CN113193865A - Level shift circuit suitable for GaN half-bridge grid drive - Google Patents

Level shift circuit suitable for GaN half-bridge grid drive Download PDF

Info

Publication number
CN113193865A
CN113193865A CN202110493755.XA CN202110493755A CN113193865A CN 113193865 A CN113193865 A CN 113193865A CN 202110493755 A CN202110493755 A CN 202110493755A CN 113193865 A CN113193865 A CN 113193865A
Authority
CN
China
Prior art keywords
tube
drain electrode
electrode
pmos
pmos tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110493755.XA
Other languages
Chinese (zh)
Other versions
CN113193865B (en
Inventor
明鑫
秦尧
刘媛媛
孙天一
王卓
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110493755.XA priority Critical patent/CN113193865B/en
Publication of CN113193865A publication Critical patent/CN113193865A/en
Application granted granted Critical
Publication of CN113193865B publication Critical patent/CN113193865B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

The invention belongs to the technical field of power supplies, and particularly relates to a level shift circuit suitable for GaN half-bridge gate driving. The level shift circuit provided by the invention effectively avoids the limitation of a large voltage dynamic range on the LDMOS parasitic capacitor to the speed by a mode of the synergistic action of the active clamping level shift circuit controlled by the PWM signal and the acceleration module controlled by the short pulse, and realizes high-speed level conversion. Meanwhile, a node which is relatively low in the circuit and has large parasitic capacitance is separated from the output through the decoupling accelerating circuit, logic error overturn caused by charging and discharging of the parasitic capacitance relative to the ground is effectively avoided in the dV/dt conversion process, and the dV/dt noise suppression capability is improved.

Description

Level shift circuit suitable for GaN half-bridge grid drive
Technical Field
The invention belongs to the technical field of power supplies, and particularly relates to a level shift circuit suitable for GaN half-bridge gate driving.
Background
GaN power devices have smaller on-resistance and parasitic capacitance than Si MOSFET power devices and have been considered as a good solution to miniaturize power supply systems. As a core module in the GaN half-bridge gate driving circuit, the speed of a level shift circuit and the dV/dt interference resistance of a floating power supply rail directly determine the working frequency and the reliability of the GaN half-bridge gate driving circuit. The GaN gate driving circuit generally has a switching frequency as high as several MHz to several tens MHz, which makes the transmission delay of the GaN gate driving circuit as low as ten and several nanoseconds. Due to the extremely low parasitic capacitance of the GaN power device, the switching speed of the GaN half-bridge switching node reaches 200V/ns or even higher, and the GaN gate driving circuit needs to be capable of reliably working at such a high switching speed of the switching node. Therefore, the extremely low transmission delay and the extremely high floating power rail switching speed of the GaN half-bridge gate driving circuit require the level shift circuit to have high speed and high anti-floating power rail dV/dt capability at the same time.
In the GaN half-bridge gate drive shown in fig. 1, the level shift circuit usually uses NLDMOS as a bridge between the low voltage domain and the high voltage domain to realize the conversion of signal from the low voltage domain to the high voltage domain. In the high-voltage BCD process or the high-voltage CMOS process, the parasitic capacitance CP between the NLDMOS drain and the substrate and the large voltage dynamic range on CP are limiting factors for the speed of the level shift circuit. In the switching process of the switching node, the high-side floating power supply VHB can generate charging and discharging current IP to the CP, and the IP can generate undershoot or overshoot at the output after flowing through the output impedance of the level shift circuit. When the dV/dt of the switch node is high, the IP is large, and the undershoot and the overshoot can touch the overturning threshold value of the rear-stage logic circuit, so that the GaN power tube is mistakenly started or mistakenly turned off, and system faults are caused.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the limitation of parasitic capacitance between an NLDMOS tube drain electrode and a substrate in the level shift circuit on the circuit transmission speed and the dV/dt interference resistance, the level shift circuit which is suitable for a GaN half-bridge gate driving circuit and has high speed and high dV/dt interference resistance is provided, low transmission delay and high dV/dt interference resistance can be realized at the same time, and the harsh requirements of high-frequency and high-reliability operation of the GaN half-bridge gate driving circuit on the level shift circuit are met. The circuit structure comprises an active clamping level shift circuit, an acceleration module and a short pulse generation circuit.
The technical scheme of the invention is as follows:
a level shift circuit suitable for GaN half-bridge grid driving comprises a first PMOS (P-channel metal oxide semiconductor) tube, a second PMOS tube, a third PMOS tube, a fourth PMOS tube, a fifth PMOS tube, a sixth PMOS tube, a seventh PMOS tube, an eighth PMOS tube, a ninth PMOS tube, a tenth PMOS tube, a first NOMS tube, a second NOMS tube, a third NOMS tube, a fourth NOMS tube, a fifth NOMS tube, a sixth NOMS tube, a seventh NOMS tube, an eighth NOMS tube, a ninth NOMS tube, a tenth NOMS tube, an eleventh NOMS tube, a twelfth NOMS tube, a thirteenth NOMS tube, a fourteenth NOMS tube, a fifteenth NMOS tube, a sixteenth NMOS tube, a first PLDMOS tube, a second PLDMOS tube, a first NLDMOS tube, a second NLDMOS tube, a third DMOS NLDMOS tube, a fourth NLDMOS tube, a first resistor, a second resistor, a third resistor, a fourth resistor, a first short pulse generation circuit and a non-gate generation circuit, as shown in FIG 2; wherein,
the source electrode of the first PMOS tube is connected with the power supply, and the grid electrode of the first PMOS tube is connected with the first input end; the drain electrode of the first NMOS tube is connected with the drain electrode of the first PMOS tube, the grid electrode of the first NMOS tube is connected with the first input end, and the source electrode of the first NMOS tube is grounded;
the source electrode of the second PMOS tube is connected with the power supply, and the grid electrode of the second PMOS tube is connected with the second input end; the drain electrode of the second NMOS tube is connected with the drain electrode of the second PMOS tube, the grid electrode of the second NMOS tube is connected with the second input end, and the source electrode of the second NMOS tube is grounded;
the connection point of the grid electrode of the first PMOS tube and the grid electrode of the first NMOS tube is connected with the input end of the NOT gate, and the output end of the NOT gate is connected with the connection point of the grid electrode of the second PMOS tube and the grid electrode of the second NMOS tube;
the source electrode of the third PMOS tube is connected with the high-side floating power supply, and the grid electrode of the third PMOS tube is connected with the drain electrode of the fourth PMOS tube after passing through the fourth resistor; the source electrode of the fourth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the fourth PMOS tube is connected with the drain electrode of the third PMOS tube after passing through the third resistor;
the drain electrode of the third NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, the grid electrode of the third NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the source electrode of the third NMOS tube is connected with the high-side floating ground; the drain electrode of the fourth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, the grid electrode of the fourth NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the source electrode of the fourth NMOS tube is connected with a high-side floating ground;
the drain electrode of the fifth NMOS tube is connected with the drain electrode of the third PMOS tube, the grid electrode of the fifth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the source electrode of the fifth NMOS tube is connected with the high-side floating ground; the drain electrode of the sixth NMOS tube is connected with the drain electrode of the fourth PMOS tube, the grid electrode of the sixth NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the source electrode of the sixth NMOS tube is connected with a high-side floating ground;
the drain electrode of the seventh NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the grid electrode and the drain electrode of the seventh NMOS tube are both connected with the high-side floating ground; the drain electrode of the eighth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the grid electrode and the drain electrode of the eighth NMOS tube are both connected with a high-side floating ground;
one end of the first resistor is connected with the drain electrode of the seventh NMOS tube, and the other end of the first resistor is connected with the high-side floating ground; the source of the first PLDMOS tube is connected with one end of the first resistor, and the grid of the first PLDMOS tube is connected with the high-side floating ground; the drain electrode of the first NLDMOS tube is connected with the drain electrode of the first PLDMOS tube, the grid electrode of the first NLDMOS tube is connected with the power supply, and the source electrode of the first NLDMOS tube and the source electrode of the ninth NMOS tube are connected with the drain electrode of the first NMOS tube; the drain electrode of the ninth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the ninth NMOS tube are interconnected;
one end of the second resistor is connected with the high-side floating power supply, and the other end of the second resistor is connected with the drain electrode of the eighth NMOS tube;
the source electrode of the second PLDMOS tube is connected with the drain electrode of the eighth NMOS tube, and the grid electrode of the second PLDMOS tube is connected with the high-side floating ground; the drain electrode of the second NLDMOS tube is connected with the drain electrode of the second PLDMOS tube, the grid electrode of the second NLDMOS tube is connected with the power supply, and the source electrode of the second NLDMOS tube and the source electrode of the tenth NMOS tube are connected with the drain electrode of the second NMOS tube; the drain electrode of the tenth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the tenth NMOS tube are interconnected;
the source electrode of the fifth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the fifth PMOS tube is interconnected with the drain electrode of the fifth PMOS tube; the source electrode of the sixth PMOS tube is connected with the high-side floating power supply, the grid electrode of the sixth PMOS tube is connected with the drain electrode of the fifth PMOS tube, and the drain electrode of the sixth PMOS tube is connected with the source electrode of the first PLDMOS tube; the source electrode of the seventh PMOS tube is connected with the high-side floating power supply, the grid electrode of the seventh PMOS tube is connected with the drain electrode of the fifth PMOS tube, and the drain electrode of the seventh PMOS tube is connected with the drain electrode of the third PMOS tube;
the drain electrode of the eleventh NMOS tube is connected with the drain electrode of the fifth PMOS tube, and the grid electrode and the source electrode of the eleventh NMOS tube are both connected with the high-side floating ground;
the drain electrode of the third NLDMOS tube is connected with the drain electrode of the fifth PMOS tube, the grid electrode of the third NLDMOS tube is connected with the power supply, and the source electrode of the third NLDMOS tube and the source electrode of the twelfth NMOS tube are connected with the drain electrode of the thirteenth NMOS tube; the drain electrode of the twelfth NMOS tube is connected with the power supply, and the grid electrode of the twelfth NMOS tube is interconnected with the source electrode of the twelfth NMOS tube; the grid electrode of the thirteenth NMOS tube is connected with the output of the first short pulse generating circuit, and the source electrode of the thirteenth NMOS tube is grounded;
the source electrode of the eighth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the eighth PMOS tube is interconnected with the drain electrode of the eighth PMOS tube; the source electrode of the ninth PMOS tube is connected with the high-side floating power supply, the grid electrode of the ninth PMOS tube is connected with the drain electrode of the eighth PMOS tube, and the drain electrode of the ninth PMOS tube is connected with the source electrode of the second PLDMOS tube; the source electrode of the tenth PMOS tube is connected with the high-side floating power supply, the grid electrode of the tenth PMOS tube is connected with the drain electrode of the eighth PMOS tube, and the drain electrode of the tenth PMOS tube is connected with the drain electrode of the fourth PMOS tube;
the drain electrode of the fourteenth NMOS tube is connected with the drain electrode of the eighth PMOS tube, and the grid electrode and the source electrode of the fourteenth NMOS tube are both connected with the high-side floating ground;
the drain electrode of the fourth NLDMOS tube is connected with the drain electrode of the eighth PMOS tube, the grid electrode of the fourth NLDMOS tube is connected with the power supply, and the source electrode of the fourth NLDMOS tube and the source electrode of the fifteenth NMOS tube are connected with the drain electrode of the sixteenth NMOS tube; the drain electrode of the fifteenth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the fifteenth NMOS tube are interconnected; the grid electrode of the sixteenth NMOS tube is connected with the output of the second short pulse generating circuit, and the source electrode of the sixteenth NMOS tube is grounded;
the connection point of the drain electrode of the third PMOS tube, the drain electrode of the fifth NMOS tube and the drain electrode of the seventh PMOS tube is a first output end; and the connection point of the drain electrode of the fourth PMOS tube, the drain electrode of the tenth PMOS tube and the sixth NMOS tube is a second output end.
Furthermore, the first short pulse generating circuit comprises a first inverter, a second inverter, a third inverter, an AND gate and a capacitor, wherein the first inverter, the second inverter and the third inverter are sequentially connected in series, the input end of the first inverter is connected with the second input end, the connection point of the second inverter and the third inverter is grounded through the capacitor, one input end of the AND gate is connected with the second input end, the other input end of the AND gate is connected with the output end of the third inverter, and the output end of the AND gate is the output end of the first short pulse generating circuit; the second short pulse generating circuit has the same structure as the first short pulse generating circuit, except that the input of the second short pulse generating circuit is the first input terminal.
The invention has the beneficial effects that: in the dV/dt conversion process, a node with large parasitic capacitance relative to a substrate is separated from an output node by adopting a resistance decoupling latch, and the output logic state is kept unchanged by a decoupling acceleration circuit. The influence of parasitic current caused by dV/dt on output is completely blocked, the dV/dt resistance of the level shift circuit is not limited by parasitic capacitance of a relative substrate in the LDMOS and the on-resistance of a charging and discharging path of the parasitic capacitance, and the dV/dt resistance is remarkably improved. The accelerating module and the active clamping level shift circuit work cooperatively, so that the limitation of a large voltage dynamic range on a parasitic capacitor between the drain terminal of the LDMOS and the substrate on the circuit speed is eliminated, and high-speed signal transmission is realized.
Drawings
The parasitic capacitance of the NLDMOS relative to the substrate in the level shift circuit in the figure 1 limits the GaN gate drive delay and the dV/dt resistance.
FIG. 2 is a circuit diagram of a high speed high dV/dt suppression capability level shift circuit suitable for GaN gate drive.
FIG. 3 is a waveform diagram of the operation of a high speed high dV/dt suppression capability level shift circuit suitable for GaN gate driving according to the present invention.
Fig. 4 is a schematic diagram of the operation of the high-speed high dV/dt suppression capability level shift circuit for GaN gate driving during dV/dt conversion of the floating power rail according to the present invention, wherein (a) is a schematic diagram and (b) is a waveform diagram during the conversion.
FIG. 5 is a simulation diagram of a high speed high dV/dt suppression capability level shift circuit suitable for GaN gate drive during dV/dt conversion of a floating power rail.
Detailed Description
The technical scheme of the invention is described in detail below with reference to the accompanying drawings:
fig. 2 shows a circuit structure of the level shift circuit of the present invention. The circuit consists of an active clamping level shift circuit, an acceleration module and a short pulse generation circuit. The active clamp level shift circuit includes a resistor decoupling latch. The resistor decoupling latch and the acceleration module form a decoupling acceleration circuit.
In the resistor decoupling latch, a source end and an output end of the PLDMOS with large parasitic capacitance relative to the ground are separated by using a resistor to block a ground V of a high-side floating power supplySWThe effect of parasitic currents on the output logic state caused when a dV/dt transition occurs. The acceleration module charges and discharges a parasitic capacitance of the active clamp level shift circuit relative to ground in the process of dV/dt conversion of the floating power rail.
The accelerating module is also used for improving the transmission speed of the active clamping level shift circuit. The low-speed active clamping level shift circuit is controlled by an input PWM signal, the high-speed acceleration module is controlled by a short pulse, and when signal transmission between power rails occurs, the output state is rapidly changed under the synergistic effect of the input PWM signal and the short pulse, so that high-speed signal transmission is realized. The active clamp level shifting circuit is used for establishing and maintaining an output state, and the accelerating module is used for establishing the output state.
FIG. 2 shows a circuit diagram of a high speed high dV/dt suppression capability level shift circuit suitable for GaN gate drive according to the present invention. The NLDMOS tubes M5, M6, M17 and M18 and the PLDMOS tubes M7 and M8 are used for bearing high pressure. The input tubes M1, M2, M3, M4, M15 and M16 are low-voltage non-isolated MOSFETs. The M3 pipe and the M4 pipe are used for rapidly switching off the M5 pipe and the M6 pipe, so that the rising speed of the nodes N5 and N6 is increased. The MD1, MD2, MD3 and MD4 are low-voltage isolation type NMOS tubes with short-circuited gates and sources, and body diodes of the low-voltage isolation type NMOS tubes are used for clamping drain nodes of input tubes to avoid gate oxide breakdown of the input tubes. The devices in the shaded portion are low voltage isolated transistors and resistors, which are placed in an isolated deep N-well. The body diodes of transistors MD5, MD6, MD7, and MD8 are used to charge the parasitic capacitances at nodes N1, N2, N3, and N4 with respect to ground and protect the gate oxide of the low voltage isolation transistors. The resistor decoupling latch is composed of resistors R3 and R4 and transistors M9, M10, M11, M12, M13 and M14, and R3 and R4 are respectively connected with a resistor R3 and a resistor R4Nodes N1, N2, and VOUT、VOUT-Separately, the effects of the floating supply rail dV/dt noise on the output can be effectively masked. Transistors M13 and M14 are used for fast pulldown VOUTAnd VOUT-. Resistors R1 and R2 are initialization resistors for the resistive decoupling latch.
The specific operation waveform of the circuit is shown in fig. 3. The active clamping circuit is controlled by a gate drive input PWM signal, and the acceleration module is controlled by a short pulse generated by the PWM signal through the short pulse generating circuit. The circuit operation is divided into two stages of output state establishment and output state maintenance. In the process of establishing the output state, when VINWhen turning from low to high, the transistor M1,M5And M7The pull-down path is configured to generate a pull-down current I applied to node N1down。VINAfter passing through a short pulse generating circuit, VP1From low to high, the acceleration module is started and acts on V through the current mirrorOUT-And pull-up current I of node N2up1And Iup. In Iup1、IupAnd IdownThe output state of the resistive decoupling latch can be rapidly flipped under the combined action of (a) and (b). When the short pulse signal VP1At the end of the high level duration, the acceleration module is switched off, Iup1And IupThe voltage is reduced to zero, the circuit enters an output state maintaining stage, the output state is kept unchanged only by the active clamping level shifting circuit in the stage, and no static current is generated. In the same way, VIN-Control level shift circuit output generation and VINThe resulting logic states are controlled to the opposite state.
When the acceleration module is turned off, it needs to be ensured that the active clamp level shift circuit can be turned over to its equilibrium state under the action of the input PWM signal. When the active clamp level shift circuit is in the equilibrium state, as shown in FIG. 2, the potentials of the nodes N1 and N2 are equal, and V isOUTAnd VOUT-The potentials are equal, and the potential at the node N5 or N6 rises slowly. R3And R4So that the active clamp level shift circuit can use a smaller pull-down current IdownWill output VOUTOr VOUT-Turned to approach VHB. When V isOUT-VSWAnd VN1-VSWIs logic high, VOUT--VSWAnd VN2-VSWIs logic low, IdownPull-down N1 nodes and VOUTWhen, assume M7The gate-source voltage of the tube is V and is increased by M12Pipe, R4And M10The inverter is formed with a flip threshold of VT1From M12,M14The inverter is formed with a flip threshold of VT2,VHBAnd VSWDifferential pressure of VDDH,R3And R4Has a value of Rdec. To ensure the pull-down current IdownThe latch state of the resistive decoupling inverter can be broken, and the following holds:
V<VT1<VT2 (1)
Figure BDA0003053459520000061
Figure BDA0003053459520000062
wherein VthnAnd VthpdRespectively represent the threshold voltages of the low-voltage NMOS tube and the PLDMOS tube according to (1) - (3), RdecThe requirements are satisfied:
Figure BDA0003053459520000063
as shown in FIG. 3, let T0For transmission delay of the short pulse generating circuit, T1For starting up from the acceleration module to generating a pull-up current Iup1And IupTime delay of (T)2Generating a voltage V to node N2 for pull-up currentN2Time delay of the turn-up, T3Is a VN2Is turned up to VOUT-VSWA reduced latency. Level shift circuit output falling edge transmission delay TDFExpressed as:
TDF=T0+T1+T2+T3 (5)
let the transmission delay of the input inverter be T5Due to VOUTRelative VSWIs smaller than the parasitic capacitance of the node N1 or N2 from VP2Is turned up to VOUT-VSWThe transmission delay of the turn-up is less than T1+T2. Level shift circuit output rising edge transmission delay TDRExpressed as:
TDR<T5+T0+T1+T2 (6)
T3determined by the positive feedback capability of the resistive decoupling latch, and T3≈T5. Therefore, the rising edge propagation delay of the level shift circuit is smaller than the falling edge propagation delay.
As shown in fig. 3, the output VOUT-VSWIn the process of turning down, when VN2Quilt IupIs pulled up to approach VHBAnd then, the output state of the level shift circuit is established. M in the saturation region at this time8Parasitic capacitance C of the transistor-to-node N6N6Charging when the potential V of the node N6N6Close to VHBWhen M is in contact with8The tube enters a deep linear region, and the active clamping level shift circuit completes state conversion. VN6Rise from GND to VHBTime T of4Comprises the following steps:
Figure BDA0003053459520000071
wherein L ispdIs the fixed channel length, W, of the PLDMOS in the high voltage CMOS processndAnd WpdRespectively NLDMOS tube M6、M5And a PLDMOS tube M8、M7Channel width of (1), K1,K2And K3Is a process dependent constant. Vp1And Vp2Pulse width T ofp≧T1+T2+T4Due to T1And T2Much less than T4The minimum short pulse width is T4Determining, according to formula (7), M6And M5The tube adopts minimum channel width and increases M8Pipe and M7The channel width of the tube is beneficial to reducing the short pulse width, and further reduces the power consumption of the circuit. Thus, a PLDMOS tube M7And M8The choice of channel width presents a tradeoff between power consumption and layout area.
Fig. 4(a), 4(b) show the working principle and waveform diagram of the decoupling acceleration circuit during the positive dV/dt and negative dV/dt transition of the floating power rail. Before positive dV/dt conversion, VOUT-VSWAnd VN1-VSWIs a logic high level, VOUT--VSWAnd VN2-VSWIs a logic low level. When the positive dV/dt slew rate of the floating supply rail is high, M is at node N3D5And M19Parasitic capacitance C to node N3 with respect to the substrateN3Charging, at node N4, MD6Body diode and M of a tube20Parasitic capacitance C to node N4 with respect to the substrateN4And (6) charging. At node N1, by M21Parasitic charging current I generated by tubeP1Is not sufficient to fully provide the parasitic capacitance C of N1 with respect to the substrateN1At this time MD7Body diode of tube and transistor M21、M11、M23Common pair CN1Charging, VN1-VSWBecomes a logic low level. Symmetrically, at node N2, MD8Body diode of tube and transistor M22、M12、M24Common pair CN2Charging, VN2-VSWRemains at logic low. RdecAnd M11(M12)、M23(M24) On-resistance of (a) determines VOUTAnd VOUT-The potential of (2). To ensure VOUT-VSWRemains at logic high level, RdecThe requirements are satisfied:
Figure BDA0003053459520000072
wherein R is11And R23Each represents M11(M12) And M23(M24) On-resistance of VTIs a flip threshold of a subsequent stage logic circuitValue VDIs the body diode forward voltage drop. Due to circuit symmetry, when VOUT-VSWWhile maintaining a logic high level, VOUT--VSWAlso becomes a logic high level. When the dV/dt conversion process is over, transistor M is shown in FIG. 4(b) due to current mirror bandwidth limitations21-M24Will not turn off immediately, M21And M22Are respectively to CN1And CN2Charging, VN1-VSWAnd VN2-VSWWill be higher than VT2,M23And M24Avoid VOUT-VSWAnd VOUT--VSWChanging to a logic low. When M is21-M24When the gate-source voltage of (1) is gradually decreased, VN1-VSWAnd VN2-VSWGradually falls below VT2When the active clamping level shift circuit enters an equilibrium state, VOUT-VSWAnd VOUT--VSWStill remains logic high, M7Parasitic capacitance C of the tube-to-tube node N5 with respect to the substrateN5Charging when M is7When entering the deep linear region, VN1-VSWRises above VT2,VOUT--VSWReverting to a logic high level.
Before negative dV/dt conversion, VOUT-VSWAnd VN1-VSWBecomes a logic low level, VOUT--VSWAnd VN2-VSWBecomes a logic high level. When the floating supply rail negative dV/dt slew rate is high, C is at nodes N3 and N4N3And CN4Respectively pass through M19Pipe and M20Body diode direction V of tubeHBAnd (4) discharging. At node N1, CN1Discharge current I ofP3Very large, CN3By M21Body diode of, M9Tube and resistor R3、M13Discharge of the series path formed by the tubes, VN1-VSWBecomes a logic high level. At node N2, CN2By M22Body diode of, M10Tube and resistor R4、M14Discharge of the series path formed by the tubes, VN2-VSWIs maintained asA logic high level. To ensure VOUT-VSWRemains at a logic low level, RdecThe requirements are satisfied:
Figure BDA0003053459520000081
wherein R is13Is a transistor M13、M14The on-resistance of (1). When V isOUT-VSWWhen held at logic low, VOUT--VSWAlso becomes a logic low. After the negative dV/dt conversion is over, at M7And under the action of a resistive decoupling latch, VN1-VSWReverting to a logic low level, VOUT--VSWReverting to a logic high level. The combination of the three formulas (4), (8) and (9) and the decoupling resistance value RdecThe requirements are satisfied:
Rdec(min)>max[Rdec1,Rdec2,Rdec3] (10)
when the floating supply rail positive dV/dt slew rate is low, M is at node N121The pipe can be paired with CN1And CN5Providing a sufficiently large charging current, VN1-VSWHigher than VT2. At node N2, M22dV/dt parasitic current pairs C in the tubeN2Charging, residual current flowing through M10The on-resistance of the tube. M24The dV/dt parasitic current in the tube flows through M14The on-resistance of the tube. M due to the smaller dV/dt22And M24Medium dV/dt parasitic currents are small, VOUT--VSWRemains at a logic low level, VN2-VSWBelow VT2,VOUT-VSWRemains at a logic high level. When the floating supply rail negative dV/dt slew rate is low, at node N2, CN2Mainly by M22Is discharged by the body diode, VN2-VSWHigher than VDDH. At node N1, CN1Discharge current I ofP3Flows through M9On-resistance of the tube, resistance R3And M13The on-resistance of the tube. Because of the small negative dV/dt switching speed, IP3Smaller, VOUT-VSWRemains at a logic low level, VN1-VSWBelow VT2,VOUT--VSWRemains at a logic high level.
As discussed above, when the floating power rail is switched dV/dt, if the level is fixed for the input signal to the circuit and the decoupling resistor resistance R is fixeddecSatisfies the formula (10), VOUT-VSWThe logic high level can be kept in any positive dV/dt conversion process, the logic low level can be kept in any negative dV/dt conversion process, and the dV/dt resistance of the level shift circuit can reach infinity theoretically. However, the dV/dt resistance of practical circuits is limited by the current capability of the transistor body diode, i.e. by the area of the body diode.
FIG. 5 is a diagram of simulation results of the level shift circuit of the present invention when the floating power rail switching speed is 300V/ns. When the floating power rail rises at a switching speed of 300V/ns, the undershoot of the output voltage is 0.69V, and no logic state false inversion occurs. When the floating power rail is lowered at a switching speed of 300V/ns, the overshoot of the output voltage is 0.38V, and no false logic state flip occurs.
In summary, the level shift circuit provided by the invention effectively avoids the limitation of a large voltage dynamic range on the LDMOS parasitic capacitor to the speed by the way of the cooperative action of the active clamp level shift circuit controlled by the PWM signal and the acceleration module controlled by the short pulse, and realizes high-speed level conversion. Meanwhile, a node which is relatively low in the circuit and has large parasitic capacitance is separated from the output through the decoupling accelerating circuit, logic error overturn caused by charging and discharging of the parasitic capacitance relative to the ground is effectively avoided in the dV/dt conversion process, and the dV/dt noise suppression capability is improved.

Claims (2)

1. A level shift circuit suitable for GaN half-bridge grid driving is characterized by comprising a first PMOS (P-channel metal oxide semiconductor) tube, a second PMOS tube, a third PMOS tube, a fourth PMOS tube, a fifth PMOS tube, a sixth PMOS tube, a seventh PMOS tube, an eighth PMOS tube, a ninth PMOS tube, a tenth PMOS tube, a first NOMS tube, a second NOMS tube, a third NOMS tube, a fourth NOMS tube, a fifth NOMS tube, a sixth NOMS tube, a seventh NOMS tube, an eighth NOMS tube, a ninth NOMS tube, a tenth NOMS tube, an eleventh NOMS tube, a twelfth NOMS tube, a thirteenth NOMS tube, a fourteenth NOMS tube, a fifteenth NMOS tube, a sixteenth NMOS tube, a first PLDMOS tube, a second PLDMOS tube, a first NLDMOS tube, a second NLDMOS tube, a third DMOS NLDMOS tube, a fourth NLDMOS tube, a first resistor, a second resistor, a third resistor, a fourth resistor, a first short pulse generation circuit and a non-gate generation circuit; wherein,
the source electrode of the first PMOS tube is connected with the power supply, and the grid electrode of the first PMOS tube is connected with the first input end; the drain electrode of the first NMOS tube is connected with the drain electrode of the first PMOS tube, the grid electrode of the first NMOS tube is connected with the first input end, and the source electrode of the first NMOS tube is grounded;
the source electrode of the second PMOS tube is connected with the power supply, and the grid electrode of the second PMOS tube is connected with the second input end; the drain electrode of the second NMOS tube is connected with the drain electrode of the second PMOS tube, the grid electrode of the second NMOS tube is connected with the second input end, and the source electrode of the second NMOS tube is grounded;
the connection point of the grid electrode of the first PMOS tube and the grid electrode of the first NMOS tube is connected with the input end of the NOT gate, and the output end of the NOT gate is connected with the connection point of the grid electrode of the second PMOS tube and the grid electrode of the second NMOS tube;
the source electrode of the third PMOS tube is connected with the high-side floating power supply, and the grid electrode of the third PMOS tube is connected with the drain electrode of the fourth PMOS tube after passing through the fourth resistor; the source electrode of the fourth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the fourth PMOS tube is connected with the drain electrode of the third PMOS tube after passing through the third resistor;
the drain electrode of the third NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, the grid electrode of the third NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the source electrode of the third NMOS tube is connected with the high-side floating ground; the drain electrode of the fourth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, the grid electrode of the fourth NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the source electrode of the fourth NMOS tube is connected with a high-side floating ground;
the drain electrode of the fifth NMOS tube is connected with the drain electrode of the third PMOS tube, the grid electrode of the fifth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the source electrode of the fifth NMOS tube is connected with the high-side floating ground; the drain electrode of the sixth NMOS tube is connected with the drain electrode of the fourth PMOS tube, the grid electrode of the sixth NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the source electrode of the sixth NMOS tube is connected with a high-side floating ground;
the drain electrode of the seventh NMOS tube is connected with the drain electrode of the third PMOS tube through a third resistor, and the grid electrode and the drain electrode of the seventh NMOS tube are both connected with the high-side floating ground; the drain electrode of the eighth NMOS tube is connected with the drain electrode of the fourth PMOS tube through a fourth resistor, and the grid electrode and the drain electrode of the eighth NMOS tube are both connected with a high-side floating ground;
one end of the first resistor is connected with the drain electrode of the seventh NMOS tube, and the other end of the first resistor is connected with the high-side floating ground; the source of the first PLDMOS tube is connected with one end of the first resistor, and the grid of the first PLDMOS tube is connected with the high-side floating ground; the drain electrode of the first NLDMOS tube is connected with the drain electrode of the first PLDMOS tube, the grid electrode of the first NLDMOS tube is connected with the power supply, and the source electrode of the first NLDMOS tube and the source electrode of the ninth NMOS tube are connected with the drain electrode of the first NMOS tube; the drain electrode of the ninth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the ninth NMOS tube are interconnected;
one end of the second resistor is connected with the high-side floating power supply, and the other end of the second resistor is connected with the drain electrode of the eighth NMOS tube;
the source electrode of the second PLDMOS tube is connected with the drain electrode of the eighth NMOS tube, and the grid electrode of the second PLDMOS tube is connected with the high-side floating ground; the drain electrode of the second NLDMOS tube is connected with the drain electrode of the second PLDMOS tube, the grid electrode of the second NLDMOS tube is connected with the power supply, and the source electrode of the second NLDMOS tube and the source electrode of the tenth NMOS tube are connected with the drain electrode of the second NMOS tube; the drain electrode of the tenth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the tenth NMOS tube are interconnected;
the source electrode of the fifth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the fifth PMOS tube is interconnected with the drain electrode of the fifth PMOS tube; the source electrode of the sixth PMOS tube is connected with the high-side floating power supply, the grid electrode of the sixth PMOS tube is connected with the drain electrode of the fifth PMOS tube, and the drain electrode of the sixth PMOS tube is connected with the source electrode of the first PLDMOS tube; the source electrode of the seventh PMOS tube is connected with the high-side floating power supply, the grid electrode of the seventh PMOS tube is connected with the drain electrode of the fifth PMOS tube, and the drain electrode of the seventh PMOS tube is connected with the drain electrode of the third PMOS tube;
the drain electrode of the eleventh NMOS tube is connected with the drain electrode of the fifth PMOS tube, and the grid electrode and the source electrode of the eleventh NMOS tube are both connected with the high-side floating ground;
the drain electrode of the third NLDMOS tube is connected with the drain electrode of the fifth PMOS tube, the grid electrode of the third NLDMOS tube is connected with the power supply, and the source electrode of the third NLDMOS tube and the source electrode of the twelfth NMOS tube are connected with the drain electrode of the thirteenth NMOS tube; the drain electrode of the twelfth NMOS tube is connected with the power supply, and the grid electrode of the twelfth NMOS tube is interconnected with the source electrode of the twelfth NMOS tube; the grid electrode of the thirteenth NMOS tube is connected with the output of the first short pulse generating circuit, and the source electrode of the thirteenth NMOS tube is grounded;
the source electrode of the eighth PMOS tube is connected with the high-side floating power supply, and the grid electrode of the eighth PMOS tube is interconnected with the drain electrode of the eighth PMOS tube; the source electrode of the ninth PMOS tube is connected with the high-side floating power supply, the grid electrode of the ninth PMOS tube is connected with the drain electrode of the eighth PMOS tube, and the drain electrode of the ninth PMOS tube is connected with the source electrode of the second PLDMOS tube; the source electrode of the tenth PMOS tube is connected with the high-side floating power supply, the grid electrode of the tenth PMOS tube is connected with the drain electrode of the eighth PMOS tube, and the drain electrode of the tenth PMOS tube is connected with the drain electrode of the fourth PMOS tube;
the drain electrode of the fourteenth NMOS tube is connected with the drain electrode of the eighth PMOS tube, and the grid electrode and the source electrode of the fourteenth NMOS tube are both connected with the high-side floating ground;
the drain electrode of the fourth NLDMOS tube is connected with the drain electrode of the eighth PMOS tube, the grid electrode of the fourth NLDMOS tube is connected with the power supply, and the source electrode of the fourth NLDMOS tube and the source electrode of the fifteenth NMOS tube are connected with the drain electrode of the sixteenth NMOS tube; the drain electrode of the fifteenth NMOS tube is connected with the power supply, and the grid electrode and the source electrode of the fifteenth NMOS tube are interconnected; the grid electrode of the sixteenth NMOS tube is connected with the output of the second short pulse generating circuit, and the source electrode of the sixteenth NMOS tube is grounded;
the connection point of the drain electrode of the third PMOS tube, the drain electrode of the fifth NMOS tube and the drain electrode of the seventh PMOS tube is a first output end; and the connection point of the drain electrode of the fourth PMOS tube, the drain electrode of the tenth PMOS tube and the drain electrode of the sixth NMOS tube is a second output end.
2. The level shift circuit suitable for GaN half-bridge gate driving of claim 1, wherein the first short pulse generation circuit comprises a first inverter, a second inverter, a third inverter, an AND gate and a capacitor, wherein the first inverter, the second inverter and the third inverter are connected in series in sequence, an input end of the first inverter is connected with the second input end, a connection point of the second inverter and the third inverter is grounded through the capacitor, one input end of the AND gate is connected with the second input end, the other input end of the AND gate is connected with an output end of the third inverter, and an output end of the AND gate is an output end of the first short pulse generation circuit; the second short pulse generating circuit has the same structure as the first short pulse generating circuit, except that the input of the second short pulse generating circuit is the first input terminal.
CN202110493755.XA 2021-05-07 2021-05-07 Level shift circuit suitable for GaN half-bridge grid drive Active CN113193865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110493755.XA CN113193865B (en) 2021-05-07 2021-05-07 Level shift circuit suitable for GaN half-bridge grid drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110493755.XA CN113193865B (en) 2021-05-07 2021-05-07 Level shift circuit suitable for GaN half-bridge grid drive

Publications (2)

Publication Number Publication Date
CN113193865A true CN113193865A (en) 2021-07-30
CN113193865B CN113193865B (en) 2022-08-26

Family

ID=76983906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110493755.XA Active CN113193865B (en) 2021-05-07 2021-05-07 Level shift circuit suitable for GaN half-bridge grid drive

Country Status (1)

Country Link
CN (1) CN113193865B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614802A (en) * 2022-03-03 2022-06-10 电子科技大学 GaN driver with quick opening function
US11942942B1 (en) 2022-11-21 2024-03-26 Hong Kong Applied Science and Technology Research Institute Company Limited High-speed level-shifter for power-conversion applications

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141775A1 (en) * 2015-11-18 2017-05-18 Stmicroelectronics S.R.L. Driver circuit, corresponding integrated circuit and device
US20180013422A1 (en) * 2016-07-08 2018-01-11 Infineon Technologies Austria Ag Half bridge coupled resonant gate drivers
CN108155903A (en) * 2017-11-22 2018-06-12 中山大学 High speed and high pressure level shifting circuit applied to GaN gate drivings
CN108768145A (en) * 2018-05-25 2018-11-06 电子科技大学 High speed half-bridge gate drive circuit suitable for GaN device for power switching
US10158350B1 (en) * 2017-09-26 2018-12-18 University Of Electronic Science And Technology Of China Level shifter circuit for gate driving of gate control device
CN109905111A (en) * 2019-03-06 2019-06-18 电子科技大学 Level displacement circuit suitable for GaN high speed gate drive circuit
CN109951178A (en) * 2019-04-03 2019-06-28 电子科技大学 A kind of system protection method of GaN gate drive circuit
US20200052687A1 (en) * 2018-08-08 2020-02-13 University Of Electronic Science And Technology Of China Switch Bootstrap Charging Circuit Suitable for Gate Drive Circuit of GaN Power Device
CN111464172A (en) * 2020-04-21 2020-07-28 黄山学院 Low-delay high-side driving circuit suitable for GaN device
CN111917408A (en) * 2020-08-13 2020-11-10 聚辰半导体股份有限公司 High-voltage level conversion circuit and high-voltage level conversion system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141775A1 (en) * 2015-11-18 2017-05-18 Stmicroelectronics S.R.L. Driver circuit, corresponding integrated circuit and device
US20180013422A1 (en) * 2016-07-08 2018-01-11 Infineon Technologies Austria Ag Half bridge coupled resonant gate drivers
US10158350B1 (en) * 2017-09-26 2018-12-18 University Of Electronic Science And Technology Of China Level shifter circuit for gate driving of gate control device
CN108155903A (en) * 2017-11-22 2018-06-12 中山大学 High speed and high pressure level shifting circuit applied to GaN gate drivings
CN108768145A (en) * 2018-05-25 2018-11-06 电子科技大学 High speed half-bridge gate drive circuit suitable for GaN device for power switching
US20200052687A1 (en) * 2018-08-08 2020-02-13 University Of Electronic Science And Technology Of China Switch Bootstrap Charging Circuit Suitable for Gate Drive Circuit of GaN Power Device
CN109905111A (en) * 2019-03-06 2019-06-18 电子科技大学 Level displacement circuit suitable for GaN high speed gate drive circuit
CN109951178A (en) * 2019-04-03 2019-06-28 电子科技大学 A kind of system protection method of GaN gate drive circuit
CN111464172A (en) * 2020-04-21 2020-07-28 黄山学院 Low-delay high-side driving circuit suitable for GaN device
CN111917408A (en) * 2020-08-13 2020-11-10 聚辰半导体股份有限公司 High-voltage level conversion circuit and high-voltage level conversion system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALEX LIDOW 等: "A 3-to-40-V Automotive-Use GaN Driver With Active Bootstrap Balancing and VSW Dual-Edge Dead-Time Modulation Techniques", 《IEEE JOURNAL OF SOLID-STATE CIRCUITS》 *
HAOSHENG ZENG 等: "A CMOS Half-Bridge GaN Driver with 6-30V Input Voltage Range and 5.4ns Propagation Delay", 《2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ASIC (ASICON)》 *
YAO QIN 等: "An Anti-Overcharged High-dV/dt-Immunity Capacitive Level Shifter with Dynamic Discharge Control for Half-Bridge GaN Driver", 《2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)》 *
师翔 等: "一种用于高压PMOSFET驱动器的电压跟随电路", 《半导体技术》 *
王佳妮 等: "一种低功耗高稳态电平位移电路", 《微电子学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614802A (en) * 2022-03-03 2022-06-10 电子科技大学 GaN driver with quick opening function
US11942942B1 (en) 2022-11-21 2024-03-26 Hong Kong Applied Science and Technology Research Institute Company Limited High-speed level-shifter for power-conversion applications
WO2024108708A1 (en) * 2022-11-21 2024-05-30 Hong Kong Applied Science and Technology Research Institute Company Limited High-speed level-shifter for power-conversion applications

Also Published As

Publication number Publication date
CN113193865B (en) 2022-08-26

Similar Documents

Publication Publication Date Title
CN111404529B (en) Segmented direct gate driving circuit of depletion type GaN power device
CN109039029B (en) Bootstrap charging circuit suitable for GaN power device gate drive circuit
CN113193865B (en) Level shift circuit suitable for GaN half-bridge grid drive
EP1831998B1 (en) Self-timed switching regulator pre-driver
CN108155903B (en) High-speed high-voltage level conversion circuit applied to GaN grid drive
US8085081B2 (en) Semiconductor device for output of pulse waveforms
JP2001144603A (en) Level shifter circuit and data output circuit including it
CN112019001B (en) Driving circuit, switching circuit and controller of high-side transistor
WO2008050267A2 (en) Power amplifier
US20190207026A1 (en) Transient-insensitive level shifter
US11451130B2 (en) Circuit to transfer a signal between different voltage domains and corresponding method to transfer a signal
US20230130933A1 (en) Switching circuit, dc/dc converter, and control circuit of dc/dc converter
CN107947774B (en) LDMOS level shift dv/dt noise suppression circuit for IGBT grid electrode driving chip
US3903431A (en) Clocked dynamic inverter
CN115118148A (en) Drive circuit of high-side transistor, switching circuit, controller of DC/DC converter
US8169209B2 (en) Output driving circuit capable of reducing EMI effect
CN114679036A (en) High-speed grid electrode driving circuit for power LDMOS
CN109861503B (en) Driving circuit for power device
CN113472185B (en) Level shift circuit suitable for high-voltage GaN half-bridge gate drive system
CN116683899A (en) High-reliability high-speed level shift circuit based on gallium nitride technology
US11881759B2 (en) Circuit to transfer a signal between different voltage domains and corresponding method to transfer a signal
CN113965194B (en) Low-delay high-voltage side driving circuit with noise detection function
KR20170104164A (en) Level shifter circuit with improved time response and control method thereof
CN114374576A (en) Fieldbus drive circuit
JP7471057B2 (en) Gate Drive Circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant