CN113181841A - 一种气液固三相固定鼓泡床反应器及有机废水处理方法 - Google Patents

一种气液固三相固定鼓泡床反应器及有机废水处理方法 Download PDF

Info

Publication number
CN113181841A
CN113181841A CN202010039204.1A CN202010039204A CN113181841A CN 113181841 A CN113181841 A CN 113181841A CN 202010039204 A CN202010039204 A CN 202010039204A CN 113181841 A CN113181841 A CN 113181841A
Authority
CN
China
Prior art keywords
pipe
phase distribution
gas
liquid
main pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010039204.1A
Other languages
English (en)
Inventor
王峤
胡展
刘鹏
张礼昌
乔小飞
于天勇
周兵
钟子太
华政武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN202010039204.1A priority Critical patent/CN113181841A/zh
Publication of CN113181841A publication Critical patent/CN113181841A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明公开了一种气液固三相固定鼓泡床反应器及有机废水处理方法,所述鼓泡床反应器顶部设有物料出口、底部设有物料进口、内部设有用于承载催化剂床层的格栅板、以及位于所述格栅板下方的混合进料分布器,所述混合进料分布器包括主管、第一分布构件和第二分布构件;所述第一分布构件设置在所述主管的上部,并且所述第一分布构件上设有多个开孔;所述第二分布构件设置在所述主管的下部,并且所述第二分布构件上设有多个开孔;利用本发明的反应器进行废水处理,采用气液混合进料、操作稳定,对有机废水处理效果好。

Description

一种气液固三相固定鼓泡床反应器及有机废水处理方法
技术领域
本发明涉及有机废水处理领域,特别涉及一种具有气液混合进料分布器的气液固三相固定鼓泡床反应器以及利用该反应器的有机废水处理方法。
背景技术
湿式氧化(Catalytic Wet Air Oxidation,简称CWAO)法是上世纪八十年代中期在湿式氧化法(简称WAO)基础上发展起来的一种治理高浓度有机废水的先进环保技术,是在一定的温度(150-350℃)、压力(2~10MPa)和催化剂的作用下,经空气氧化,使污水中的有机物及氨分别氧化分解成CO2、H2O及N2等无害物质来达到净化的目的。催化湿式氧化过程中所发生的化学反应分为以下几类:
(1)有机物如:C6H5OH+7O2→6CO2+3H2O
(2)含氮化合物如:4NH3+3O2→2N2+6H2O
(3)含硫化合物如:2(NH4)2S2O3+7O2→2N2+4H2O+4H2SO4
CWAO法是处理高浓度、有毒、有害、生物难降解废水的高效稳定的环保技术之一,具有广阔的应用前景。该技术已广泛用于处理炼焦、化工、石油及合成工业产生的高浓度工业污水,特别是一些有毒性物质、难以用其他方法处理的污水,如有机农药、染料、合成纤维、易燃易爆物质及难以生物降解的高浓度工业废水。与常规水处理方法相比,它具有应用范围广、净化效率高、占地面积小、能耗低、二次污染少等优点。
总体来说,近年来,国内CWAO技术己日渐成熟,但在工业化的历程中,还有诸多需完善优化的问题。特别是在多种复杂有机物成分的酸性废水处理中,由于高温下腐蚀性较强,往往需要使用特材合金设备,同时在大规模废水处理中,物料升温所需热量很大(约占总成本30%),系统热集成效率决定了废水处理成本。
废水与空气混合进料,可以共同预热至所需温度,避免废水与高压空气单独预热后混合,由于水相汽化气相潜热导致气液混合物温度下降,从而达不到反应所需温度而需要高温热源进一步加热所需能耗(一般为电加热或燃气炉加热高温导热油,该部分能量占到系统总成本15%左右,一般为20~30元/吨废水),同时额外增加的特材换热器也提高了装置建设成本。另外,将水气两相在进入反应器之前充分混合接触,有利于提高水中溶氧量,促进有机物的氧化分解,从而提高COD去除率。
然而,现有技术的气体或液体分布器,其结构不适用于气液混合进料的分布,如果用于气液混合进料,会迫使液体与气体共同从小孔中排出,由于气体可压缩而液体不可压缩,且分布器内部存在流向改变及突然扩大、缩小段,导致气液两相不能形成稳定的流型,在分布支管及小孔处,气液混合流体存在时间及空间尺度的不连续性,从而使得从小孔中流出的气体及液体不稳定不均匀,对分布孔造成不稳定流动的冲击而易冲蚀,造成反应器内物料分布不均匀,同时压力波动,影响转化率及操作稳定性,反映在CWAO废水处理中,表现为COD去除率波动且较低。另外,对于高温气液反应,气液混合时,一部分液相会气化进入气相,气化吸热导致气液混合物温度下降,从而达不到反应所需温度,需要额外高温热源进一步加热,温度越高,液相气化越多,需要的高温能耗也越高,同时额外增加的高温换热设备也提高了装置建设成本。
发明内容
本发明所要解决的技术问题是现有分布器不适用于气液两相混合进料均匀分布的问题,提供一种新的具有气液混合进料分布器的气液固三相固定鼓泡床反应器,该气液固三相固定鼓泡床反应器采用气液混合进料、操作稳定,对有机废水处理效果好。
为解决上述技术问题,本发明采用的技术方案如下:
一种具有气液混合进料分布器的气液固三相固定鼓泡床反应器,其中,所述鼓泡床反应器顶部设有物料出口、底部设有物料进口、内部设有用于承载催化剂床层的格栅板、以及位于所述格栅板下方的混合进料分布器;
所述混合进料分布器包括主管、第一分布构件和第二分布构件,所述主管竖直设置,其中部设有进料口,所述进料口通过进料管连接至所述鼓泡床反应器的物料进口;
所述第一分布构件设置在所述主管的上部,并且所述第一分布构件上设有多个开孔,用于将所述主管内向上的物流分布至所述气液固三相固定鼓泡床反应器内;
所述第二分布构件设置在所述主管的下部,并且所述第二分布构件上设有多个开孔,用于将所述主管内向下的物流分布至所述气液固三相固定鼓泡床反应器内。
在本发明中,以下除非特别说明,术语鼓泡床反应器和反应器均对应于所述气液固三相固定鼓泡床反应器,并且三者可以互换使用;以下除非特别说明,术语混合进料分布器和分布器均对应于气液混合进料分布器,并且三者可以互换使用。
在本发明的反应器中,本领域技术人员可以理解,反应器中液相为连续相,气相为分散相,因此为使气相在反应器中更好地分散,本领域技术人员理解可以使第一分布构件的分散区域更大些,比如将所述第一分布构件设置为气相分布管,所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布,从而所述气相分布管围绕所述主管呈辐射状分布,延伸向反应器侧壁,有利于气相更好分布;而作为连续相的液相在反应器内的分布则会相对简单些。
在一种实施方式中,所述第一分布构件为气相分布管,所述第二分布构件为液相分布管;所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端为盲端、下端连接至所述液相分布管的中部;所述液相分布管水平设置并且两端为盲端,所述液相分布管上沿所述液相分布管的轴向设有至少1排开孔。
在一种实施方式中,所述第一分布构件为气相分布管,所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端和下端为盲端,并且在所述主管下部的侧壁设有多个开孔,以形成所述第二分布构件。
在一种实施方式中,所述第一分布构件为气相分布管,所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端为盲端、下端连接至一液相分布管的中部;所述液相分布管水平设置并且两端为盲端,所述液相分布管上沿所述液相分布管的轴向设有至少1排开孔,并且所述主管下部的侧壁设有多个开孔;所述液相分布管与所述主管下部设有多个开孔的段共同形成所述第二分布构件;这种设置方式在一定程度上更有助于防止进料波动时,主管内液位过大波动,当液位过低时,气相还可以同时从主管下部侧壁最上的一组开孔流出,当然,本领域技术人员理解,适当增大所述主管及分布构件的相对与进料流量的余量,也有助于保持液位稳定。
根据本发明的反应器,优选地,所述气相分布管上的开孔设置在所述气相分布管的下部;
当所述反应器中设有液相分布管时,所述液相分布管上的开孔设置在所述液相分布管的下部;
当所述主管下部的侧壁设置多个开孔时,所述主管下部的侧壁设置的多个开孔为多组开孔,每组开孔沿所述主管的周向分布,各组开孔之间沿所述主管轴向分布,比如3-10组开孔,每组有3-20个开孔等等,当然,本领域技术人员理解,具体参数是本领域技术人员根据实际工况可以选择的。
上述技术方案中,所述气相分布管设有多根且沿所述主管的周向均匀分布,例如在所述主管的同一水平高度上均匀,比如气相分布管为三根并且相邻两管间呈120°夹角分布,或者在所述主管的多个水平高度上周向均匀分布,比如多个气相分布管之间分为两组安装在不同高度但每组的相邻两管之间的夹角相等。
上述技术方案中,所述气相分布管或液相分布管上设有至少一排开孔,当设有多排时,本领域两排孔之间可以交错分布,以利于均匀分布,为本领域熟知,这里不再赘述。
根据本发明的反应器,优选地,所述进料管水平设置以实现向所述主管内的水平进料。
根据本发明的反应器,优选地,所述气相分布管上的开孔为圆形,开孔总面积为反应器床层截面积的1~10%,比如3%或4%或5%,优选2%-8%;本领域技术人员理解,所述第二分布构件的开孔总面积可以基于气相分布管上的开孔总面积相应设置,以维持进料主管内液位平衡。
本发明还提供了利用上述反应器对有机废水进行湿式氧化处理的方法,其中,将待处理的有机废水和空气混合预热后,通过所述进料管进入所述混合进料分布器内并在所述主管内进行初步气液分离,然后分别进入所述反应器内在催化剂的作用下进行湿式氧化反应。
在本发明的方法中,气液两相采用混合进料,例如通过静态混合器混合,然后预热(比如预热至180~290℃后)进入主管后产生初步的气液分离,其中,初步分离后呈上升流的气相通过第一分布构件或气相分布管分布到反应器中,这一过程中,由于气相在主管中初步分离后,已与液相间达到平衡状态,并且本领域技术人员可以理解,此时气相中的液体已经达到饱和状态,因此其可以极大地减轻在进入反应器时气液平衡的骤然波动幅度,有利于保持气液的良好混合,初步分离后的液相同理,也已经充分溶解了气体。
根据本发明的方法,所述催化剂可以为湿式氧化工艺中常用的贵金属催化剂,并且所述反应器内反应温度可以为180~290℃,比如210、230或260℃,反应压力可以为5~8MpaG,比如5.5MpaG、6.1MpaG或7MpaG,停留时间可以为0.5h~3h,比如0.7h或1h。
根据本发明的方法,优选地,进料中空气过量2wt%~50wt%,也即使空气中的氧总量超过氧化废水所需的理论需氧量的2wt%~50wt%,优选20wt%~35wt%,比如10%、30%或40%。
在本发明中,设置在所述格栅板上的催化剂层的上方和下方可以分别设有瓷球层,为本领域熟知,这里不再赘述。
在本发明中,所述有机废水可以是本领域已知可用于湿式氧化处理的有机废水,例如含有甲醛、醋酸、甲醇、异丁醇、三甲胺等有机物的废水。
本发明中,混合进料的气液两相,在主管中做初步分离,连续稳定气相从上部的第一分布构件/气相分布管的开孔中流出,液相从位于主管下部的第二分布构件的开孔中流出。
其中,小孔的出口流量和过孔压降的计算关系为:
Figure BDA0002367126310000061
W—流体的重量流量,kg/h;
C—孔流量系数;
do—孔直径,m;
D—管道内径,m;
P1—孔前压力,Pa;
P2—孔后压力或临界限流压力,取其大者,Pa;
M—分子量;
Z—压缩系数;
T—孔前流体温度,K;
k—绝热指数,Cp/Cv
Cp—流体定压热容,kJ/(kg·K);
Cv—流体定容热容,kJ/(kg·K)。
Figure BDA0002367126310000071
(2)液体:
Q—工作状态下体积流量,m3/h;
C—孔流量系数;
do—孔直径,m;
ΔP—通过孔板的压降,Pa;
γ—工作状态下的相对密度,(与4℃水的密度相比).
结合上述计算关系,本领域技术人员理解,在本发明中,气体与液体在主管中进行初步分离后,分别通过气相支管的分布孔及主管侧面下方的液体分布孔排出,由主管内外机械能衡算可知,气体与液体过孔阻力近似相等,分布器气液主管中气液两相界面相对恒定,且液面高度由过孔阻力决定。在一定的气液流量符合下,过孔阻力由分布孔数量决定,通过控制开孔数量控制一定的过孔阻力可以将分布主管液面高度维持在所需范围内。当运行负荷调整时,气液两相流量按相同比例增减,因此过孔阻力仍然近似相等,主管内液面高度随着过孔阻力的增减而升高或降低,仍然可以维持在一定范围内相对稳定。同时,为了是在在大直径反应器中气体的均匀分布,需要保证各分布孔处气体阻力尽量一致。气体总的阻力包括气体从总管到达分布孔处阻力及过孔阻力,扩大总管及各支管直径可以减低管内阻力,减小开孔数量可以增加过孔阻力,从而提高过孔阻力占压降的比例至90%以上,从而保证支管上远近各处分布孔过孔气量近似相等。
与现有技术相比,本发明在催化湿式氧化废水处理技术(CWAO)中,分别将有机废水加压后与高压空气充分混合预热后通入所述气液固三相固定鼓泡床反应器内,气液混合物通过分布器均匀分布后通入所述气液固三相固定鼓泡床反应器内,较好地保证了空气和废水中的有机物充分接触并连续平稳地进入反应器,进行充分催化反应,系统工况稳定,COD的去除率高,取得了较好的技术效果。
附图说明
图1为本发明气液固三相固定鼓泡床反应器的一种实施方式的示意图;
图2为本发明的气液混合分布器的一种实施方式的示意图;
图3为本发明的气液混合分布器的一种实施方式的示意图;
图4为图2俯视图;
图5为图3俯视图;
图中,1为反应器壳体,2为主管,3为物料进口,4为气相分布管,5为格栅板,6为下瓷球层及8为上瓷球层,7为催化剂床层,9为液相分布管,10为物料出口,11为气体分布孔(开孔),12为液体分布孔(开孔);
以上附图1-3中,为了便于示意,剖面处的开孔采用了短线段进行示出,这些短线段应理解为开孔。
具体实施方式
以下结合附图和实施例对本发明进行详细说明,但本发明并不仅限于此。
如图1所示,本发明的气液固三相固定鼓泡床反应器1顶部设有物料出口10、底部设有物料进口、内部设有用于承载催化剂床层7的格栅板5、以及位于所述格栅板5下方的混合进料分布器;所述混合进料分布器包括主管2、第一分布构件和第二分布构件,所述主管2竖直设置,其中部设有进料口,所述进料口通过进料管3连接至所述鼓泡床反应器的物料进口;所述第一分布构件设置在所述主管2的上部,并且所述第一分布构件上设有多个开孔,用于将所述主管2内向上的物流分布至所述气液固三相固定鼓泡床反应器内;所述第二分布构件设置在所述主管2的下部,并且所述第二分布构件上设有多个开孔,用于将所述主管2内向下的物流分布至所述气液固三相固定鼓泡床反应器内。
在一个实施例中,如图1所示,所述第一分布构件为气相分布管4,所述第二分布构件为液相分布管9;所述气相分布管4一端为盲端、一端与所述主管2连通且靠近所述主管2上端水平设置,并且所述气相分布管4设有多根且沿所述主管2的周向均匀分布;所述气相分布管4上沿所述气相分布管4的轴向设有至少1排开孔11;所述主管2的上端为盲端、下端连接至所述液相分布管9的中部;所述液相分布管9水平设置并且两端为盲端,所述液相分布管9上沿所述液相分布管9的轴向设有至少1排开孔12。
在一个实施例中,如图2和4所示,所述第一分布构件为气相分布管4,所述气相分布管4一端为盲端、一端与所述主管2连通且靠近所述主管2上端水平设置,并且所述气相分布管4设有多根且沿所述主管2的周向均匀分布;所述气相分布管4上沿所述气相分布管4的轴向设有至少1排开孔11;所述主管2的上端和下端为盲端,并且在所述主管2下部的侧壁设有多个开孔12,以形成所述第二分布构件。
在一个实施例中,如图3和5所示,所述第一分布构件为气相分布管4,所述气相分布管4一端为盲端、一端与所述主管2连通且靠近所述主管2上端水平设置,并且所述气相分布管4设有多根且沿所述主管2的周向均匀分布;所述气相分布管4上沿所述气相分布管4的轴向设有至少1排开孔11;所述主管2的上端为盲端、下端连接至一液相分布管9的中部;所述液相分布管9水平设置并且两端为盲端,所述液相分布管9上沿所述液相分布管9的轴向设有至少1排开孔12,并且所述主管2下部的侧壁设有多个开孔12;所述液相分布管9与所述主管2下部设有多个开孔12的段共同形成所述第二分布构件。
所述气相分布管4上的开孔11设置在所述气相分布管4的下部;所述液相分布管9上的开孔12设置在所述液相分布管9的下部;所述主管2下部的侧壁设置的多个开孔12为可以为多组开孔,每组开孔沿所述主管2的周向分布,各组开孔之间沿所述主管2轴向间隔分布。如图1、图2和图4所示,其气相分布管4为三根并且相邻两管间呈120°夹角分布在所述主管2的统一水平高度上。如图3和图5所示,其气相分布管4分为两组,每组三根并且相邻两管间呈120°夹角分布在所述主管2的统一水平高度上,两组在主管2的不同高度。
所述格栅板5上设有催化剂床层7以及敷设在催化剂床层7上下的上瓷球层8和下瓷球层6。
正常运行时,气液混合物通过进料管3进入主管2进行初步气液分离,气体夹带少量液沫进入气相分布支管4,然后由各支管上的气体分布孔11均匀分布,液相经主管2向下流动后经由液体分布孔12均匀排出,气液并流向上经支撑格栅5和下部瓷球6进入催化剂床层7,在催化剂的作用下进行反应,反应后的物料经上部瓷球8进入反应器上部空间,气液共同经过气液混合物料出口10排出。
下面通过实施例对本发明作进一步的阐述。
【实施例1】
按图1、图2和图4所示,三相固定床鼓泡反应器内的催化剂为中国科学院大连化学物理研究所开发的以Ru为活性组分的催化剂(以下实施例及对比例中所提及的催化剂均指的是这种催化剂,该催化剂制备方法参照CN1583256A“一种处理工业废水的贵金属催化剂及其制备方法和应用”中的实施例3和4进行制备,其中活性组分贵金属Ru含量为2wt%,载体为共沉淀法制备的ZrO2-CeO2),反应空速为1.33h-1:第一分布构件为三辐型排列的气相分布管,管上分别设有一排开孔其上开孔总面积为反应器床层截面积的2%,主管(2)为竖直管,侧面靠下开有6排液体分布孔,每排4个孔呈90゜间隔排列,液体分布孔的开孔总面积为气相分布管开孔总面积的20%。将某丙烯酸装置产生的废水(含1.6%甲醛,4%醋酸)加压至6.5MPaG后,与过量30%的高压空气混合,预热至240℃混合通入气液固三相固定床鼓泡反应器,条件下发生湿式氧化反应,甲醛、醋酸被氧化为二氧化碳和水从而降低了COD,COD的去除率为92.4%。系统压力稳定,波动不超过0.2MPa。
【实施例2】
按图1、图2和图4所示,气液固三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂空速为1h-1。第一分布构件为三辐型排列的气相分布管,管上分别设有2排开孔,其开孔总面积为反应器床层截面积的2%,主管(2)为竖直管,侧面靠下开有3排液体分布孔,每排4个孔呈90゜间隔排列,液体分布孔的开孔总面积为气相分布管开孔总面积的22%。将某丙烯酸装置产生的废水(含1.8%甲醛,3.9%醋酸)加压至7MPaG后,与过量20%的高压空气混合,预热至240℃混合通入气液固三相固定床鼓泡反应器,发生湿式氧化反应,COD的去除率为96%。系统压力稳定,波动不超过0.2MPa。
【实施例3】
按图1、图2和图4所示,气液固三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂,空速为1.33h-1:第一分布构件为三辐型排列的双层式气相分布管,管上分别设有2排开孔,其开孔总面积为反应器床层截面积的10%,主管(2)为竖直管,侧面靠下开有4排液体分布孔,每排4个孔呈90゜间隔排列,液体分布孔的开孔总面积为气相分布管开孔总面积的20%。将某多元醇装置产生的废水(含4%甲醇,2%丁醇,0.1%二甲胺)加压至6.5MPaG后,与过量30%的高压空气混合,预热至245℃混合通入气液固三相固定床鼓泡反应器,发生湿式氧化反应,COD的去除率为92%。系统压力稳定,波动不超过0.2MPa。
【实施例4】
按图1、和图4所示,气液固三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂,空速为0.67h-1:第一分布构件为三辐型排列的双层式气相分布管,管上分别设有2排开孔,其开孔总面积为反应器床层截面积的10%,主管(2)下接液相分布管,水平管底部开有一排液体分布孔,液体分布孔的开孔总面积为气相分布管开孔总面积的23%。将某胺装置产生的废水(含0.7%硫酸铵,2%甲醇)加压至7.5MPaG后,与过量35%的高压空气混合,预热至250℃混合通入气液固三相固定床鼓泡反应器,发生湿式氧化反应,COD的去除率为98.5%。系统压力稳定,波动不超过0.2MPa。
【实施例5】
按图1、和图3所示,气液固三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂,空速为1h-1:第一分布构件为三辐型排列的双层式气体分布器,各管上设有1排开孔,其开孔总面积为反应器床层截面积的4%,主管(2)下接液相分布管,所述液相分布管底部开有一排液体分布孔,,同时主管(2)的竖直管下部侧壁开有周向均布的4个分布孔,液体分布孔的开孔总面积为气相分布管开孔总面积的30%。将某胺装置产生的废水(含0.5%硫酸铵,1%甲醇)加压至7.2MPaG后,与过量20%的高压空气混合,预热至235℃混合通入气液固三相固定床鼓泡反应器,发生湿式氧化反应,COD的去除率为93%。系统压力稳定,波动不超过0.2MPa。
【对比例1】
按图1、图2、图4,三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂,空速为1.33h-1:反应器底部安装气液主管(2)三辐型排列的单排管式气体分布器,支管上带有1排垂直向下的小孔,小孔开孔总面积为反应器床层截面积的10%,主管(2)为竖直管,侧面靠下开有6排液体分布孔,每排4个孔呈90゜间隔排列,作为【实施例1】的对比例,将此液体分布孔堵塞,使气液共同从气体分布孔中排出。将某丙烯酸装置产生的废水(含1.6%甲醛,4%醋酸)加压至6.5MPaG后,与过量30%的高压空气混合,预热至240℃混合通入气液固三相固定床鼓泡反应器,发生湿式氧化反应。由于气液过孔的不连续性,导致系统压力波动剧烈,压力最大波动达到0.6MPa,同时检测出料废水COD去除率波动较大,最低仅有74.6%。
【对比例2】
按图1、图2、图4,三相固定床鼓泡反应器内的催化剂为实施例1所用催化剂,空速为1.33h-1:反应器底部安装气液主管(2)三辐型排列的单排管式气体分布器,支管上带有1排垂直向下的小孔,小孔开孔总面积为反应器床层截面积的5%,主管(2)为竖直管,侧面靠下开有6排液体分布孔,每排4个孔呈90゜间隔排列,作为【实施例1】的对比例,将此液体分布孔堵塞,仅将气体通过此分布器分布并进入反应器。将某丙烯酸装置产生的废水(含1.6%甲醛,4%醋酸)加压至6.5MPaG后,预热至240℃直接通入反应器底部,过量30%的高压空气通过所述分布器通入反应器,发生湿式氧化反应。由于气液在反应器底部混合后部分废水气化吸热,导致反应器底部温度下降约30℃,仅能达到210℃左右,后续依靠反应自身放热才使体系温度升高至230℃,前期反应温度低导致出料废水COD去除率降低,仅有80.2%。

Claims (10)

1.一种气液固三相固定鼓泡床反应器,其中,所述鼓泡床反应器顶部设有物料出口、底部设有物料进口、内部设有用于承载催化剂床层的格栅板、以及位于所述格栅板下方的混合进料分布器,其特征在于,
所述混合进料分布器包括主管、第一分布构件和第二分布构件,所述主管竖直设置,其中部设有进料口,所述进料口通过进料管连接至所述鼓泡床反应器的物料进口;
所述第一分布构件设置在所述主管的上部,并且所述第一分布构件上设有多个开孔,用于将所述主管内向上的物流分布至所述气液固三相固定鼓泡床反应器内;
所述第二分布构件设置在所述主管的下部,并且所述第二分布构件上设有多个开孔,用于将所述主管内向下的物流分布至所述气液固三相固定鼓泡床反应器内。
2.根据权利要求1所述的气液固三相固定鼓泡床反应器,其特征在于,所述第一分布构件为气相分布管,所述第二分布构件为液相分布管;所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端为盲端、下端连接至所述液相分布管的中部;所述液相分布管水平设置并且两端为盲端,所述液相分布管上沿所述液相分布管的轴向设有至少1排开孔。
3.根据权利要求1所述的气液固三相固定鼓泡床反应器,其特征在于,所述第一分布构件为气相分布管,所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端和下端为盲端,并且在所述主管下部的侧壁设有多个开孔,以形成所述第二分布构件。
4.根据权利要求1所述的气液固三相固定鼓泡床反应器,其特征在于,所述第一分布构件为气相分布管,所述气相分布管一端为盲端、一端与所述主管连通且靠近所述主管上端水平设置,并且所述气相分布管设有多根且沿所述主管的周向均匀分布;所述气相分布管上沿所述气相分布管的轴向设有至少1排开孔;
所述主管的上端为盲端、下端连接至一液相分布管的中部;所述液相分布管水平设置并且两端为盲端,所述液相分布管上沿所述液相分布管的轴向设有至少1排开孔,并且所述主管下部的侧壁设有多个开孔;所述液相分布管与所述主管下部设有多个开孔的段共同形成所述第二分布构件。
5.根据权利要求2-4中任一项所述的反应器,其特征在于,
所述气相分布管上的开孔设置在所述气相分布管的下部;
当所述反应器中设有液相分布管时,所述液相分布管上的开孔设置在所述液相分布管的下部;
当所述主管下部的侧壁设置多个开孔时,所述主管下部的侧壁设置的多个开孔为多组开孔,每组开孔沿所述主管的周向分布,各组开孔之间沿所述主管轴向分布。
6.根据权利要求5所述的反应器,其特征在于,所述进料管水平设置以实现向所述主管内的水平进料。
7.根据权利要求6所述的反应器,其特征在于,所述气相分布管上的小孔为圆形,开孔总面积为反应器床层截面积的1~10%,优选2~8%。
8.利用权利要求1-7中任一项所述的反应器对有机废水进行湿式氧化处理的方法,其中,将待处理的有机废水和空气混合预热后,通过所述进料管进入所述混合进料分布器内并在所述主管内进行初步气液分离,然后分别进入所述反应器内在催化剂的作用下进行湿式氧化反应。
9.根据权利要求8所述的方法,其特征在于,所述催化剂为贵金属催化剂,并且所述反应器内反应温度为180~290℃,反应压力为5~8MpaG下,停留时间为0.5h~3h。
10.根据权利要求9所述的方法,其特征在于,进料中空气过量2wt%~50wt%,优选20wt%~35wt%。
CN202010039204.1A 2020-01-14 2020-01-14 一种气液固三相固定鼓泡床反应器及有机废水处理方法 Pending CN113181841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010039204.1A CN113181841A (zh) 2020-01-14 2020-01-14 一种气液固三相固定鼓泡床反应器及有机废水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010039204.1A CN113181841A (zh) 2020-01-14 2020-01-14 一种气液固三相固定鼓泡床反应器及有机废水处理方法

Publications (1)

Publication Number Publication Date
CN113181841A true CN113181841A (zh) 2021-07-30

Family

ID=76972454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010039204.1A Pending CN113181841A (zh) 2020-01-14 2020-01-14 一种气液固三相固定鼓泡床反应器及有机废水处理方法

Country Status (1)

Country Link
CN (1) CN113181841A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382331A (zh) * 2022-10-27 2022-11-25 中车山东风电有限公司 一种电解氢气液分离装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579647A (en) * 1982-10-15 1986-04-01 Mobil Oil Corporation Multiphase catalytic process with improved liquid distribution
CN101678301A (zh) * 2007-06-12 2010-03-24 Ifp公司 含颗粒床的封壳和封壳内上升流动中循环的气相液相分配
CN201529518U (zh) * 2009-05-13 2010-07-21 中国石油化工股份有限公司 气-液-固三相固定鼓泡床反应器
US20150151263A1 (en) * 2013-11-29 2015-06-04 Uop Llc Unit for processing a liquid/gas phase mixture, mercaptan oxidation system including the same, and method of processing a liquid/gas phase mixture
CN104761041A (zh) * 2014-01-08 2015-07-08 万华化学集团股份有限公司 催化湿式氧化处理反应塔及使用该塔处理高浓有机废水的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579647A (en) * 1982-10-15 1986-04-01 Mobil Oil Corporation Multiphase catalytic process with improved liquid distribution
CN101678301A (zh) * 2007-06-12 2010-03-24 Ifp公司 含颗粒床的封壳和封壳内上升流动中循环的气相液相分配
CN201529518U (zh) * 2009-05-13 2010-07-21 中国石油化工股份有限公司 气-液-固三相固定鼓泡床反应器
US20150151263A1 (en) * 2013-11-29 2015-06-04 Uop Llc Unit for processing a liquid/gas phase mixture, mercaptan oxidation system including the same, and method of processing a liquid/gas phase mixture
CN104761041A (zh) * 2014-01-08 2015-07-08 万华化学集团股份有限公司 催化湿式氧化处理反应塔及使用该塔处理高浓有机废水的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382331A (zh) * 2022-10-27 2022-11-25 中车山东风电有限公司 一种电解氢气液分离装置

Similar Documents

Publication Publication Date Title
EP1964908B1 (en) Fischer-tropsch synthesis process using bubble column type slurry-bed reactor
CN111068589B (zh) 一种液相加氢系统及液相加氢方法
CN104028176B (zh) 一种加氢裂化制备生物航空煤油反应装置
JP3739902B2 (ja) 気液分散装置及び気液接触装置並びに廃水処理装置
US7014750B2 (en) System and process for pyrolysis gasoline hydrotreatment
CN110902945A (zh) 一种一体化污水处理方法
CN113735245B (zh) 一种臭氧催化氧化污水的方法
CN113181841A (zh) 一种气液固三相固定鼓泡床反应器及有机废水处理方法
CN106732200B (zh) 一种涡轮式冷氢箱
CN106854135A (zh) 苯与甲醇烷基化制对二甲苯的方法
CN112661314B (zh) 用于高浓度有机废液处理的亚临界流化床反应器及方法
CN100390132C (zh) 苯胺合成流化床中的气体分布器及苯胺合成方法
CN109679689A (zh) 一种液相加氢反应器及加氢反应方法和反应系统
CN108622992B (zh) 废水处理装置和废水处理方法
CN112254557B (zh) 一种集成气液混合器的板壳式换热器及用其处理有机废水的方法和装置系统
CN111217441A (zh) 一种臭氧氧化反应器及其使用方法
CN114425280B (zh) 一种进料分布器及反应器
CN110902946B (zh) 一种一体化污水处理装置
CN112705123B (zh) 一种加氢反应器及加氢方法
CN111790319B (zh) 浆态床反应器及其系统和应用以及费托合成方法
CN109180611B (zh) 一种原料分段注入的hppo法制备环氧丙烷的装置及方法
JP2004098023A (ja) 排水の湿式酸化処理法および装置
CN113877488B (zh) 一种基于管式微孔介质发泡机理的上流式加氢反应装置
CN114920346A (zh) 一种用于废水氧化的多相强化反应器
CN115703976B (zh) 一种重整生成油液相加氢脱除烯烃的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination