CN113209988B - 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用 - Google Patents

一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113209988B
CN113209988B CN202110537033.XA CN202110537033A CN113209988B CN 113209988 B CN113209988 B CN 113209988B CN 202110537033 A CN202110537033 A CN 202110537033A CN 113209988 B CN113209988 B CN 113209988B
Authority
CN
China
Prior art keywords
solution
cadmium sulfide
nanocluster
dimensional
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110537033.XA
Other languages
English (en)
Other versions
CN113209988A (zh
Inventor
肖方兴
梁昊
汤博
刘必坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110537033.XA priority Critical patent/CN113209988B/zh
Publication of CN113209988A publication Critical patent/CN113209988A/zh
Application granted granted Critical
Publication of CN113209988B publication Critical patent/CN113209988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了硫化镉/银纳米团簇光催化剂及其制备方法与应用,本发明通过水热法制备一维硫化镉纳米线、热还原法制备Agx纳米团簇溶液和静电自组装制备硫化镉/银纳米团簇光催化剂,所制备的硫化镉/银纳米团簇光催化剂比硫化镉具有更高的水相光催化还原取代硝基苯性能。本发明方法制备过程简单,反应条件温和,材料可以实现有效回收,对可见光光催化还原具有重要的实际应用价值,有利于环境和能源的可持续发展。

Description

一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制 备方法和应用
技术领域
本发明属于光催化技术领域,具体涉及一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法与应用。
背景技术
在催化反应中,光催化技术作为一项绿色技术,一方面着力于水、空气和土壤等环境污染治理的基础和应用研究;另一方面,也开展了光解水制氢和染料敏化太阳能电池方面的研究。随着该技术的不断发展,将光催化用于水相中有机反应的研究也备受关注,例如光催化还原硝基芳香化合物或者选择性氧化醇到醛,而这些反应产物如胺类或者醛类是一系列重要的化工产品的中间体,可广泛应用于医药、染料、香料、农药和材料等工业领域。
CdS纳米线作为一维纳米结构材料,是研究最多的过渡金属硫化物半导体光催化材料之一。合适的带隙(2.4eV)赋予了CdS纳米线良好的太阳光吸收性能和能级结构,使其在可见光甚至近红外光区都可以触发多种光催化反应。但是其内部的电子空穴对复合速率较快,光生载流子密度低,严重阻碍了光生电子和空穴的有效分离和转移,从而导致它的光催化活性较低。
因此,如何提升光生载流子密度,设计合成高效的硫化镉半导体纳米复合材料,以进一步提高光催化性能具有重要研究意义,同时抑制硫化镉的光腐蚀问题,提高其稳定性,也成为目前研究工作的难点和挑战。
发明内容
本发明的目的在于提供一种生产工艺简单、环境友好、有规则形貌的硫化镉/银纳米团簇光催化剂及其制备方法,以及该光催化剂在光催化还原取代硝基苯到相应胺的应用。
所述的取代硝基苯及相应胺具有如下结构:
Figure BDA0003070179740000011
为实现上述目的,本发明采用如下技术方案:
硫化镉/银纳米团簇光催化剂的制备方法,包括以下步骤:
(1)水热法制备一维硫化镉纳米线:将二乙基二硫代氨基甲酸钠(C2H5)2NCSSNa·3H2O和CdCl2·2.5H2O加入到300-500ml的水里,搅拌30-60min;停止搅拌,静置10-30min,倒掉上澄清液,离心干燥收集白色粉末;称取1.124g所收集的白色粉末转入到水热釜中,加入乙二胺C2H8N2至水热釜容积的80%,搅拌后加热,然后收集水热所得的黄色粉末,并依次用水和乙醇各洗涤三遍,烘干得到一维CdS;
(2)热还原法制备Agx纳米团簇溶液:
将AgNO3溶液和还原型谷胱甘肽溶液加入到200ml的去离子水里(所述的AgNO3溶液和还原型谷胱甘肽溶液的浓度分别为3.4mg/ml和15.37mg/ml),调节溶液pH=11后,将该溶液在60~90℃下加热60min,待溶液自然冷却至室温后,调节溶液pH=3.75;将上述溶液静置24h,离心去除任何沉淀物,得到Agx纳米团簇溶液(X指银纳米团簇的银原子数,与溶液还原温度有关,无具体数值。);
(3)静电自组装制备一维CdS/Agx纳米团簇复合材料:将一维CdS粉末超声分散于去离子水中,接着滴加NH2-CH2-CH2-SH·HCl(缩写MEA,CAS:156-57-0EINECS:205-858-1)溶液,搅拌60min,离心,烘干得到改性的CdS粉末;将改性后的CdS粉末和Agx纳米团簇溶液混合,搅拌30-60min,真空烘干,得到一维CdS/Agx纳米团簇复合材料。
步骤(1),混合溶液中的(C2H5)2NCSSNa·3H2O和CdCl2·2.5H2O的摩尔比为0.5:1,搅拌至乳白色均相溶液。
步骤(1),所述水热釜为50ml,所述加热温度为180℃,所述加热时间为1440min,所述烘干温度为40~60℃,所述烘干时间为6~12h。
步骤(2),所述的AgNO3溶液和还原型谷胱甘肽溶液的浓度分别为3.4mg/ml和15.37mg/ml。
步骤(3)中,一维硫化镉粉末的超声分散时间为10~30min。
步骤(3)中,NH2-CH2-CH2-SH·HCl溶液的浓度为28.40mg/ml。
步骤(3)中,巯基乙胺盐酸盐改性的一维硫化镉烘干温度为60℃,烘干时间为6h。
步骤(3)中,改性后的CdS粉末和Agx纳米团簇溶液混合方式为Agx纳米团簇溶液逐滴滴加到改性后的CdS粉末中,加入速度为20~60ml/h,Agx和硫化镉的质量比为(1~3):1000。
步骤(3)中,一维CdS/Agx纳米团簇复合材料的真空烘干温度为60℃,真空烘干时间为4~6h。
由上述制备方法得到的一维CdS/Agx纳米团簇复合材料。
本发明先通过简单的水热反应制备硫化镉粉末,之后将其超声分散到水中,滴加NH2-CH2-CH2-SH·HCl溶液,使一维硫化镉的表面包覆一层NH2-CH2-CH2-SH,并带上正电荷。之后将带有正电荷的一维硫化镉放入银纳米团簇溶液中分散搅拌均匀,使两者通过静电的作用自组装形成CdS/Agx纳米团簇复合材料。在该材料中,Agx纳米团簇在剧烈搅拌下均匀分散在一维硫化镉表面,同时Agx纳米团簇与一维硫化镉在静电的作用下结合的非常紧密。
本发明提供的基于静电自组装的CdS/Agx纳米团簇复合材料制备方法中,CdS可拓展为其他硫化物(如:Zn0.5Cd0.5S、CdIn2S4、ZnIn2S4等),Agx纳米团簇可以拓展为其他谷胱甘肽包裹的银纳米团簇(如:Ag31、Ag16、Ag9等)。硫化物/谷胱甘肽包裹的银纳米团簇制备方法包括:将硫化物粉末超声分散到水中,加入NH2-CH2-CH2-SH·HCl溶液,搅拌1h后离心烘干。然后将改性后的硫化物粉末分散到谷胱甘肽包裹的银纳米团簇溶液中,搅拌后离心烘干,得到硫化物/银纳米团簇复合材料。
将采用上述本发明制备的硫化镉、巯基乙胺改性的硫化镉、硫化镉/银纳米团簇光催化复合材料用于光催化选择性还原取代硝基苯到相应的胺。
其中,所述硫化镉/银纳米团簇光催化剂在光催化还原硝基芳香化合物上的应用,具体步骤如下:
(1)取一定量的超纯水、光催化剂、对硝基苯胺于反应瓶中,维持室温,搅拌均匀,并在整个反应过程中一直保持N2的通入,营造惰性气氛反应环境。在黑暗状态下吸附一定时间,对硝基苯胺在光催化剂表面达到吸附平衡;
(2)在氮气保护下,打开氙灯光源,在可见光条件(λ>420nm)下进行光催化还原,每隔一定时间后取适量液体,反应结束后,离心,回收催化剂,采用紫外可见吸收光谱对所取液体进行分析。
本发明相对于现有技术的显著优点:
本发明采用以上方法制备硫化镉/银纳米团簇光催化剂,该材料在可见光照射下,通过硫化镉表面电荷改性和静电自组装银纳米团簇,这种复合结构有利于将银纳米团簇上大量光生电子的迁移,而光生空穴能及时迁移到表面负载的银纳米团簇上,从而促进光生电子空穴对的快速迁移和分离,提升光催化剂的光生载流子密度,提高光催化活性和稳定性。
附图说明
图1是静电自组装负载前后Agx纳米团簇溶液的紫外吸收光谱;
图2分别是不同材料的TEM图:(A)一维CdS的SEM图,(B)一维CdS/Agx纳米团簇复合材料;
图3是一维CdS和一维CdS/Agx纳米团簇复合材料的紫外可见漫反射光谱;
图4是一维CdS,巯基乙胺改性的一维CdS和一维CdS/Agx纳米团簇光催化材料可见光还原对硝基苯胺的活性和循环实验。
图5是静电自组装制备的一维硫化镉/银纳米团簇(Ag31/Ag16/Ag9)的可见光还原对硝基苯胺的活性。
具体实施方式
以下采用具体实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
制备一维CdS纳米线
将5.64g(C2H5)2NCSSNa·3H2O和2.86g CdCl2·2.5H2O加入到300-500ml的水里,搅拌30min;停止搅拌,静置30min,倒掉上层清液,离心干燥收集白色粉末;称取1.124g所收集的白色粉末转入到水热釜中,加入40ml C2H8N2至反应釜容积的80%,搅拌后180℃加热1440min,然后收集水热所得的黄色粉末,并依次用水和乙醇各洗涤三遍,60℃8h烘干得到一维CdS纳米线;
将10mg制得的一维CdS催化剂和40mg空穴捕获剂(无水亚硫酸钠)分散于30ml20mg/L的对硝基苯胺溶液中,氮气氛围下暗吸附1小时,置于可见光下(λ>420nm)光照5min,对硝基苯胺的转化率约为4%。
实施例2
制备巯基乙胺改性的一维CdS纳米线
将100mg实施例1制备的一维CdS粉末超声分散到100ml水中,接着滴加9ml0.25mol/ml的NH2-CH2-CH2-SH·HCl溶液,搅拌60min后离心,接着60℃6h烘干得到改性的CdS粉末。
将10mg制得的改性的CdS催化剂和40mg空穴捕获剂(无水亚硫酸钠)分散于30ml20mg/L的对硝基苯胺溶液中,氮气氛围下暗吸附1小时,置于可见光下(λ>420nm)光照5min,对硝基苯胺的转化率约为8%。
实施例3
制备一维CdS/Agx纳米团簇光催化复合材料
将12.5ml 3.4mg/mlAgNO3溶液和7.5ml 15.37mg/ml还原型谷胱甘肽溶液加入到200ml的去离子水里,调节溶液pH=11后,将该溶液在90℃下加热60min,待溶液自然冷却至室温后,调节溶液pH=3.75;将上述溶液静置24h,离心去除任何沉淀物,得到Agx纳米团簇溶液;
将100mg实施例2改性后的CdS粉末和20ml Agx纳米团簇溶液混合,混合方式为Agx纳米团簇溶液逐滴滴加到改性后的CdS粉末中,加入速度为20ml/h,搅拌60min,然后60℃6h真空烘干,得到硫化镉/银纳米团簇复合材料。
将10mg制得的一维CdS/Agx纳米团簇催化剂和40mg空穴捕获剂(无水亚硫酸钠)分散于30ml 20mg/L的对硝基苯胺溶液中,氮气氛围下暗吸附1小时,置于可见光下(λ>420nm)光照5min,对硝基苯胺的转化率>95%。
本发明制备的各材料的相关实验结果如图1-5之一所示。
从图1的Agx纳米团簇溶液负载前后的紫外吸收光谱可以看出,静电自组装负载后的Agx纳米团簇溶液紫外吸收光谱明显下降,说明Agx纳米团簇负载到了一维硫化镉上。
从图2的TEM图可以看出,通过静电自组装一维CdS和Agx纳米团簇,一维硫化镉表面均匀负载了2~3nm的Agx纳米团簇,这也进一步说明Agx纳米团簇已经成功负载到了一维CdS的表面。
图3,不同材料的紫外可见漫反射光谱图说明负载Agx纳米团簇可以明显增强一维硫化镉在可见光的吸收性能。
图4,不同光催化材料的可见光还原对硝基苯胺活性和循环实验,一维CdS/Agx纳米团簇复合材料具有更高的光催化还原芳香族硝基化合物活性,且循环稳定。
图5,基于静电自组装制备的硫化镉/银纳米团簇(Ag31/Ag16/Ag9)的可见光还原对硝基苯胺的活性,可以看出负载银纳米团簇后光催化还原性能明显提升。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种基于静电自组装的硫化镉/银纳米团簇光催化剂的制备方法,其特征在于:通过水热法制备一维硫化镉纳米线、热还原法制备Agx纳米团簇溶液,然后利用巯基乙胺改性一维硫化镉纳米线,再静电自组装制备硫化镉/银纳米团簇光催化剂;
所述水热法制备一维硫化镉纳米线具体为:将(C2H5)2NCSSNa·3H2O和CdCl2·2.5H2O加入到300-500 ml的水里,搅拌30-60 min;停止搅拌,静置10-30 min,倒掉上层清液,离心干燥收集白色粉末;称取1.124 g所收集的白色粉末转入到水热釜中,加入乙二胺C2H8N2至反应釜容积的80%,搅拌后加热,然后收集水热所得的黄色粉末,并依次用水和乙醇各洗涤三遍,烘干得到一维CdS纳米线;
所述静电自组装制备硫化镉/银纳米团簇光催化剂具体为:将一维CdS粉末超声分散于去离子水中,接着加入NH2-CH2-CH2-SH·HCl溶液,搅拌60min,离心,烘干得到改性的CdS粉末;将改性后的一维硫化镉粉末和热还原法制备的Agx纳米团簇溶液混合,搅拌30-60min,真空烘干,得到一维硫化镉/银纳米团簇光催化剂;一维硫化镉粉末的超声分散时间为10~30min;其中NH2-CH2-CH2-SH·HCl溶液的浓度为28.40mg/ml;烘干得到改性的CdS粉末的具体烘干温度为60℃,烘干时间为6h;改性后的CdS粉末和Agx纳米团簇溶液混合方式为Ag纳米团簇溶液逐滴滴加,加入速度为20~60ml/h, Agx和硫化镉的质量比为(1~3):1000;一维硫化镉/银纳米团簇复合材料的真空烘干温度为60℃,真空烘干时间为4~6h。
2.根据权利要求1所述的制备方法,其特征在于:所述(C2H5)2NCSSNa·3H2O和CdCl2·2.5H2O的摩尔比为0.5:1,搅拌至乳白色均相溶液。
3.根据权利要求1所述的制备方法,其特征在于:水热法制备一维硫化镉纳米线中所述水热釜为50ml,所述加热温度为180℃,所述加热时间为1440min,所述烘干温度为40~60℃,所述烘干时间为6~12h。
4.根据权利要求1所述的制备方法,其特征在于:所述热还原法制备Agx纳米团簇溶液具体为:将AgNO3溶液和还原型谷胱甘肽溶液加入到200ml的去离子水里,调节溶液pH=11后,将该溶液在60~90°C下加热60min,待溶液自然冷却至室温后,调节溶液pH=3.75;将上述溶液静置24h,离心去除任何沉淀物,得到Agx纳米团簇溶液。
5.根据权利要求4所述的制备方法,其特征在于:所述的AgNO3溶液和还原型谷胱甘肽溶液的浓度分别为3.4mg/ml和15.37mg/ml。
6.如权利要求1-5中任意一项所述制备方法得到的硫化镉/银纳米团簇光催化剂。
7.如权利要求1-5中任意一项所述制备方法得到的硫化镉/银纳米团簇光催化剂在光催化还原硝基芳香化合物的应用。
CN202110537033.XA 2021-05-18 2021-05-18 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用 Active CN113209988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110537033.XA CN113209988B (zh) 2021-05-18 2021-05-18 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110537033.XA CN113209988B (zh) 2021-05-18 2021-05-18 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113209988A CN113209988A (zh) 2021-08-06
CN113209988B true CN113209988B (zh) 2022-07-12

Family

ID=77092534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110537033.XA Active CN113209988B (zh) 2021-05-18 2021-05-18 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113209988B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100678A (zh) * 2021-11-12 2022-03-01 闽都创新实验室 MXene量子点敏化聚二烯丙基二甲基氯化铵修饰的硫化铟锌光催化剂及其制备和应用
CN114655978B (zh) * 2022-03-01 2023-10-10 汕头大学 一种空心分级异质结构三组分硫化物光电材料的制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207081B1 (en) * 2008-11-08 2012-06-26 University Of Central Florida Research Foundation, Inc. Nanocomposite for photocatalytic Hydrogen production and method for its preparation
CN103934469A (zh) * 2014-04-03 2014-07-23 湖北大学 一种谷胱甘肽包裹的银纳米团簇制备方法
CN105413712A (zh) * 2015-11-09 2016-03-23 福州大学 金纳米棒-CdS-金纳米粒子复合光催化剂和应用
CN106732664A (zh) * 2017-01-16 2017-05-31 安庆师范大学 复合金纳米团簇抑制硫化镉光腐蚀的方法及其制备方法
CN109174123A (zh) * 2018-07-27 2019-01-11 广东工业大学 一种Z型CdS-Ag-TiO2复合光催化材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207081B1 (en) * 2008-11-08 2012-06-26 University Of Central Florida Research Foundation, Inc. Nanocomposite for photocatalytic Hydrogen production and method for its preparation
CN103934469A (zh) * 2014-04-03 2014-07-23 湖北大学 一种谷胱甘肽包裹的银纳米团簇制备方法
CN105413712A (zh) * 2015-11-09 2016-03-23 福州大学 金纳米棒-CdS-金纳米粒子复合光催化剂和应用
CN106732664A (zh) * 2017-01-16 2017-05-31 安庆师范大学 复合金纳米团簇抑制硫化镉光腐蚀的方法及其制备方法
CN109174123A (zh) * 2018-07-27 2019-01-11 广东工业大学 一种Z型CdS-Ag-TiO2复合光催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113209988A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
Wu et al. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation
Sun et al. Dodecylamine coordinated tri-arm CdS nanorod wrapped in intermittent ZnS shell for greatly improved photocatalytic H2 evolution
Sun et al. Recent advances in quantum dots photocatalysts
CN113209988B (zh) 一种基于静电自组装的硫化镉/银纳米团簇光催化剂及其制备方法和应用
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
Li et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: Insight into the effect of graphene coupling
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
Bariki et al. In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH2)/CdIn2S4/CaIn2S4 heterostructure with dual S-scheme engineering for photocatalytic renewable H2 production and asulam degradation
WO2021212923A1 (zh) 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
Sun et al. Fabricating nitrogen-doped carbon dots (NCDs) on Bi3. 64Mo0. 36O6. 55 nanospheres: a nanoheterostructure for enhanced photocatalytic performance for water purification
CN110624595A (zh) 一种钙铟硫/碳化钛光催化复合材料及其制备方法
CN112642483A (zh) 一种N-GQDs-PS@CdS核壳纳米催化剂及其制备方法与应用
CN111804343A (zh) 一种金属有机骨架材料封装金/二氧化钛复合光催化材料及其制备方法和应用
Ashfaq et al. Review of different CdS/TiO2 and WO3/g-C3N4 composite based photocatalyst for hydrogen production
Nagappagari et al. Upgraded charge transport in g-C3N4 nanosheets by boron doping and their heterojunction with 3D CdIn2S4 for efficient photodegradation of azo dye
Roshdy et al. Novel polyaniline/tungsten trioxide@ metal–organic framework nanocomposites for enhancing photodegradation of 4-nitrophenol
Du et al. 0D/2D Z-schemed carbon nitride quantum dots/Bi2MoO6-x with enhanced carriers’ separation efficiency toward oxidation coupling of amines under ambient conditions
CN114100678A (zh) MXene量子点敏化聚二烯丙基二甲基氯化铵修饰的硫化铟锌光催化剂及其制备和应用
Wang et al. A strategy of adjusting band alignment to improve photocatalytic degradation and photocatalytic hydrogen evolution of CuSbS2
CN108855190A (zh) 一种叶绿素铜三钠和曙红共敏化的Ag-g-C3N4光催化材料的制备方法及其应用
CN110586060B (zh) 一种具有氧化-还原性能的复合光催化剂及其制备方法
Zhao et al. Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction
CN102580727A (zh) 一种活性炭负载二氧化钛掺银光催化剂的制备方法
CN110124701A (zh) 一种二硫化钼量子点/二氧化钛纳米片复合光催化剂的制备方法及其应用
CN109499594B (zh) 一种CdIn2S4纳米八面体修饰Ta3N5核壳复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant