种高强高韧层状互通结构钢结硬质合金及其制备方法

Country Status (1)

Country Link
CN (1) CN113232380B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892124B (zh) * 2022-05-13 2023-08-25 咸阳职业技术学院 具有多尺度表面强化层的高温耐磨材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213443A (zh) * 2018-02-06 2018-06-29 吉林大学 一种仿生层状高强、高韧材料的制备方法
CN111378885A (zh) * 2020-03-25 2020-07-07 九江金鹭硬质合金有限公司 一种具有表层富粘结相梯度结构的硬质合金及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE420844B (sv) * 1979-05-17 1981-11-02 Sandvik Ab Sintrad hardmetall av nickelbaserad bindemetall och volframkarbid
CA1188136A (en) * 1980-08-18 1985-06-04 Nicholas Makrides Steel-hard carbide macrostructured tools, compositions and methods of forming
GB8622464D0 (en) * 1986-09-18 1986-10-22 British Petroleum Co Plc Graded structure composites
JP3762777B1 (ja) * 2004-10-19 2006-04-05 住友電気工業株式会社 超硬合金
CN101462206A (zh) * 2008-09-12 2009-06-24 郭庆虎 硬质合金焊丝或焊条及其制造方法和应用
CN102470446A (zh) * 2009-06-30 2012-05-23 株式会社图格莱 金属陶瓷和被覆金属陶瓷
CN101748404B (zh) * 2010-01-08 2011-06-01 南京航空航天大学 具有微孔过渡层的涂层结构的制备方法
GB201210658D0 (en) * 2012-06-15 2012-08-01 Element Six Abrasives Sa Superhard constructions & methods of making same
CN103540823A (zh) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 一种硬质合金
CN108034942A (zh) * 2017-12-01 2018-05-15 马鞍山市鑫龙特钢有限公司 一种提高硬质合金涂层与高韧性碳素钢结合强度的加工方法
CN108754445A (zh) * 2018-06-29 2018-11-06 南京先进激光技术研究院 基于电磁沉积-选区激光烧结技术制备复合陶瓷涂层的方法
CN109266942A (zh) * 2018-10-25 2019-01-25 湖南工业大学 一种硬质合金结构及其成型方法以及应用
CN109706452B (zh) * 2018-12-12 2020-11-27 中北大学 一种高碳钢表面制备陶瓷涂层的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213443A (zh) * 2018-02-06 2018-06-29 吉林大学 一种仿生层状高强、高韧材料的制备方法
CN111378885A (zh) * 2020-03-25 2020-07-07 九江金鹭硬质合金有限公司 一种具有表层富粘结相梯度结构的硬质合金及其制备方法

Also Published As

Publication number Publication date
CN113232380A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US8221517B2 (en) Cemented carbide—metallic alloy composites
CN111516314B (zh) 一种aba型三明治复合材料及其制备方法
CN101838766B (zh) 一种梯度结构金属陶瓷刀具及其制备方法
CN110756982A (zh) 一种非晶合金/金属微叠层复合材料及其制备方法
WO2012045247A1 (zh) 一种多层壳芯复合结构零件的制备方法
CN113232380B (zh) 一种高强高韧层状互通结构钢结硬质合金及其制备方法
CN109277576B (zh) 钢-碳化物/铁-钢多层复合耐磨材料及其制备方法
CN106476358B (zh) 基于超声波固结成形辅助复合材料Ti/Al3Ti的快速制备方法
CN104099540B (zh) 用于减振降噪的NiTi纤维增强金属间化合物基层状复合材料的制备方法
CN114101678B (zh) 一种金属-陶瓷复合材料的制备方法
CN110483059B (zh) 一种表面具有压应力的石墨烯自润滑梯度陶瓷刀具材料及其制备方法
CN111873570B (zh) 一种mab相陶瓷-金属层状复合材料及其制备方法与用途
CN111910136B (zh) 一种三维纤维骨架韧化金属陶瓷及其制备方法
CN108372690A (zh) 一种网状结构增韧仿生复合材料及其结构件的制备方法
CN114074457A (zh) 一种双纤维协同增强钛铝层状复合材料及其制备方法
CN105537594A (zh) 一种树脂-铝基层状复合材料风扇叶片
CN115533080A (zh) 具备梯度孔隙率的多孔陶瓷增强金属复合装甲的制备方法
CN111876698B (zh) 一种钢结硬质合金及其制备方法
CN115415527B (zh) 制动盘的制备方法
CN115612894B (zh) 一种仿生双贯穿结构的金属复合材料及其制备方法和应用
CN116332629B (zh) 一种氧化铝陶瓷-钛合金一体化复合结构及其制备方法
CN110465670B (zh) 一种通过放电等离子烧结制备层状复合材料的方法
CN114935280B (zh) TC4/Ni/Al叠层复合材料及其制备方法
CN111876697B (zh) 一种多尺度自润滑碳化钨基复合材料及其制备方法
CN118045983A (zh) 一种具有高强度层状Ti/Al复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant