CN113227963A - 一种乘法器及算子电路 - Google Patents

一种乘法器及算子电路 Download PDF

Info

Publication number
CN113227963A
CN113227963A CN201980006794.3A CN201980006794A CN113227963A CN 113227963 A CN113227963 A CN 113227963A CN 201980006794 A CN201980006794 A CN 201980006794A CN 113227963 A CN113227963 A CN 113227963A
Authority
CN
China
Prior art keywords
transistor
coupled
node
bit
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980006794.3A
Other languages
English (en)
Other versions
CN113227963B (zh
Inventor
范团宝
蒋越星
时小山
王荣军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202111075411.3A priority Critical patent/CN113946312A/zh
Publication of CN113227963A publication Critical patent/CN113227963A/zh
Application granted granted Critical
Publication of CN113227963B publication Critical patent/CN113227963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5334Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3066Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction by means of a mask or a bit-map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/31Design entry, e.g. editors specifically adapted for circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/327Logic synthesis; Behaviour synthesis, e.g. mapping logic, HDL to netlist, high-level language to RTL or netlist
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/501Half or full adders, i.e. basic adder cells for one denomination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/60General implementation details not specific to a particular type of compression
    • H03M7/6011Encoder aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Neurology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Complex Calculations (AREA)

Abstract

本申请提供一种乘法器及算子电路,涉及电子技术领域,用于减小乘法器的面积。该乘法器用于实现M比特位的第一数值与N比特位的第二数值的相乘,包括:P组编码器和W层反相压缩器,P组编码器中的每组编码器包括N个编码器;所述每组编码器,用于采用正相编码算子或者反相编码算子编码第二数值中的部分比特位、对应于所述每编码器的组选择信号和符号控制输入信号以得到一个部分积项,组选择信号和符号控制输入信号是根据第一数值中的部分比特位产生的,P组编码器编码得到P个部分积项;W层反相压缩器,用于采用反相压缩算子压缩P个部分积项,得到两个累加值,两个累加值之和为第一数值与第二数值的乘积。

Description

PCT国内申请,说明书已公开。

Claims (17)

  1. PCT国内申请,权利要求书已公开。
CN201980006794.3A 2019-11-21 2019-11-21 一种乘法器及算子电路 Active CN113227963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111075411.3A CN113946312A (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119993 WO2021097765A1 (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111075411.3A Division CN113946312A (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路

Publications (2)

Publication Number Publication Date
CN113227963A true CN113227963A (zh) 2021-08-06
CN113227963B CN113227963B (zh) 2024-05-17

Family

ID=75980379

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980006794.3A Active CN113227963B (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路
CN202111075411.3A Pending CN113946312A (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111075411.3A Pending CN113946312A (zh) 2019-11-21 2019-11-21 一种乘法器及算子电路

Country Status (7)

Country Link
US (1) US11855661B2 (zh)
EP (1) EP4030277A4 (zh)
JP (1) JP7371255B2 (zh)
KR (1) KR102676098B1 (zh)
CN (2) CN113227963B (zh)
BR (1) BR112022007427A2 (zh)
WO (1) WO2021097765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917499A (zh) * 2021-07-30 2023-04-04 华为技术有限公司 一种累加器、乘法器及算子电路
WO2023015442A1 (zh) * 2021-08-10 2023-02-16 华为技术有限公司 一种乘法器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704898A (zh) * 2004-05-27 2005-12-07 扬智科技股份有限公司 乘法器的符号延伸方法及结构
US20170126214A1 (en) * 2015-11-02 2017-05-04 Mediatek Inc. Flip-flop circuit with data-driven clock
CN107977191A (zh) * 2016-10-21 2018-05-01 中国科学院微电子研究所 一种低功耗并行乘法器
CN110058840A (zh) * 2019-03-27 2019-07-26 西安理工大学 一种基于4-Booth编码的低功耗乘法器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL179619C (nl) * 1974-04-18 1987-05-18 Philips Nv Digitale signaalverwerkingsinrichting voor het realiseren van een vooraf bepaalde overdrachtskarakteristiek.
US4153938A (en) * 1977-08-18 1979-05-08 Monolithic Memories Inc. High speed combinatorial digital multiplier
US4730340A (en) * 1980-10-31 1988-03-08 Harris Corp. Programmable time invariant coherent spread symbol correlator
JP3153370B2 (ja) * 1993-01-14 2001-04-09 三菱電機株式会社 乗算装置
US6195392B1 (en) * 1998-06-30 2001-02-27 U.S. Philips Corporation Method and arrangement for generating program clock reference values (PCRS) in MPEG bitstreams
KR20010019352A (ko) * 1999-08-26 2001-03-15 윤종용 곱셈기의 압축기
US6877022B1 (en) * 2001-02-16 2005-04-05 Texas Instruments Incorporated Booth encoding circuit for a multiplier of a multiply-accumulate module
JP4177125B2 (ja) 2003-01-22 2008-11-05 三菱電機株式会社 演算装置及び演算装置の演算方法
US7028068B1 (en) * 2003-02-04 2006-04-11 Advanced Micro Devices, Inc. Alternate phase dual compression-tree multiplier
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
US20110064214A1 (en) * 2003-09-09 2011-03-17 Ternarylogic Llc Methods and Apparatus in Alternate Finite Field Based Coders and Decoders
US8577026B2 (en) * 2010-12-29 2013-11-05 Ternarylogic Llc Methods and apparatus in alternate finite field based coders and decoders
US20140055290A1 (en) * 2003-09-09 2014-02-27 Peter Lablans Methods and Apparatus in Alternate Finite Field Based Coders and Decoders
JP4988627B2 (ja) 2008-03-05 2012-08-01 ルネサスエレクトロニクス株式会社 フィルタ演算器及び動き補償装置
JP5456766B2 (ja) * 2008-05-12 2014-04-02 クゥアルコム・インコーポレイテッド プログラム可能なプロセッサにおける随意選択的なガロア域計算の実行
US20150193203A1 (en) 2014-01-07 2015-07-09 Nvidia Corporation Efficiency in a fused floating-point multiply-add unit
US10003342B2 (en) * 2014-12-02 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Compressor circuit and compressor circuit layout
US10002219B2 (en) 2015-03-25 2018-06-19 Samsung Electronics Co., Ltd. Method for placing parallel multiplier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704898A (zh) * 2004-05-27 2005-12-07 扬智科技股份有限公司 乘法器的符号延伸方法及结构
US20170126214A1 (en) * 2015-11-02 2017-05-04 Mediatek Inc. Flip-flop circuit with data-driven clock
CN107977191A (zh) * 2016-10-21 2018-05-01 中国科学院微电子研究所 一种低功耗并行乘法器
CN110058840A (zh) * 2019-03-27 2019-07-26 西安理工大学 一种基于4-Booth编码的低功耗乘法器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱鑫标;施隆照;: "一种高压缩Wallace树的快速乘法器设计", 微电子学与计算机, no. 02, 5 February 2013 (2013-02-05) *

Also Published As

Publication number Publication date
US11855661B2 (en) 2023-12-26
JP2023503119A (ja) 2023-01-26
BR112022007427A2 (pt) 2022-07-12
JP7371255B2 (ja) 2023-10-30
WO2021097765A1 (zh) 2021-05-27
CN113946312A (zh) 2022-01-18
EP4030277A4 (en) 2023-01-11
CN113227963B (zh) 2024-05-17
KR102676098B1 (ko) 2024-06-19
KR20220074965A (ko) 2022-06-03
EP4030277A1 (en) 2022-07-20
US20220294468A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
CN107977191B (zh) 一种低功耗并行乘法器
US10684825B2 (en) Compressing like magnitude partial products in multiply accumulation
US11855661B2 (en) Multiplier and operator circuit
CN110515587B (zh) 乘法器、数据处理方法、芯片及电子设备
CN110531954B (zh) 乘法器、数据处理方法、芯片及电子设备
Besli et al. A novel redundant binary signed-digit (RBSD) Booth's encoding
Harikiran et al. Design and implementation of 16× 16 modified booth multiplier
JPH10307706A (ja) 半及び全加算器を用いたウォレスツリー乗算器
US8417761B2 (en) Direct decimal number tripling in binary coded adders
Kumar et al. Complex multiplier: implementation using efficient algorithms for signal processing application
CN209879493U (zh) 乘法器
WO2023004783A1 (zh) 一种累加器、乘法器及算子电路
WO2023015442A1 (zh) 一种乘法器
Beuchat et al. Multiplication algorithms for radix-2 RN-codings and two's complement numbers
Keote et al. VLSI design of 64bit× 64bit high performance multiplier with redundant binary encoding
Nagayama et al. Numeric function generators using piecewise arithmetic expressions
Bhongale et al. Review on Recent Advances in VLSI Multiplier
JPH07160476A (ja) 部分積生成回路
Tanaka et al. An efficient diminished-1 modulo 2n+ 1 multiplier using signed-digit number representation
Smyk et al. High-speed binary-to-residue converter design using 2-bit segmentation of the input word
PRIYA et al. Implementation of Redundant Binary High Speed Multipliers with Efficient Partial Product Generator
JAYAKANTH et al. Implementation of Redundant Binary Multipliers with Modified Partial Product Generator
Wei A new residue adder with redundant binary number representation
Nathiya et al. Design of High Throughput Redundant Binary Technique for Image Processing Application
Kumar et al. A design of low power modified Booth multiplier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant