CN113227963A - 一种乘法器及算子电路 - Google Patents
一种乘法器及算子电路 Download PDFInfo
- Publication number
- CN113227963A CN113227963A CN201980006794.3A CN201980006794A CN113227963A CN 113227963 A CN113227963 A CN 113227963A CN 201980006794 A CN201980006794 A CN 201980006794A CN 113227963 A CN113227963 A CN 113227963A
- Authority
- CN
- China
- Prior art keywords
- transistor
- coupled
- node
- bit
- inverse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007906 compression Methods 0.000 claims abstract description 55
- 230000006835 compression Effects 0.000 claims abstract description 51
- 238000009825 accumulation Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 23
- 238000004891 communication Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007306 turnover Effects 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5334—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3066—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction by means of a mask or a bit-map
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/31—Design entry, e.g. editors specifically adapted for circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/32—Circuit design at the digital level
- G06F30/327—Logic synthesis; Behaviour synthesis, e.g. mapping logic, HDL to netlist, high-level language to RTL or netlist
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
- G06F7/501—Half or full adders, i.e. basic adder cells for one denomination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/3001—Arithmetic instructions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6011—Encoder aspects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Complex Calculations (AREA)
Abstract
本申请提供一种乘法器及算子电路,涉及电子技术领域,用于减小乘法器的面积。该乘法器用于实现M比特位的第一数值与N比特位的第二数值的相乘,包括:P组编码器和W层反相压缩器,P组编码器中的每组编码器包括N个编码器;所述每组编码器,用于采用正相编码算子或者反相编码算子编码第二数值中的部分比特位、对应于所述每编码器的组选择信号和符号控制输入信号以得到一个部分积项,组选择信号和符号控制输入信号是根据第一数值中的部分比特位产生的,P组编码器编码得到P个部分积项;W层反相压缩器,用于采用反相压缩算子压缩P个部分积项,得到两个累加值,两个累加值之和为第一数值与第二数值的乘积。
Description
PCT国内申请,说明书已公开。
Claims (17)
- PCT国内申请,权利要求书已公开。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111075411.3A CN113946312A (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/119993 WO2021097765A1 (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111075411.3A Division CN113946312A (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113227963A true CN113227963A (zh) | 2021-08-06 |
CN113227963B CN113227963B (zh) | 2024-05-17 |
Family
ID=75980379
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980006794.3A Active CN113227963B (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
CN202111075411.3A Pending CN113946312A (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111075411.3A Pending CN113946312A (zh) | 2019-11-21 | 2019-11-21 | 一种乘法器及算子电路 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11855661B2 (zh) |
EP (1) | EP4030277A4 (zh) |
JP (1) | JP7371255B2 (zh) |
KR (1) | KR102676098B1 (zh) |
CN (2) | CN113227963B (zh) |
BR (1) | BR112022007427A2 (zh) |
WO (1) | WO2021097765A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115917499A (zh) * | 2021-07-30 | 2023-04-04 | 华为技术有限公司 | 一种累加器、乘法器及算子电路 |
WO2023015442A1 (zh) * | 2021-08-10 | 2023-02-16 | 华为技术有限公司 | 一种乘法器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1704898A (zh) * | 2004-05-27 | 2005-12-07 | 扬智科技股份有限公司 | 乘法器的符号延伸方法及结构 |
US20170126214A1 (en) * | 2015-11-02 | 2017-05-04 | Mediatek Inc. | Flip-flop circuit with data-driven clock |
CN107977191A (zh) * | 2016-10-21 | 2018-05-01 | 中国科学院微电子研究所 | 一种低功耗并行乘法器 |
CN110058840A (zh) * | 2019-03-27 | 2019-07-26 | 西安理工大学 | 一种基于4-Booth编码的低功耗乘法器 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL179619C (nl) * | 1974-04-18 | 1987-05-18 | Philips Nv | Digitale signaalverwerkingsinrichting voor het realiseren van een vooraf bepaalde overdrachtskarakteristiek. |
US4153938A (en) * | 1977-08-18 | 1979-05-08 | Monolithic Memories Inc. | High speed combinatorial digital multiplier |
US4730340A (en) * | 1980-10-31 | 1988-03-08 | Harris Corp. | Programmable time invariant coherent spread symbol correlator |
JP3153370B2 (ja) * | 1993-01-14 | 2001-04-09 | 三菱電機株式会社 | 乗算装置 |
US6195392B1 (en) * | 1998-06-30 | 2001-02-27 | U.S. Philips Corporation | Method and arrangement for generating program clock reference values (PCRS) in MPEG bitstreams |
KR20010019352A (ko) * | 1999-08-26 | 2001-03-15 | 윤종용 | 곱셈기의 압축기 |
US6877022B1 (en) * | 2001-02-16 | 2005-04-05 | Texas Instruments Incorporated | Booth encoding circuit for a multiplier of a multiply-accumulate module |
JP4177125B2 (ja) | 2003-01-22 | 2008-11-05 | 三菱電機株式会社 | 演算装置及び演算装置の演算方法 |
US7028068B1 (en) * | 2003-02-04 | 2006-04-11 | Advanced Micro Devices, Inc. | Alternate phase dual compression-tree multiplier |
US8064520B2 (en) * | 2003-09-07 | 2011-11-22 | Microsoft Corporation | Advanced bi-directional predictive coding of interlaced video |
US20110064214A1 (en) * | 2003-09-09 | 2011-03-17 | Ternarylogic Llc | Methods and Apparatus in Alternate Finite Field Based Coders and Decoders |
US8577026B2 (en) * | 2010-12-29 | 2013-11-05 | Ternarylogic Llc | Methods and apparatus in alternate finite field based coders and decoders |
US20140055290A1 (en) * | 2003-09-09 | 2014-02-27 | Peter Lablans | Methods and Apparatus in Alternate Finite Field Based Coders and Decoders |
JP4988627B2 (ja) | 2008-03-05 | 2012-08-01 | ルネサスエレクトロニクス株式会社 | フィルタ演算器及び動き補償装置 |
JP5456766B2 (ja) * | 2008-05-12 | 2014-04-02 | クゥアルコム・インコーポレイテッド | プログラム可能なプロセッサにおける随意選択的なガロア域計算の実行 |
US20150193203A1 (en) | 2014-01-07 | 2015-07-09 | Nvidia Corporation | Efficiency in a fused floating-point multiply-add unit |
US10003342B2 (en) * | 2014-12-02 | 2018-06-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Compressor circuit and compressor circuit layout |
US10002219B2 (en) | 2015-03-25 | 2018-06-19 | Samsung Electronics Co., Ltd. | Method for placing parallel multiplier |
-
2019
- 2019-11-21 JP JP2022529732A patent/JP7371255B2/ja active Active
- 2019-11-21 CN CN201980006794.3A patent/CN113227963B/zh active Active
- 2019-11-21 EP EP19953180.7A patent/EP4030277A4/en active Pending
- 2019-11-21 CN CN202111075411.3A patent/CN113946312A/zh active Pending
- 2019-11-21 BR BR112022007427A patent/BR112022007427A2/pt unknown
- 2019-11-21 KR KR1020227015465A patent/KR102676098B1/ko active IP Right Grant
- 2019-11-21 WO PCT/CN2019/119993 patent/WO2021097765A1/zh unknown
-
2022
- 2022-05-21 US US17/750,299 patent/US11855661B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1704898A (zh) * | 2004-05-27 | 2005-12-07 | 扬智科技股份有限公司 | 乘法器的符号延伸方法及结构 |
US20170126214A1 (en) * | 2015-11-02 | 2017-05-04 | Mediatek Inc. | Flip-flop circuit with data-driven clock |
CN107977191A (zh) * | 2016-10-21 | 2018-05-01 | 中国科学院微电子研究所 | 一种低功耗并行乘法器 |
CN110058840A (zh) * | 2019-03-27 | 2019-07-26 | 西安理工大学 | 一种基于4-Booth编码的低功耗乘法器 |
Non-Patent Citations (1)
Title |
---|
朱鑫标;施隆照;: "一种高压缩Wallace树的快速乘法器设计", 微电子学与计算机, no. 02, 5 February 2013 (2013-02-05) * |
Also Published As
Publication number | Publication date |
---|---|
US11855661B2 (en) | 2023-12-26 |
JP2023503119A (ja) | 2023-01-26 |
BR112022007427A2 (pt) | 2022-07-12 |
JP7371255B2 (ja) | 2023-10-30 |
WO2021097765A1 (zh) | 2021-05-27 |
CN113946312A (zh) | 2022-01-18 |
EP4030277A4 (en) | 2023-01-11 |
CN113227963B (zh) | 2024-05-17 |
KR102676098B1 (ko) | 2024-06-19 |
KR20220074965A (ko) | 2022-06-03 |
EP4030277A1 (en) | 2022-07-20 |
US20220294468A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107977191B (zh) | 一种低功耗并行乘法器 | |
US10684825B2 (en) | Compressing like magnitude partial products in multiply accumulation | |
US11855661B2 (en) | Multiplier and operator circuit | |
CN110515587B (zh) | 乘法器、数据处理方法、芯片及电子设备 | |
CN110531954B (zh) | 乘法器、数据处理方法、芯片及电子设备 | |
Besli et al. | A novel redundant binary signed-digit (RBSD) Booth's encoding | |
Harikiran et al. | Design and implementation of 16× 16 modified booth multiplier | |
JPH10307706A (ja) | 半及び全加算器を用いたウォレスツリー乗算器 | |
US8417761B2 (en) | Direct decimal number tripling in binary coded adders | |
Kumar et al. | Complex multiplier: implementation using efficient algorithms for signal processing application | |
CN209879493U (zh) | 乘法器 | |
WO2023004783A1 (zh) | 一种累加器、乘法器及算子电路 | |
WO2023015442A1 (zh) | 一种乘法器 | |
Beuchat et al. | Multiplication algorithms for radix-2 RN-codings and two's complement numbers | |
Keote et al. | VLSI design of 64bit× 64bit high performance multiplier with redundant binary encoding | |
Nagayama et al. | Numeric function generators using piecewise arithmetic expressions | |
Bhongale et al. | Review on Recent Advances in VLSI Multiplier | |
JPH07160476A (ja) | 部分積生成回路 | |
Tanaka et al. | An efficient diminished-1 modulo 2n+ 1 multiplier using signed-digit number representation | |
Smyk et al. | High-speed binary-to-residue converter design using 2-bit segmentation of the input word | |
PRIYA et al. | Implementation of Redundant Binary High Speed Multipliers with Efficient Partial Product Generator | |
JAYAKANTH et al. | Implementation of Redundant Binary Multipliers with Modified Partial Product Generator | |
Wei | A new residue adder with redundant binary number representation | |
Nathiya et al. | Design of High Throughput Redundant Binary Technique for Image Processing Application | |
Kumar et al. | A design of low power modified Booth multiplier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |