CN113214418A - 一种高孔隙率聚氯乙烯的制备方法 - Google Patents

一种高孔隙率聚氯乙烯的制备方法 Download PDF

Info

Publication number
CN113214418A
CN113214418A CN202110300006.0A CN202110300006A CN113214418A CN 113214418 A CN113214418 A CN 113214418A CN 202110300006 A CN202110300006 A CN 202110300006A CN 113214418 A CN113214418 A CN 113214418A
Authority
CN
China
Prior art keywords
mass
polymerization
polyvinyl chloride
supercritical
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110300006.0A
Other languages
English (en)
Other versions
CN113214418B (zh
Inventor
钱荧辉
赵长森
牛强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Original Assignee
Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd filed Critical Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Priority to CN202110300006.0A priority Critical patent/CN113214418B/zh
Publication of CN113214418A publication Critical patent/CN113214418A/zh
Application granted granted Critical
Publication of CN113214418B publication Critical patent/CN113214418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/147Halogen containing compounds containing carbon and halogen atoms only
    • C08J9/148Halogen containing compounds containing carbon and halogen atoms only perfluorinated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • C08J2203/144Perhalogenated saturated hydrocarbons, e.g. F3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明涉及一种超临界法制备高孔隙率聚氯乙烯的方法,包括以下步骤:以超临界流体为反应介质,以超临界强化剂为辅助剂,在引发剂的作用下,在聚合助剂的存在下,在一定聚合温度、一定聚合压力下,聚合一定时间后,加入终止剂,在一定时间内完成泄压,即可得到高孔隙率聚氯乙烯其孔隙率在0.60m2/g以上。

Description

一种高孔隙率聚氯乙烯的制备方法
技术领域
本发明涉及一种聚氯乙烯的制备方法,尤其是涉及一种超临界法制备高孔隙率聚氯乙烯的方法。
背景技术
聚氯乙烯(PVC)由于其具有优异的阻燃性、耐磨性、耐化学药品性、透明性、电绝缘性等特点,在工业、建筑、农业、包装、电力等领域大量使用,与国外先进技术相比,在生产规模、生产技术、树脂质量、改性技术、树脂应用等方面仍存在一定差距。
目前,悬浮聚合仍是合成PVC树脂的主要方法,在该聚合过程中,氯乙烯(VC)在强烈搅拌和分散体系保护下成为悬浮于连续水相中的液滴,聚合在单体液滴中进行。由于PVC不溶于VC,但却能被VC溶胀,聚合从很低转化率开始即在单体富相和聚合物富相两相中进行,直至单体富相消失。另一方面,PVC分子链在很低转化率时就沉淀出来,逐步聚集形成初级粒子核、初级粒子,当转化率进一步增大时,初级粒子聚并为聚集体,由此得到由初级粒子聚集体组成的带有一定孔隙率的PVC颗粒。初级粒子尺寸及其聚集程度、孔隙率是影响PVC树脂加工性能的重要因素。
为了降低PVC树脂初级粒子聚集程度、提高孔隙率,使其具有优良的加工性能,可以在聚合过程中加入少量油溶性分散剂或表面活性剂、降低聚合温度和转化率等方法,但是,加入少量油溶性分散剂或表面活性剂会增加化学物质在PVC内部残留,减少其应用领域,降低聚合温度会导致PVC的聚合度发生改变,会生产更多的高聚合度PVC,在后加工过程中会产生大量“晶点”,影响其应用性能,降低转化率会导致生产效率的下降,同时,未反应部分的氯乙烯需要经过精制才能重复利用,增加了企业的经营成本,影响经济效益。
中国发明专利CN106432556B-公开了一种超临界法制备氯分布均匀的氯化聚氯乙烯方法,其中阐述了聚氯乙烯的超临界制备方法,将原料加入超临界流体和超临界强化剂中搅拌,温度40-70℃,预处理5-17h即可得到具有无皮或者少皮、孔隙率高、孔隙分布均匀等特点的聚氯乙烯树脂。但其所属于对PVC成品的处理,不涉及化学过程,其聚氯乙烯孔隙率等性能有待进一步提高。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种超临界法制备初级粒子聚集程度低、孔隙率高的氯化聚氯乙烯方法。本方法对原料无要求,可用于制备不同型号的初级粒子聚集程度低、孔隙率高的氯化聚氯乙烯。
本发明的目的可以通过以下技术方案来实现:
本发明提供了一种新的高孔隙率聚氯乙烯的制备方法,其包括下述步骤:以超临界流体为反应介质,以超临界强化剂为辅助剂,在引发剂、聚合助剂下进行聚合反应,聚合结束后,加入终止剂,泄压,即得高孔隙率聚氯乙烯;所述超临界流体的用量为所述VCM树脂质量的0.1~50倍。
优选地,所述的超临界流体包括下述物质中的一种或多种:二氧化碳、水,碳原子数3-12的酮,碳原子数2-16的醚、环醚、冠醚,碳原子数2-5的烯烃,碳原子数2-5的炔烃,卤代乙烯,卤代丙烯,碳原子数0-5的氨类物质;;
优选地,所述超临界流体的用量为所述VCM树脂质量的0.5~10倍,更优选为1~5倍;当选用两种不同结构的超临界流体时,两种结构超临界流体的质量比例优选为0.01~1000,更优选为0.1~500,最优选为10~100。
当选用两种不同结构的溶剂时,可以起到协同作用,大大提高预处理效果。如CO2与酮类物质混用,烯烃与氨类物质混用,水与CO2混用等。
优选地,所述的超临界强化剂包括下述物质中的一种或多种:(1)马来酸酯类;(2)醇类;(3)羧酸酯类;(4)四烷基氢氧化铵;(5)酚类;(6)硫醇;
所述超临界强化剂的用量优选为所述PVC树脂质量的0.1~10%,更优选为0.5~5%。
优选地,所述的引发剂包括偶氮类引发剂、过氧化物类引发剂、氧化-还原类引发剂、活性自由基引发剂。
优选地,述引发剂的用量为本领域中进行氯乙烯聚合反应常规的引发剂用量,优选为氯乙烯质量的0.001%~1.0%,更优选0.01%~0.5%,最优选0.05%~0.2%
当混合使用不同种类引发剂混合时,二者的质量比例一般为0.01:1~100:1,优选0.05:1~50:1,更优选0.1:1~10:1。混合使用时可以是将两者混合后再进行氯化反应,也可以是先加入第一种引发剂,开始聚合反应一段时间后再加入第二种引发剂,加入间隔一般为6h以内,优选0.25~3h,更优选0.5~1h。
优选地,所述的聚合助剂为:(1)脂肪烃类表面活性剂、(2)部分水解的聚乙烯醇(PVA)、(3)羟丙基甲基纤维素(HPMC)、(4)无机硅溶胶中的一种或多种。
优选地,所述的聚合助剂的用量优选为PVC质量的0.001%~1%,更优选0.01%~0.5%,最优选0.1%~0.3%。
优选地,所述的聚合温度优选为25~90℃,更优选为50~60℃。
所述聚合反应可在整个反应过程中维持相同的反应温度,也可以采用程序升温的方式进行加热。本发明中优选连续式程序升温,由自动化仪表按照总反应温度设定控制。
优选地,所述的聚合时间为1.5~40h,更优选为3~10h。
优选地,所述的终止剂为具有如下结构或可以形成如下结构的物质一种或几种:抗氧剂类、醌、硝基、亚硝基、芳基多羟基化合物、及部分含硫化合物;
优选抗氧剂为二烷基二硫代磷酸锌,二烷基二硫代氨基甲酸锌,N-苯基-α-萘胺,烷基吩噻嗪,苯并三氮唑衍生物,巯基苯并噻唑衍生物;
所述终止剂的用量为氯乙烯质量的0.001%~1.0%,更优选0.01%~0.5%,最优选0.05%~0.2%。
本发明中,所述的泄压过程包括:在聚合反应结束后打开反应器的出口阀门,让反应器内的所述多余的超临界流体和超临界强化剂以一定的速度挥发,其挥发速度可以按达到常压的时间来判断,泄压时间为10s以上,优选为10s~30s。挥发出的溶剂根据其沸点的大小,采用冷凝器冷凝回收,以减小成本和对环境的破坏,对于不可挥发的结构改性剂和助剂则保留在PVC树脂内。
本发明的另一目的是提供一种上述任意方法制备的高孔隙率聚氯乙烯,所述高孔隙率聚氯乙烯的孔隙率为0.60m2/g以上,优选为0.60-0.75m2/g。
本发明的有益效果:
(1)超临界流体具有像液体的溶解性和像气体的扩散性,其本身无毒、不燃、廉价、回收简单、使用方便,作为反应介质无需后处理,无废水排放,符合绿色化学要求;
(2)通过辅助剂与超临界流体协同作用,增强超临界流体与PVC分子链的作用,增加分子链间的自由体积,进而提高内部空隙率;
(3)本发明采用新型终止剂,明显提高了PVC的热性能;
(4)本发明还意外发现将泄压时间控制在一定范围内,可明显增加表面皮膜的多孔性,提高PVC树脂内部孔隙率。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
下述实施例中,使用可密封型反应釜(5000mL),VC单体的质量为1.0kg,终止剂加入量为VC单体的0.15%,搅拌10min后泄压,泄压过程中,将混有溶剂和助剂的混合溶剂排出釜体的时间控制在10-300s之间,实施例中其它添加的各原料试剂的配方如表1所示,配比如表2所示,工艺条件如表3所示。
实施例1
将1.0kg PVC树脂粉末放入反应釜中,按表1中第1组配方加入2.5kg超临界流体(C4H9)2NH,50.0g超临界强化剂C5H11COOCHCHCOOC5H11,3.0g引发剂异丙苯过氧化氢,加入1.5g反应助剂HPMC,将反应釜密封,搅拌升温至30℃恒温后,以升温速率为0.4℃/min升温至50℃,聚合压力为10MPa,反应4h后,加入终止剂二烷基二硫代磷酸锌1.5g,搅拌10min后打开阀门在约15s内将溶剂与助剂排放挥发干净,气体进入气体分离和回收系统。所得固体经水洗,干燥,即得到纯净产品PVC。
实施例2-实施例18
参照实施例1中所述方法,根据表1-3中所记载的原料配方配比与工艺工件参数(实施例1对应表1-3中的第1组的数据),分别替换成2-18组的数据,即对应得到实施例2-实施例18。
对比例1
市售符合国标GB/T 5761-2018要求的通用型聚氯乙烯树脂。
对比例2
本发明与实施例1的区别是将终止剂二烷基二硫代磷酸锌调整为丙酮缩氨基硫脲,其余与实施例1保持一致。
对比例3
本发明与实施例1的区别是将泄压时间从15s调整为5s,其余与实施例1保持一致。
Figure BDA0002984541810000051
Figure BDA0002984541810000061
表3工艺条件表
Figure BDA0002984541810000071
效果实施例
PVC性能分析结果
本发明由于使用超临界流体作为反应介质,超临界强化剂作为辅助剂,在引发剂的作用下,在聚合助剂的存在下,在一定聚合温度、一定聚合压力下,一定聚合时间时间后,加入终止剂,在一定时间内完成泄压,得到的PVC树脂的吸油率、热稳定性及N2吸附分析结果较通用PVC树脂均有提高,特别是拉伸强度、冲击强度得到大幅度提升,平均粒径也有一定程度的下降,且分布宽度均在0.500-0.700之间,平均粒径的降低意味着加工效率的提高。结果如表4所示。
表4实施例1-18与对比例1-3制备得到的PVC性能分析结果
Figure BDA0002984541810000072
Figure BDA0002984541810000081
从上表4可以得出,本发明制得的聚氯乙烯树脂吸油率高,比表面积大、孔容大、孔隙率高,同时热稳定性也有很大提高,拉伸强度、冲击强度得到大幅度提升,粒径也有一定程度的降低。实施例1-18制备的聚氯乙烯树脂的吸油率、孔隙率、热分解温度、拉伸强度等性能均明显好于市售的符合国标的通用型树脂,对比例2相比实施例1,将终止剂调整为其他普通终止剂,其得到的聚氯乙烯树脂的孔隙率、吸油率等性能远不如本发明的最终效果。对比例3相比实施例1的区别是将泄压时间缩短,其对制备的聚氯乙烯树脂的性能产生明显影响。
本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种高孔隙率聚氯乙烯的制备方法,包括以下步骤:以超临界流体为反应介质,以超临界强化剂为辅助剂,在引发剂、聚合助剂下进行聚合反应,聚合结束后,加入终止剂,泄压,得高孔隙率聚氯乙烯;所述超临界流体的用量为所述VCM树脂质量的0.1~50倍。
2.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的超临界流体包括下述物质中的一种或多种:二氧化碳、水,碳原子数3-12的酮,碳原子数2-16的醚、环醚、冠醚,碳原子数2-5的烯烃,碳原子数2-5的炔烃,卤代乙烯,卤代丙烯,碳原子数0-5的氨类物质;
优选地,所述超临界流体的用量为所述VCM树脂质量的0.5~10倍,更优选为1~5倍;当选用两种超临界流体时,两种超临界流体的质量比例优选为0.01~1000,更优选为0.1~500,最优选为10~100。
3.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的超临界强化剂包括下述物质中的一种或多种:(1)马来酸酯类;(2)醇类;(3)羧酸酯类;(4)四烷基氢氧化铵;(5)酚类和(6)硫醇;
优选地,所述超临界强化剂的用量优选为所述PVC树脂质量的0.1~10%,更优选为0.5~5%。
4.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的引发剂包括下述物质中的一种或多种:偶氮类引发剂、过氧化物类引发剂、氧化-还原类引发剂和活性自由基引发剂;
优选地,所述引发剂的用量为氯乙烯质量的0.001%~1.0%,更优选0.01%~0.5%,最优选0.05%~0.2%。
5.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的聚合助剂选自脂肪烃类表面活性剂、部分醇解的聚乙烯醇、羟丙基甲基纤维素和无机硅溶胶中的一种;
优选地,所述的聚合助剂的用量优选为PVC质量的0.001%~1%,更优选0.01%~0.5%,最优选0.1%~0.3%。
6.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的聚合温度为25~90℃,优选为50~60℃。
7.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的聚合反应的聚合时间为1.5~40h,更优选为3~10h。
8.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的终止剂为具有如下结构或可以形成如下结构的物质一种或几种:抗氧剂类、醌、硝基、亚硝基、芳基多羟基化合物及部分含硫化合物;优选抗氧剂类为二烷基二硫代磷酸锌,二烷基二硫代氨基甲酸锌,N-苯基-α-萘胺,烷基吩噻嗪,苯并三氮唑衍生物或巯基苯并噻唑衍生物;
优选地,所述终止剂的用量为氯乙烯质量的0.001%~1.0%,更优选0.01%~0.5%,最优选0.05%~0.2%。
9.根据权利要求1所述的高孔隙率聚氯乙烯的制备方法,其特征在于,所述的泄压过程包括:在聚合反应结束后打开反应器的出口阀门,让反应器内的超临界流体和超临界强化剂挥发;泄压时间为10s以上,优选为10s~30s。
10.一种根据权利要求1-9任意一项所述的制备方法制备的高孔隙率聚氯乙烯,所述高孔隙率聚氯乙烯的孔隙率为0.60m2/g以上,优选为0.60-0.75m2/g。
CN202110300006.0A 2021-03-19 2021-03-19 一种高孔隙率聚氯乙烯的制备方法 Active CN113214418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110300006.0A CN113214418B (zh) 2021-03-19 2021-03-19 一种高孔隙率聚氯乙烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110300006.0A CN113214418B (zh) 2021-03-19 2021-03-19 一种高孔隙率聚氯乙烯的制备方法

Publications (2)

Publication Number Publication Date
CN113214418A true CN113214418A (zh) 2021-08-06
CN113214418B CN113214418B (zh) 2022-11-29

Family

ID=77083820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110300006.0A Active CN113214418B (zh) 2021-03-19 2021-03-19 一种高孔隙率聚氯乙烯的制备方法

Country Status (1)

Country Link
CN (1) CN113214418B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678180A (zh) * 2022-10-28 2023-02-03 鄂尔多斯市瀚博科技有限公司 一种高抗冲聚氯乙烯的制备方法
CN116217338A (zh) * 2022-12-02 2023-06-06 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种超临界法化学回收聚氯乙烯树脂的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258910B1 (en) * 1999-06-09 2001-07-10 Occidental Chemical Corporation Polymerizing vinyl chloride in carbon dioxide
CN1597717A (zh) * 2004-08-05 2005-03-23 浙江大学 一种聚氯乙烯树脂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258910B1 (en) * 1999-06-09 2001-07-10 Occidental Chemical Corporation Polymerizing vinyl chloride in carbon dioxide
CN1597717A (zh) * 2004-08-05 2005-03-23 浙江大学 一种聚氯乙烯树脂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JORIS WIEME等: "Importance of Radical Transfer in Precipitation Polymerization:The Case of Vinyl Chloride Suspension Polymerization", 《MACROMOLECULAR REACTION ENGINEERING》 *
管述哲等: "超临界二氧化碳在PVC行业中微孔发泡研究进展", 《山东化工》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678180A (zh) * 2022-10-28 2023-02-03 鄂尔多斯市瀚博科技有限公司 一种高抗冲聚氯乙烯的制备方法
CN115678180B (zh) * 2022-10-28 2024-04-16 鄂尔多斯市瀚博科技有限公司 一种高抗冲聚氯乙烯的制备方法
CN116217338A (zh) * 2022-12-02 2023-06-06 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种超临界法化学回收聚氯乙烯树脂的方法

Also Published As

Publication number Publication date
CN113214418B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN113214418B (zh) 一种高孔隙率聚氯乙烯的制备方法
EP2089437B1 (de) Verfahren zur herstellung von dispersionen und deren verwendung
EP3539995A1 (en) Fluoropolymer disperson obtained with an aqueous polymerisation of fluoromonomer using hydrocarbon surfactant
EP1908792B1 (en) Process for production of coagulated latex particles
US2592526A (en) Process for polymerizing ethylene in aqueous emulsion
AU689621B2 (en) Suspending agent for suspension polymerization of vinyl compound
US4612345A (en) Hydroxypropyl methyl cellulose ethers useful as suspending agents for suspension polymerization of vinyl chloride
JPH0336854B2 (zh)
WO2020007466A1 (de) Wasserlösliche copolymere
CN102952219A (zh) 氯乙烯单体聚合反应体系反应终止方法
CA1280413C (en) Hydroxypropyl methyl cellulose ethers useful as suspending agents for suspension polymerization of vinyl chloride and as thickening agents for organic liquids
EP3617267A1 (en) Vinyl chloride resin latex composition and method for preparing same
CN108586969A (zh) 一种聚氯乙烯/纳米碳酸钙复合树脂的悬浮聚合方法
KR101411098B1 (ko) 부틸 아크릴레이트가 함유된 염화비닐 중합체의 제조방법
CN112759717B (zh) 具有优异抗冲击强度的接枝共聚物的制备方法
JP2002220403A (ja) フッ化ビニリデン重合体及びその製造方法
CN113174003B (zh) 一种嵌段分布均匀的氯醋树脂的制备方法
CA1197034A (en) Vinyl chloride suspension polymerization in presence of eva copolymer
CN108503736B (zh) 一种悬浮法无皮膜pvc树脂及聚合方法
EP4032919A1 (en) Method for preparing vinyl chloride-vinyl acetate copolymer latex
EP2920213B1 (de) Verfahren zur herstellung von polyvinylalkohol-stabilisierten polymerisaten mittels emulsionspolymerisation
WO2019043033A1 (en) PROCESS FOR THE PREPARATION OF STYRENE POLYMERS WITH LOW STABILITY AND STABLE COLOR
CA1250085A (en) Polyvinyl chloride suspension polymerization process and product
JPS6234767B2 (zh)
EP4032920A1 (en) Method for manufacturing vinyl chloride-acryl copolymer latex

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant