CN113185590B - Gene for regulating early heading and flowering of rice and application thereof - Google Patents
Gene for regulating early heading and flowering of rice and application thereof Download PDFInfo
- Publication number
- CN113185590B CN113185590B CN202110655403.XA CN202110655403A CN113185590B CN 113185590 B CN113185590 B CN 113185590B CN 202110655403 A CN202110655403 A CN 202110655403A CN 113185590 B CN113185590 B CN 113185590B
- Authority
- CN
- China
- Prior art keywords
- rice
- gene
- flowering
- osgf14c
- regulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/827—Flower development or morphology, e.g. flowering promoting factor [FPF]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention discloses a gene for regulating early heading and flowering of rice and application thereof. The functional protein for regulating and controlling the heading and flowering stages of rice is shown in SEQ ID NO. 2. The gene-OsGF 14C gene for regulating the advancing of the heading and flowering period of rice is successfully cloned from a rice variety BC-10 for the first time, and a rice transformation vector for over-expressing the OsGF14C gene is constructed by utilizing a Camv35S promoter. The expression level of the OsGF14C gene can be obviously improved after the rice is transformed by the vector, and the flowering period of the OsGF14C overexpression transgenic plant is advanced compared with wild plants and other rice plants which germinate, transplant and manage at the same time. Therefore, the technology for over-expressing the OsGF14C gene can be applied to genetic engineering breeding of rice, can be applied to production practice, promotes genetic breeding of rice in a short growth period, realizes early maturing and high yield of rice and ensures grain safety.
Description
The technical field is as follows:
the invention belongs to the field of rice, and particularly relates to a gene for regulating early heading and flowering of rice and application thereof.
The background art comprises the following steps:
rice is the staple food of more than 50% of the world population and is one of the most important food crops for human beings. However, with the increase in population and the decrease in arable land area caused by human activities, food safety issues are becoming more prominent.
Flowering is one of the important agronomic traits affecting rice yield. Rice growth can generally be divided into three stages. The first phase is the vegetative growth phase from shoot to shoot initiation; the second phase is the reproductive growth phase from the beginning of young ears to flowering; the third stage is the mature stage from flowering to full developmental maturity. The time of the second stage and the third stage of different rice varieties is relatively constant, but the difference of the first stage among different rice varieties is obvious, and the growth period of the rice is determined to a great extent. The growth period of a variety determines the suitable planting area and season of the variety. The development and utilization of the early maturing gene of the rice are beneficial to promoting the genetic breeding of the rice in a short growth period, the early maturing and high yield of the rice are realized, and the yield of the rice is directly influenced.
The heading and flowering of higher plants are a complex biological process, genes for regulating and controlling the flowering period are cloned, and the research on the gene regulation mechanism of the flower starting process is always a research hotspot of plant developmental biology. Statistically, to date, 25 genes that regulate the flowering stage of rice have been cloned, but the GF14 family genes are not included. Researches show that the GF14 gene family is a defense gene widely existing in eukaryote, and plays an important role in the response process of plants to the external environment by combining with a large number of phosphorylated proteins to start pathway genes such as signal transmission, transcription, defense and the like. The rice variety has 8 GF14 genes, and no related report that the GF14 genes can regulate the rice flowering period exists at present.
The invention content is as follows:
the first purpose of the invention is to provide a functional protein for regulating and controlling the heading and flowering stage advance of rice.
The overexpression transgenic plant of the OsGF14C is constructed, and the overexpression transgenic plant of the OsGF14C and a wild type control are planted at the same time, so that the heading and flowering period of the overexpression transgenic plant of the OsGF14C is found to be advanced. OsGF14C is a novel gene for regulating the early flowering phase of rice, and has important potential application value in promoting genetic breeding of rice in a short growth period.
The amino acid sequence of the functional protein for regulating and controlling the advancing of the heading and flowering period of rice is shown as SEQ ID NO. 2.
The second purpose of the invention is to provide a gene for coding the functional protein and regulating the advancing of the heading and flowering stage of rice.
Preferably, the nucleotide sequence of the gene for regulating the heading and flowering phase advance of rice is shown as the base sequence from the 32 th site to the 802 th site of SEQ ID NO. 1. It is understood that modifications of the nucleotide sequence of the above-described encoding gene without changing the amino acid sequence in consideration of the degeneracy of codons also fall within the scope of the present invention.
The third purpose of the invention is to use the functional protein or gene for regulating the advancing of the heading and flowering phase of rice in regulating the advancing of the heading and flowering phase of rice.
Preferably, the application is the application in rice short-term breeding.
Preferably, the gene for regulating the advancing of the heading and flowering period of the rice is over-expressed in the rice so as to shorten the growth period of the rice.
The invention successfully clones a gene-OsGF 14C gene for regulating the early heading and flowering period of rice from a rice variety BC-10 for the first time, and constructs a rice transformation vector of an over-expression OsGF14C gene by using a Camv35S promoter. The expression level of the OsGF14C gene can be obviously improved after the rice is transformed by the vector, and the flowering period of the OsGF14C overexpression transgenic plant is advanced compared with wild plants and other rice plants which germinate, transplant and manage at the same time. Therefore, the technology for over-expressing the OsGF14C gene can be applied to genetic engineering breeding of rice, can be applied to production practice, promotes genetic breeding of rice in a short growth period, realizes early maturity and high yield of rice, and ensures grain safety.
Description of the drawings:
FIG. 1 is a PHQSN vector map;
FIG. 2 is the detection of OsGF14C gene expression level in transgenic plants, wherein CK represents wild type Lijiang New group black valley, OE-1, OE-2 and OE-3 are transgenic plants of different strains.
FIG. 3 shows that the overexpression of OsGF14C regulates the advancing of the heading and flowering period of rice under the same management mode for wild type Lijiang New-group Black-grain (LTH) plants, osGF14C overexpression transgenic plants and other rice plants which sprout and transplant simultaneously, and white arrows in pictures indicate the extracted ears.
The specific implementation mode is as follows:
the following examples are further illustrative of the present invention and are not intended to be limiting thereof.
Example 1:
cloning of OsGF14C Gene and construction of overexpression vector
Leaves of rice variety BC-10 were taken, total RNA from the leaves was extracted using Trizol Reagent (Invitrogen, cat # 15596026), the purity and amount of total RNA were measured using agarose gel electrophoresis and an ultraviolet spectrophotometer, 1. Mu.g of total RNA was taken for initial reverse transcription, the reverse transcriptase used was PrimeScript (TAKARA), and the procedure of the reverse transcription reaction was referred to the instructions for the use of the reverse transcriptase. The reverse transcription product is used as a template, primers F CGGAATTC (EcoR 1 restriction site) CGCCACCGAAGTAATCCCTT and R GAAGATCT (BglII restriction site) CCAATAACATGCGGAGCCAT are used for PCR amplification, and polymerase used for PCR is KOD FX (Toyobo company). The reaction system was 50uL, and the PCR reaction system was prepared according to the instructions of KOD FX. The reaction conditions are as follows: 5min at 94 ℃; 30sec at 94 ℃, 30sec at 60 ℃, 60sec at 68 ℃ and 35 cycles; 10min at 68 ℃. PCR amplification is carried out to obtain a fragment of about 843bp (the specific nucleotide sequence is shown in SEQ ID NO. 1). After recovering the fragment by agarose gel electrophoresis, carrying out double digestion on the PCR fragment and the pHQSN vector (the vector diagram is shown in figure 1, and the nucleotide sequence is shown in SEQ ID NO. 3) by EcoR1 and BglII respectively, recovering the target fragment and the vector fragment after the double digestion, and connecting for 16 hours at 16 ℃ by T4 ligase (NEB company), wherein the connecting system is as follows: t4 ligase 1uL,10Xb 1uL, gene enzyme cutting fragment 6uL (200 ng), pHQSN vector enzyme cutting fragment 2uL (50 ng). 1uL of the ligation product was taken and transformed into E.coli DH 5. Alpha. By electroporation, and the transformation product was spread on a kanamycin-resistant LB solid medium. Culturing at 37 deg.C overnight, selecting 10 monoclonals to extract plasmid, and enzyme-cutting to identify. Two positive clones are selected for sequencing detection, and the sequencing finds that the full length of the amplified fragment sequence is 843 bases, the nucleotide sequence is shown as SEQ ID NO.1, the amplified fragment sequence comprises an open reading frame, 771 bases are adopted, the amplified fragment sequence is the OsGF14C gene, the nucleotide sequence is shown as a base sequence from the 32 th base to the 802 th base of the SEQ ID NO.1, and the coded amino acid sequence is shown as SEQ ID NO. 2. And obtaining a overexpression vector pHQSN carrying the OsGF14C gene, and naming as: the overexpression vector pHQSN-OX inserts OsGF14C gene fragments between enzyme cutting sites of EcoR1 and BglII at the downstream of Camv35S promoter of the overexpression vector pHQSN.
2. Transformation of OsGF14C Gene
The overexpression vector pHQSN-OX is transferred into the Lijiang Xinjiang Hedgeui black valley by adopting an agrobacterium EHA105 mediated genetic transformation method. Transformation primary (T0 generation) positive transformed plants were identified from DNA and RNA levels by PCR and quantitative PCR detection (GF 14CqF (actgctgcagaattacttaaggtg) and GF14CqR (ccagcaatactctgagca) primers (product length 145 bp)). The positive plants are selfed to obtain transgenic 1-generation (T1-generation) plants, 10 plants which are detected to be positive by PCR are selected from each plant to be propagated to obtain T2-generation plants, and PCR detection is carried out on the T2-generation plants to find 3T 2-generation homozygous plants (OE-1, OE-2 and OE-3) derived from different T0-generation plants. And detecting the expression level of the target gene OsGF14C in the 3 strains by using a fluorescent quantitative PCR technology by taking the wild type result as a control.
The fluorescent quantitative PCR identification of the overexpression effect program of the OsGF14C gene in the transgenic plant is as follows:
the total RNA extraction of three-leaf-stage seedling leaves of PCR-detected positive transgenic plants (OE-1, OE-2 and OE-3) is carried out by using TriZol Reagent (Invitrogen, the product number is 15596026) according to the steps of the instruction of the Reagent, detecting the purity and the quantity of the total RNA by using agarose gel electrophoresis and an ultraviolet spectrophotometer, taking 1 mu g of the total RNA as a starting reverse transcription reaction, using PrimeScript (Takara), and referring to the use instruction of the reverse transcription enzyme in the steps of the reverse transcription reaction. The reverse transcription product is taken as a template, a primer pair GF14CqF (ACTGCTGCAGAATCTAAGGTG) and GF14CqR (CCAGAGCAATCATCCTGAGCA) are adopted to detect the expression condition of the OsGF14C gene, a primer pair EF1aqF (TTTCACTTGGTGTGAGCAAGCAGAT) and EF1aqR (GACTTCCTTCACGATTTCATCGTAA) of the rice housekeeping gene EF1a is adopted to detect the expression of the rice EF1a gene as an internal reference, and a wild type Lijiang new group black valley is taken as a reference. The results are shown in FIG. 2. The results prove that the expression level of the OsGF14C gene of 3 transgenic plant lines is improved compared with the wild type.
Comparison of heading and flowering periods of OsGF14C gene overexpression transgenic plants and wild type control
The homozygous 3 overexpression transgenic T2 generation strains (OE-1, OE-2 and OE-3) and seeds of a wild type Lijiang Xinjiang black millet plant are placed at 49 ℃ for 96 hours to break dormancy, the plants are soaked in water for 36 hours after being placed at room temperature and germinate for 48 hours at 30 ℃, seeds with consistent germination states are selected and sowed in the same piece of soil, and unified seedling transplanting is carried out after 3 leaf periods. And observing the heading and flowering conditions. The results are shown in FIG. 3, where OsGF14C overexpressing transgenic rice plants had an early heading and flowering stage compared to wild type LTH plants sowed and transplanted simultaneously.
In conclusion, the gene OsGF14C of the rice variety BC-10 is a functional gene for regulating the advancing of the heading and flowering phase of rice, and the heading and flowering phase of a transgenic plant over-expressing OsGF14C is advanced.
Sequence listing
<110> Rice research institute of Guangdong province academy of agricultural sciences
<120> a gene for regulating early heading and flowering of rice and use thereof
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 843
<212> DNA
<213> Rice (Oryza sativa)
<400> 1
cgccaccgaa gtaatccctt aattggtcaa aatgtctcgg gaggagaatg tctacatggc 60
caagctggcc gagcaggctg aaaggtatga ggagatggtt gagtacatgg agaaggttgc 120
aaagactgta gatgtggaag agctcactgt tgaggagcgc aacctcttgt ctgttgctta 180
caagaatgtg attggtgccc gccgtgcctc ctggcgtatt gtctcatcca ttgaacagaa 240
ggaggagggt cgtggcaatg aggaacatgt tactctgatc aaggagtacc gtggcaagat 300
tgaagctgag ctgagcaaga tttgcgatgg tatcctgaag ttgcttgact cacaccttgt 360
gccctcatct actgctgcag aatctaaggt gttttacctc aagatgaagg gtgattacca 420
caggtacctt gcggaattta agactggtgc cgagagaaag gaagctgctg agagcacaat 480
ggtggcttac aaggctgctc aggatattgc tctggcggat cttgctccca cccatcccat 540
aaggcttgga ctggcactta acttctctgt gttctactac gagattctaa actctccaga 600
caaggcttgc aaccttgcta agcaggcgtt tgacgaagcc atctccgagt tggataccct 660
cggggaggag tcttacaagg acagcacttt gatcatgcag ctcctgaggg acaacttgac 720
cctctggacc tctgacctca cggaggacgg tggtgatgag gtgaaagaag cctccaaggg 780
cgacgcctgc gagggccagt aaaatgggaa gatcgatcga tcgatggctc cgcatgttat 840
tgg 843
<210> 2
<211> 256
<212> PRT
<213> Rice (Oryza sativa)
<400> 2
Met Ser Arg Glu Glu Asn Val Tyr Met Ala Lys Leu Ala Glu Gln Ala
1 5 10 15
Glu Arg Tyr Glu Glu Met Val Glu Tyr Met Glu Lys Val Ala Lys Thr
20 25 30
Val Asp Val Glu Glu Leu Thr Val Glu Glu Arg Asn Leu Leu Ser Val
35 40 45
Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser Trp Arg Ile Val
50 55 60
Ser Ser Ile Glu Gln Lys Glu Glu Gly Arg Gly Asn Glu Glu His Val
65 70 75 80
Thr Leu Ile Lys Glu Tyr Arg Gly Lys Ile Glu Ala Glu Leu Ser Lys
85 90 95
Ile Cys Asp Gly Ile Leu Lys Leu Leu Asp Ser His Leu Val Pro Ser
100 105 110
Ser Thr Ala Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys Gly Asp
115 120 125
Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala Glu Arg Lys Glu
130 135 140
Ala Ala Glu Ser Thr Met Val Ala Tyr Lys Ala Ala Gln Asp Ile Ala
145 150 155 160
Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu Ala Leu
165 170 175
Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp Lys Ala
180 185 190
Cys Asn Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile Ser Glu Leu Asp
195 200 205
Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu
210 215 220
Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Leu Thr Glu Asp Gly
225 230 235 240
Gly Asp Glu Val Lys Glu Ala Ser Lys Gly Asp Ala Cys Glu Gly Gln
245 250 255
<210> 3
<211> 9928
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
agagatagat ttgtagagag agactggtga tttcagcgtg tcctctccaa atgaaatgaa 60
cttccttata tagaggaagg tcttgcgaag gatagtggga ttgtgcgtca tcccttacgt 120
cagtggagat atcacatcaa tccacttgct ttgaagacgt ggttggaacg tcttcttttt 180
ccacgatgct cctcgtgggt gggggtccat ctttgggacc actgtcggca gaggcatctt 240
gaacgatagc ctttccttta tcgcaatgat ggcatttgta ggtgccacct tccttttcta 300
ctgtcctttt gatgaagtga cagatagctg ggcaatggaa tccgaggagg tttcccgata 360
ttaccctttg ttgaaaagtc tcaatagccc tttggtcttc tgagactgta tctttgatat 420
tcttggagta gacgagagtg tcgtgctcca ccatgttatc acatcaatcc acttgctttg 480
aagacgtggt tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt 540
tgggaccact gtcggcagag gcatcttgaa cgatagcctt tcctttatcg caatgatggc 600
atttgtaggt gccaccttcc ttttctactg tccttttgat gaagtgacag atagctgggc 660
aatggaatcc gaggaggttt cccgatatta ccctttgttg aaaagtctca atagcccttt 720
ggtcttctga gactgtatct ttgatattct tggagtagac gagagtgtcg tgctccacca 780
tgttgggccc ggcgcgccaa gcttgcatgc ctgcaggtcc ccagattagc cttttcaatt 840
tcagaaagaa tgctaaccca cagatggtta gagaggctta cgcagcaggt ctcatcaaga 900
cgatctaccc gagcaataat ctccaggaaa tcaaatacct tcccaagaag gttaaagatg 960
cagtcaaaag attcaggact aactgcatca agaacacaga gaaagatata tttctcaaga 1020
tcagaagtac tattccagta tggacgattc aaggcttgct tcacaaacca aggcaagtaa 1080
tagagattgg agtctctaaa aaggtagttc ccactgaatc aaaggccatg gagtcaaaga 1140
ttcaaataga ggacctaaca gaactcgccg taaagactgg cgaacagttc atacagagtc 1200
tcttacgact caatgacaag aagaaaatct tcgtcaacat ggtggagcac gacacacttg 1260
tctactccaa aaatatcaaa gatacagtct cagaagacca aagggcaatt gagacttttc 1320
aacaaagggt aatatccgga aacctcctcg gattccattg cccagctatc tgtcacttta 1380
ttgtgaagat agtggaaaag gaaggtggct cctacaaatg ccatcattgc gataaaggaa 1440
aggccatcgt tgaagatgcc tctgccgaca gtggtcccaa agatggaccc ccacccacga 1500
ggagcatcgt ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg 1560
atatctccac tgacgtaagg gatgacgcac aatcccacta tccttcgcaa gacccttcct 1620
ctatataagg aagttcattt catttggaga gaacacgggg gactctagaa catggatccc 1680
tacagggtaa atttctagtt tttctccttc attttcttgg ttaggaccct tttctctttt 1740
tatttttttg agctttgatc tttctttaaa ctgatctatt ttttaattga ttggttatgg 1800
tgtaaatatt acatagcttt aactgataat ctgattactt tatttcgtgt gtctatgatg 1860
atgatgatag ttacagaacc gtcgacggat ccccgggaat tctaagagga gtccaccatg 1920
gtagatctga ctagtgttaa cgctagccac caccaccacc accacgtgtg aattacaggt 1980
gaccagctcg aatttccccg atcgttcaaa catttggcaa taaagtttct taagattgaa 2040
tcctgttgcc ggtcttgcga tgattatcat ataatttctg ttgaattacg ttaagcatgt 2100
aataattaac atgtaatgca tgacgttatt tatgagatgg gtttttatga ttagagtccc 2160
gcaattatac atttaatacg cgatagaaaa caaaatatag cgcgcaaact aggataaatt 2220
atcgcgcgcg gtgtcatcta tgttactaga tcgggaatta aactatcagt gtttgacagg 2280
atatattggc gggtaaacct aagagaaaag agcgtttatt agaataacgg atatttaaaa 2340
gggcgtgaaa aggtttatcc gttcgtccat ttgtatgtgc atgccaacca cagggttccc 2400
ctcgggatca aagtactttg atccaacccc tccgctgcta tagtgcagtc ggcttctgac 2460
gttcagtgca gccgtcttct gaaaacgaca tgtcgcacaa gtcctaagtt acgcgacagg 2520
ctgccgccct gcccttttcc tggcgttttc ttgtcgcgtg ttttagtcgc ataaagtaga 2580
atacttgcga ctagaaccgg agacattacg ccatgaacaa gagcgccgcc gctggcctgc 2640
tgggctatgc ccgcgtcagc accgacgacc aggacttgac caaccaacgg gccgaactgc 2700
acgcggccgg ctgcaccaag ctgttttccg agaagatcac cggcaccagg cgcgaccgcc 2760
cggagctggc caggatgctt gaccacctac gccctggcga cgttgtgaca gtgaccaggc 2820
tagaccgcct ggcccgcagc acccgcgacc tactggacat tgccgagcgc atccaggagg 2880
ccggcgcggg cctgcgtagc ctggcagagc cgtgggccga caccaccacg ccggccggcc 2940
gcatggtgtt gaccgtgttc gccggcattg ccgagttcga gcgttcccta atcatcgacc 3000
gcacccggag cgggcgcgag gccgccaagg cccgaggcgt gaagtttggc ccccgcccta 3060
ccctcacccc ggcacagatc gcgcacgccc gcgagctgat cgaccaggaa ggccgcaccg 3120
tgaaagaggc ggctgcactg cttggcgtgc atcgctcgac cctgtaccgc gcacttgagc 3180
gcagcgagga agtgacgccc accgaggcca ggcggcgcgg tgccttccgt gaggacgcat 3240
tgaccgaggc cgacgccctg gcggccgccg agaatgaacg ccaagaggaa caagcatgaa 3300
accgcaccag gacggccagg acgaaccgtt tttcattacc gaagagatcg aggcggagat 3360
gatcgcggcc gggtacgtgt tcgagccgcc cgcgcacgtc tcaaccgtgc ggctgcatga 3420
aatcctggcc ggtttgtctg atgccaagct ggcggcctgg ccggccagct tggccgctga 3480
agaaaccgag cgccgccgtc taaaaaggtg atgtgtattt gagtaaaaca gcttgcgtca 3540
tgcggtcgct gcgtatatga tgcgatgagt aaataaacaa atacgcaagg ggaacgcatg 3600
aaggttatcg ctgtacttaa ccagaaaggc gggtcaggca agacgaccat cgcaacccat 3660
ctagcccgcg ccctgcaact cgccggggcc gatgttctgt tagtcgattc cgatccccag 3720
ggcagtgccc gcgattgggc ggccgtgcgg gaagatcaac cgctaaccgt tgtcggcatc 3780
gaccgcccga cgattgaccg cgacgtgaag gccatcggcc ggcgcgactt cgtagtgatc 3840
gacggagcgc cccaggcggc ggacttggct gtgtccgcga tcaaggcagc cgacttcgtg 3900
ctgattccgg tgcagccaag cccttacgac atatgggcca ccgccgacct ggtggagctg 3960
gttaagcagc gcattgaggt cacggatgga aggctacaag cggcctttgt cgtgtcgcgg 4020
gcgatcaaag gcacgcgcat cggcggtgag gttgccgagg cgctggccgg gtacgagctg 4080
cccattcttg agtcccgtat cacgcagcgc gtgagctacc caggcactgc cgccgccggc 4140
acaaccgttc ttgaatcaga acccgagggc gacgctgccc gcgaggtcca ggcgctggcc 4200
gctgaaatta aatcaaaact catttgagtt aatgaggtaa agagaaaatg agcaaaagca 4260
caaacacgct aagtgccggc cgtccgagcg cacgcagcag caaggctgca acgttggcca 4320
gcctggcaga cacgccagcc atgaagcggg tcaactttca gttgccggcg gaggatcaca 4380
ccaagctgaa gatgtacgcg gtacgccaag gcaagaccat taccgagctg ctatctgaat 4440
acatcgcgca gctaccagag taaatgagca aatgaataaa tgagtagatg aattttagcg 4500
gctaaaggag gcggcatgga aaatcaagaa caaccaggca ccgacgccgt ggaatgcccc 4560
atgtgtggag gaacgggcgg ttggccaggc gtaagcggct gggttgtctg ccggccctgc 4620
aatggcactg gaacccccaa gcccgaggaa tcggcgtgac ggtcgcaaac catccggccc 4680
ggtacaaatc ggcgcggcgc tgggtgatga cctggtggag aagttgaagg ccgcgcaggc 4740
cgcccagcgg caacgcatcg aggcagaagc acgccccggt gaatcgtggc aagcggccgc 4800
tgatcgaatc cgcaaagaat cccggcaacc gccggcagcc ggtgcgccgt cgattaggaa 4860
gccgcccaag ggcgacgagc aaccagattt tttcgttccg atgctctatg acgtgggcac 4920
ccgcgatagt cgcagcatca tggacgtggc cgttttccgt ctgtcgaagc gtgaccgacg 4980
agctggcgag gtgatccgct acgagcttcc agacgggcac gtagaggttt ccgcagggcc 5040
ggccggcatg gccagtgtgt gggattacga cctggtactg atggcggttt cccatctaac 5100
cgaatccatg aaccgatacc gggaagggaa gggagacaag cccggccgcg tgttccgtcc 5160
acacgttgcg gacgtactca agttctgccg gcgagccgat ggcggaaagc agaaagacga 5220
cctggtagaa acctgcattc ggttaaacac cacgcacgtt gccatgcagc gtacgaagaa 5280
ggccaagaac ggccgcctgg tgacggtatc cgagggtgaa gccttgatta gccgctacaa 5340
gatcgtaaag agcgaaaccg ggcggccgga gtacatcgag atcgagctag ctgattggat 5400
gtaccgcgag atcacagaag gcaagaaccc ggacgtgctg acggttcacc ccgattactt 5460
tttgatcgat cccggcatcg gccgttttct ctaccgcctg gcacgccgcg ccgcaggcaa 5520
ggcagaagcc agatggttgt tcaagacgat ctacgaacgc agtggcagcg ccggagagtt 5580
caagaagttc tgtttcaccg tgcgcaagct gatcgggtca aatgacctgc cggagtacga 5640
tttgaaggag gaggcggggc aggctggccc gatcctagtc atgcgctacc gcaacctgat 5700
cgagggcgaa gcatccgccg gttcctaatg tacggagcag atgctagggc aaattgccct 5760
agcaggggaa aaaggtcgaa aaggtctctt tcctgtggat agcacgtaca ttgggaaccc 5820
aaagccgtac attgggaacc ggaacccgta cattgggaac ccaaagccgt acattgggaa 5880
ccggtcacac atgtaagtga ctgatataaa agagaaaaaa ggcgattttt ccgcctaaaa 5940
ctctttaaaa cttattaaaa ctcttaaaac ccgcctggcc tgtgcataac tgtctggcca 6000
gcgcacagcc gaagagctgc aaaaagcgcc tacccttcgg tcgctgcgct ccctacgccc 6060
cgccgcttcg cgtcggccta tcgcggccgc tggccgctca aaaatggctg gcctacggcc 6120
aggcaatcta ccagggcgcg gacaagccgc gccgtcgcca ctcgaccgcc ggcgcccaca 6180
tcaaggcacc ctgcctcgcg cgtttcggtg atgacggtga aaacctctga cacatgcagc 6240
tcccggagac ggtcacagct tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg 6300
gcgcgtcagc gggtgttggc gggtgtcggg gcgcagccat gacccagtca cgtagcgata 6360
gcggagtgta tactggctta actatgcggc atcagagcag attgtactga gagtgcacca 6420
tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggcgctcttc 6480
cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 6540
tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 6600
gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 6660
ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg 6720
aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 6780
tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt 6840
ggcgctttct catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa 6900
gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta 6960
tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa 7020
caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa 7080
ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt 7140
cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt 7200
ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 7260
cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 7320
gcattctagg tactaaaaca attcatccag taaaatataa tattttattt tctcccaatc 7380
aggcttgatc cccagtaagt caaaaaatag ctcgacatac tgttcttccc cgatatcctc 7440
cctgatcgac cggacgcaga aggcaatgtc ataccacttg tccgccctgc cgcttctccc 7500
aagatcaata aagccactta ctttgccatc tttcacaaag atgttgctgt ctcccaggtc 7560
gccgtgggaa aagacaagtt cctcttcggg cttttccgtc tttaaaaaat catacagctc 7620
gcgcggatct ttaaatggag tgtcttcttc ccagttttcg caatccacat cggccagatc 7680
gttattcagt aagtaatcca attcggctaa gcggctgtct aagctattcg tatagggaca 7740
atccgatatg tcgatggagt gaaagagcct gatgcactcc gcatacagct cgataatctt 7800
ttcagggctt tgttcatctt catactcttc cgagcaaagg acgccatcgg cctcactcat 7860
gagcagattg ctccagccat catgccgttc aaagtgcagg acctttggaa caggcagctt 7920
tccttccagc catagcatca tgtccttttc ccgttccaca tcataggtgg tccctttata 7980
ccggctgtcc gtcattttta aatataggtt ttcattttct cccaccagct tatatacctt 8040
agcaggagac attccttccg tatcttttac gcagcggtat ttttcgatca gttttttcaa 8100
ttccggtgat attctcattt tagccattta ttatttcctt cctcttttct acagtattta 8160
aagatacccc aagaagctaa ttataacaag acgaactcca attcactgtt ccttgcattc 8220
taaaacctta aataccagaa aacagctttt tcaaagttgt tttcaaagtt ggcgtataac 8280
atagtatcga cggagccgat tttgaaaccg cggtgatcac aggcagcaac gctctgtcat 8340
cgttacaatc aacatgctac cctccgcgag atcatccgtg tttcaaaccc ggcagcttag 8400
ttgccgttct tccgaatagc atcggtaaca tgagcaaagt ctgccgcctt acaacggctc 8460
tcccgctgac gccgtcccgg actgatgggc tgcctgtatc gagtggtgat tttgtgccga 8520
gctgccggtc ggggagctgt tggctggctg gtggcaggat atattgtggt gtaaacaaat 8580
tgacgcttag acaacttaat aacacattgc ggacgttttt aatgtactga attaacgccg 8640
aattaattcg ggggatctgg attttagtac tggattttgg ttttaggaat tagaaatttt 8700
attgatagaa gtattttaca aatacaaata catactaagg gtttcttata tgctcaacac 8760
atgagcgaaa ccctatagga accctaattc ccttatctgg gaactactca cacattatta 8820
tggagaaact cgagcttgtc gatcgacaga tccggtcggc atctactcta tttctttgcc 8880
ctcggacgag tgctggggcg tcggtttcca ctatcggcga gtacttctac acagccatcg 8940
gtccagacgg ccgcgcttct gcgggcgatt tgtgtacgcc cgacagtccc ggctccggat 9000
cggacgattg cgtcgcatcg accctgcgcc caagctgcat catcgaaatt gccgtcaacc 9060
aagctctgat agagttggtc aagaccaatg cggagcatat acgcccggag tcgtggcgat 9120
cctgcaagct ccggatgcct ccgctcgaag tagcgcgtct gctgctccat acaagccaac 9180
cacggcctcc agaagaagat gttggcgacc tcgtattggg aatccccgaa catcgcctcg 9240
ctccagtcaa tgaccgctgt tatgcggcca ttgtccgtca ggacattgtt ggagccgaaa 9300
tccgcgtgca cgaggtgccg gacttcgggg cagtcctcgg cccaaagcat cagctcatcg 9360
agagcctgcg cgacggacgc actgacggtg tcgtccatca cagtttgcca gtgatacaca 9420
tggggatcag caatcgcgca tatgaaatca cgccatgtag tgtattgacc gattccttgc 9480
ggtccgaatg ggccgaaccc gctcgtctgg ctaagatcgg ccgcagcgat cgcatccata 9540
gcctccgcga ccggttgtag aacagcgggc agttcggttt caggcaggtc ttgcaacgtg 9600
acaccctgtg cacggcggga gatgcaatag gtcaggctct cgctaaactc cccaatgtca 9660
agcacttccg gaatcgggag cgcggccgat gcaaagtgcc gataaacata acgatctttg 9720
tagaaaccat cggcgcagct atttacccgc aggacatatc cacgccctcc tacatcgaag 9780
ctgaaagcac gagattcttc gccctccgag agctgcatca ggtcggagac gctgtcgaac 9840
ttttcgatca gaaacttctc gacagacgtc gcggtgagtt caggcttttt catatctcat 9900
tgccccccgg gatctgcgaa agctcgag 9928
Claims (2)
1. The functional protein for regulating the advancing of the rice heading flowering phase or the coding gene thereof is applied to regulating the advancing of the rice heading flowering phase, the amino acid sequence of the functional protein for regulating the advancing of the rice heading flowering phase is shown as SEQ ID NO.2, and the application is that the gene for regulating the advancing of the rice heading flowering phase is overexpressed in rice so as to shorten the rice growth period.
2. The use according to claim 1, wherein the nucleotide sequence of the gene encoding the functional protein regulating the early heading stage of rice is shown as the sequence from the 32 nd base to the 802 th base of SEQ ID No. 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110655403.XA CN113185590B (en) | 2021-06-11 | 2021-06-11 | Gene for regulating early heading and flowering of rice and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110655403.XA CN113185590B (en) | 2021-06-11 | 2021-06-11 | Gene for regulating early heading and flowering of rice and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113185590A CN113185590A (en) | 2021-07-30 |
CN113185590B true CN113185590B (en) | 2023-02-24 |
Family
ID=76976548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110655403.XA Active CN113185590B (en) | 2021-06-11 | 2021-06-11 | Gene for regulating early heading and flowering of rice and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113185590B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113549632B (en) * | 2021-09-08 | 2022-03-04 | 广东省农业科学院水稻研究所 | Application of rice OsFLZ2 gene in regulation and control of heading stage of gramineous plants |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101353376A (en) * | 2008-08-22 | 2009-01-28 | 中国科学院遗传与发育生物学研究所 | Protein related to rice ear sprouting period and encoding genes and uses thereof |
CN108456683A (en) * | 2017-02-21 | 2018-08-28 | 华中农业大学 | The function of one adjusting and controlling rice Heading date gene SID1 and application |
CN108794607A (en) * | 2017-04-29 | 2018-11-13 | 华中农业大学 | A kind of yield gene OsAFB6 and the application in adjusting and controlling rice florescence and grains per panicle |
CN109652423A (en) * | 2018-12-07 | 2019-04-19 | 沈阳农业大学 | A kind of rice anthesis modulin and its application in breeding |
CN110028567A (en) * | 2019-04-22 | 2019-07-19 | 江西农业大学 | A kind of relevant protein of Rice Flowering and its encoding gene LHD3 and application |
CN111286510A (en) * | 2019-05-25 | 2020-06-16 | 华中农业大学 | Application of protein kinase gene PMF1 in regulation and control of heading stage and yield of rice |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107400672B (en) * | 2017-09-15 | 2020-08-21 | 中国水稻研究所 | Application of OsCOL15 gene in regulation and control of rice heading stage |
CN110950944B (en) * | 2020-02-24 | 2020-06-02 | 中国农业科学院生物技术研究所 | OsHCRF1 functional protein and application of coding gene thereof in rice breeding |
CN112279903B (en) * | 2020-10-29 | 2021-08-24 | 广东省农业科学院水稻研究所 | Gene for improving rice blast resistance of rice in panicle stage and application thereof |
-
2021
- 2021-06-11 CN CN202110655403.XA patent/CN113185590B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101353376A (en) * | 2008-08-22 | 2009-01-28 | 中国科学院遗传与发育生物学研究所 | Protein related to rice ear sprouting period and encoding genes and uses thereof |
CN108456683A (en) * | 2017-02-21 | 2018-08-28 | 华中农业大学 | The function of one adjusting and controlling rice Heading date gene SID1 and application |
CN108794607A (en) * | 2017-04-29 | 2018-11-13 | 华中农业大学 | A kind of yield gene OsAFB6 and the application in adjusting and controlling rice florescence and grains per panicle |
CN109652423A (en) * | 2018-12-07 | 2019-04-19 | 沈阳农业大学 | A kind of rice anthesis modulin and its application in breeding |
CN110028567A (en) * | 2019-04-22 | 2019-07-19 | 江西农业大学 | A kind of relevant protein of Rice Flowering and its encoding gene LHD3 and application |
CN111286510A (en) * | 2019-05-25 | 2020-06-16 | 华中农业大学 | Application of protein kinase gene PMF1 in regulation and control of heading stage and yield of rice |
Non-Patent Citations (7)
Title |
---|
The 14-3-3 Protein GF14c Acts as a Negative Regulator of Flowering in Rice by Interacting with the Florigen Hd3a;Purwestri等;《Plant Cell Physiol》;20090128;第50卷(第3期);第429-438页 * |
U65657.1,oryza sativa GF14-c protein mRNA;Schultz等;《GenBank》;19960905;CDS和ORIGIN部分 * |
植物14-3-3 基因的研究进展;戚传娇;《安徽农业科学》;20120820;第40卷(第24期);第11942-11945页 * |
植物14-3-3蛋白研究进展;崔娜;《西北植物学报》;20120415;第32卷(第4期);第843-851 * |
水稻OSGF14-C基因功能的初步分析;赵然;《中国优秀硕士学位论文全文数据库 农业科技辑》;20060615(第6期);图12 * |
蛋白激酶PMF1调控水稻抽穗期的分子机理研究;彭强;《中国优秀博士论文全文数据库 农业科技辑》;20210115(第1期);第19页第二段-第20页第一段及第20页图3 * |
赵然.水稻OSGF14-C基因功能的初步分析.《中国优秀硕士学位论文全文数据库 农业科技辑》.2006,(第6期),第D047-6页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113185590A (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112279903B (en) | Gene for improving rice blast resistance of rice in panicle stage and application thereof | |
CN107043779B (en) | Application of CRISPR/nCas 9-mediated site-specific base substitution in plants | |
CN111593031B (en) | Rice ALS mutant gene, plant transgenic screening vector pCALSm3 containing gene and application thereof | |
CN112941087B (en) | Application of corn ZmBES1/BZR1-2 gene in improving plant drought tolerance | |
CA2521729A1 (en) | Methods and means for increasing the tolerance of plants to stress conditions | |
CN110904071B (en) | Application of RAF49 protein and encoding gene thereof in regulation and control of plant drought resistance | |
CN113185590B (en) | Gene for regulating early heading and flowering of rice and application thereof | |
CN111996181A (en) | Application of DRK protein and coding gene thereof in drought resistance of plants | |
CN110240640A (en) | Tobacco AUX/IAA and its application | |
CN110229843B (en) | Upland cotton transformation event 19PFA1-135-17 and specificity identification method thereof | |
CN107417779B (en) | Plant aluminum-resistant related protein GmGRPL and coding gene and application thereof | |
CN114163509B (en) | PAO gene of Chinese cabbage and application thereof in regulating and controlling green-keeping character of plants | |
CN113373157B (en) | Application of GF14C gene in improving salt resistance of rice | |
CN109112130B (en) | High-salt and aging specific induction promoter, engineering vector and application | |
CN110564752B (en) | Application of differential agent technology in enrichment of C.T base substitution cells | |
CN105255859B (en) | Method for improving abiotic stress resistance of plants | |
CN111411098B (en) | Rice ALS mutant gene, plant transgenic screening vector pCALSm2 containing gene and application thereof | |
CN111471684B (en) | Plant constitutive promoter ALSpro and application thereof | |
CN108949764B (en) | Dark and aging specific induction promoter, engineering vector and application | |
CN115873853A (en) | Plant silique specific promoter | |
CN109266631A (en) | A kind of method that genome fixed point knocks out | |
CN111560396B (en) | Plant transgenic screening vector pCALSm1 and application thereof | |
CN114317589B (en) | Application of SpRYn-ABE base editing system in plant genome base substitution | |
KR102076333B1 (en) | Gene delivery vector for simultaneous expression of two foreign genes using broad bean wilt virus 2 | |
CN109642236A (en) | Drought resistant polygene constructs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |