CN113164939B - 沸石材料uzm-63 - Google Patents

沸石材料uzm-63 Download PDF

Info

Publication number
CN113164939B
CN113164939B CN201980076934.4A CN201980076934A CN113164939B CN 113164939 B CN113164939 B CN 113164939B CN 201980076934 A CN201980076934 A CN 201980076934A CN 113164939 B CN113164939 B CN 113164939B
Authority
CN
China
Prior art keywords
uzm
value
molar ratio
cation
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980076934.4A
Other languages
English (en)
Other versions
CN113164939A (zh
Inventor
本杰明·D·尤哈斯
米莫扎·西勒曼尼-雷卡利乌
杰米·G·莫斯科索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Publication of CN113164939A publication Critical patent/CN113164939A/zh
Application granted granted Critical
Publication of CN113164939B publication Critical patent/CN113164939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本主题发明为新型UZM‑63材料,所述新型UZM‑63材料包含晶粒的球状聚集体,所述晶粒的球状聚集体具有DDR骨架类型,所述DDR骨架类型具有至少0.025cc/g的中孔体积,所述纳米晶体具有小于60nm的平均直径。新型UZM‑63材料可用于烃转化过程以及分离应用,尤其是烯烃与石蜡的分离。

Description

沸石材料UZM-63
技术领域
本发明涉及名称为UZM-63的纳米晶沸石材料。UZM-63由以下经验式表示:
Mm n+Qq p+AlSiyOz
其中M表示碱金属或碱土金属,并且Q为有机铵阳离子。
背景技术
沸石为结晶铝硅酸盐,其为微孔的并且由角共享SiO4/2和AlO4/2四面体形成。许多天然存在的沸石和合成制成的沸石均用于各种工业过程中,诸如催化和/或分离。合成沸石通常经由水热合成制备,其中合适的Si、Al源与结构导向剂(SDA)诸如碱金属阳离子、碱土金属阳离子、有机铵阳离子或胺组合。SDA驻留在沸石孔中,并且主要负责最终形成的特定结构。这些物质可平衡与AlO4/2四面体相关联的骨架电荷,并且还可用作空间填料。
沸石的特征在于具有均匀尺寸的孔开口,具有显著的离子交换容量,并且能够可逆地解吸分散在晶体的整个内部空隙中的吸附相,但不显著地置换构成永久性沸石晶体结构的任何原子。沸石可用作烃转化反应的催化剂,所述烃转化反应可在外部表面上以及孔内的内部表面上发生。
沸石也可用于分离过程,其中某一分子可易于被吸附在沸石孔结构内,而另一个分子可被拒绝或排除。沸石在分离中的使用利用分子筛效应,其中可进入沸石孔结构的分子的最大尺寸由孔开口或开孔的尺寸和形状决定。孔开口的尺寸通常由形成闭环的T原子(即,Si或Al原子)的数量限定。例如,8-环材料含有八角共享SiO4/2和/或AlO4/2四面体的闭环。具体地,8-环材料对于小分子分离(包括二氧化碳捕集)已受到相当大的关注。当沸石用于分离应用中时,将它们制成膜是有利的。为了制造最高质量的膜,优选沸石晶体尽可能小。
发明内容
本文公开的发明包括称为UZM-63的新沸石材料。UZM-63是具有DDR类沸石的纳米晶体的球状聚集体。本发明的一个实施方案是UZM-63材料,该UZM-63材料是具有至少0.025cc/g的中孔体积的DDR类沸石的纳米晶体的球状聚集体,该纳米晶体具有小于60nm的平均直径,并且以合成态和无水形式由经验式表示:
Mm n+Qq p+AlSiyOz
其中M表示碱金属或碱土金属,Q表示有机铵阳离子,“m”表示M与Al的摩尔比并且具有0.02至0.95的值,“n”为一种或多种金属M的电荷,“q”为有机铵阳离子与Al的摩尔比并且具有0.02至0.95的值,“p”为一种或多种有机铵阳离子的电荷,“y”为Si与Al的摩尔比并且具有8至25的比率,并且“z”为O与Al的摩尔比并且具有由以下公式确定的值:
z=(m·n+q·p+3+4·y)/2
本发明的另一个实施方案是具有至少0.025cc/g的中孔体积的纳米晶体的球状聚集体,该纳米晶体具有小于60nm的平均直径,并且以合成态和无水形式由经验式表示:
Mm n+Qq p+AlSiyOz
其中M表示碱金属或碱土金属,Q表示有机铵阳离子,“m”表示M与Al的摩尔比并且具有0.02至0.95的值,“n”为一种或多种金属M的电荷,“q”为有机铵阳离子与Al的摩尔比并且具有0.02至0.95的值,“p”为一种或多种有机铵阳离子的电荷,“y”为Si与Al的摩尔比并且具有8至25的比率,并且“z”为O与Al的摩尔比并且具有由以下公式确定的值:
z=(m·n+q·p+3+4·y)/2
并且本发明的特征在于其具有x-射线衍射图,该x-射线衍射图至少具有表1中示出的d-间距和强度:
表1
本发明的另一个实施方案是用于制备上述结晶微孔UZM-63沸石的过程。该过程包括形成含有Q、Al、M和Si的反应源的反应混合物,并且将该反应混合物在60℃至200℃的温度下加热足以形成UZM-63的时间,该反应混合物具有根据下列氧化物摩尔比表示的组成:
aQ2O:bM3-nO:Al2O3:cSiO2:dH2O
其中“a”具有1至10的值,“b”具有0.05至0.95的值,“c”具有20至50的值,并且“d”具有250至1000的值。
本发明的另一个实施方案是使用上述UZM-63作为催化剂的烃转化过程。该过程包括在转化条件下使至少一种烃与UZM-63接触以生成至少一种转化的烃。
本发明的又一个实施方案是使用结晶UZM-63材料的吸附过程。所述过程可涉及烯烃和/或石蜡在UZM-63上的吸附和解吸。分子物质的分离可基于分子尺寸(动力学直径)或分子物质的极性程度。可通过与UZM-63进行离子交换来去除污染物。
附图说明
图1为根据本文所述的实施方案的示例性UZM-63材料的透射电子显微镜(SEM)图像。
图2为原位合成态形式的示例性UZM-63材料的x-射线衍射图。
图3为示出77K下UZM-63质子形式的氮吸附等温线的图。
图4为示出UZM-63质子形式的丙烯和丙烷吸收的图。
具体实施方式
本发明的UZM-63为具有独特吸附特性和催化活性的新型硅铝酸盐沸石。UZM-63沸石具有DDR骨架类型,如沸石骨架类型图集,第6修订版,C.H.Baerlocher、L.B.McCusker、D.H.Olson编辑,(2007年),第108至109页(Atlas of Zeolite Framework Types,6thRevised Edition,C.H.Baerlocher,L.B.McCusker,D.H.Olson,eds.(2007),pp.108-109)中所述。DDR结构包括角共享SiO4/2和/或AlO4/2四面体,该角共享SiO4/2和/或AlO4/2四面体被布置成使得晶格在两个维度上含有8环笼开口。沸石的特征通常在于20至50的SiO2/Al2O3比率,并且优选30至45。本发明的UZM-63基于以下发现:特定的晶体特征允许改善的UZM-63微孔可接触性,这导致更好的质量传递和改善的分离能力。
本发明的UZM-63材料的特征在于以下特性中的一个或多个:
1.具有至少0.025cc/g,并且优选至少0.04cc/g的中孔体积的球状聚集体;
2.60nm或更小,并且优选40nm或更小的平均晶粒直径;
3.介于20和50之间,并且优选介于30和45之间的Si/Al2比率。
本发明的UZM-63具有由经验式表示的合成态和无水形式的组成:
Mm n+Qq P+AlSiyOz
其中M表示碱金属或碱土金属;其示例包括Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、以及它们的混合物。Q为至少一种有机铵阳离子,表示为(NR4 +)。在同一季氮上可存在多个不同的R基团。特定的R基团可具有式CnH2n+1,其中n为在1至4范围内的整数(包括端值在内)。组分Q的非限制性示例包括四甲基铵、乙基三甲基铵、二乙基二甲基铵、甲基三乙基铵、四乙基铵、四丙基铵、丙基三甲基铵、异丙基三甲基铵、丁基三甲基铵、二丙基二甲基铵、二甲基二异丙基铵和甲基乙基二丙基铵。在一个优选的实施方案中,Q为二甲基二异丙基铵。“m”表示M与Al的摩尔比并且具有0.02至0.95的值,“n”为一种或多种金属M的电荷,“q”为有机铵阳离子与Al的摩尔比并且具有0.02至0.95的值,“p”为一种或多种有机铵阳离子的电荷,“y”为Si与Al的摩尔比并且具有8至25的比率,并且“z”为O与Al的摩尔比并且具有由以下公式确定的值:
z=(m·n+q·p+3+4·y)/2
本发明的UZM-63聚集体材料通过含有反应源或M、Q、铝和硅的混合物的水热结晶来制备。铝源包括但不限于铝醇盐、沉淀氧化铝、铝金属、氢氧化铝、铝盐和氧化铝溶胶。铝醇盐的具体示例包括但不限于邻仲丁醇铝和邻异丙醇铝。二氧化硅源包括但不限于原硅酸四乙酯、胶态二氧化硅和沉淀二氧化硅。M金属源包括相应碱土金属和过渡金属的卤化物盐、硝酸盐、乙酸盐、硫酸盐以及相应碱金属和碱土金属的氢氧化物。有机铵阳离子Q源可为氢氧化物、溴化物、碘化物、氯化物或氟化物盐。Q的具体示例可为二甲基二异丙基氢氧化铵或二甲基二异丙基溴化铵。
在自生压力下,使反应混合物在125℃至200℃并且优选150℃至180℃的温度下,在密封反应容器中反应1天至21天的时段并且优选2天至10天的时间。可在搅拌下加热反应容器,在滚动的同时加热,或静音加热。在结晶完成后,将固体产物借助于诸如过滤或离心与异质混合物分离,并且然后利用去离子水洗涤并在高达100℃的环境温度处在空气中干燥。可任选地将UZM-63晶种添加到反应混合物中,以便加速所需微孔组合物的形成。
本发明的UZM-63材料的特征在于以下特性中的一个或多个:
1.具有至少0.025cc/g,并且优选至少0.04cc/g的中孔体积的球状聚集体;
2. 60nm或更小,并且优选40nm或更小的平均晶粒直径;
3.介于20和50之间,并且优选介于30和45之间的Si/Al2比率。
在许多应用中,具有小沸石纳米晶体和/或球状聚集体是有利的。此类材料在催化期间常常具有改善的质量传递,因为它们的小尺寸允许最大的可接触性。具体示例可见于UZM-14(US 7687423)的情况下,其中该材料的球状特征产生增加的芳族烷基转移活性。申请人已通过使用低水、低碱合成方法发现,可制得UZM-63的球状聚集体。UZM-63的球状聚集体拥有DDR类沸石。UZM-63纳米晶体具有小于60nm的平均晶体直径,并且优选小于40nm。由电子显微镜图像和对UZM-63的X射线衍射(XRD)图案的Scherrer分析这两者确定平均晶体直径。此类图案的示例示于图2中。通过测量UZM-63XRD图案中峰的半峰全宽(FWHM),执行本领域中熟知的Scherrer分析。然后将结晶直径L计算为:
其中λ为Cu Kα辐射的波长,θ为衍射角的一半,并且β为针对仪器致宽校正的衍射峰的FWHM,由下式计算:
β1/2=B1/2-b1/2
其中“B”为衍射峰的所测量的FWHM,并且“b”为仅表现出仪器致宽的仪器标准的所测量的FWHM。发现由Scherrer分析确定的平均晶粒尺寸与由电子显微镜图像获得的平均晶粒尺寸非常一致。UZM-63的代表性SEM图像示于图1中。
UZM-63的球状性质是其合成条件和上述反应混合物组成的产物。当根据摩尔比的组成落入如表2中所示的以下范围内时,制得UZM-63:
表2
属性 优选的
Si/Al2 20-50 30-45
[OH-]/Si 0.10-0.40 0.15-0.30
Q/Si 0.05-0.35 0.10-0.20
M/Si 0.005-0.045 0.010-0.040
H2O/Si 8-20 12-18
Q/(Q+M) 0.75-1.00 0.80-1.00
UZM-63的中孔体积由氮吸附等温线确定,诸如图3中所示。等温线在Micromeritics ASAP 2020仪器中在77K下测量。煅烧UZM-63以去除吸留的有机物质,并且然后使用标准离子交换技术转化成质子形式。UZM-63的总孔体积如下确定。首先,确定0.95的相对压力(P/Po)下的氮吸收。然后,使用DFT方法计算尺寸小于的所有孔的总孔体积。使用t图法计算微孔体积。使用Broekhoff-de Boer厚度曲线考虑/>的厚度范围。然后通过从总孔体积中减去微孔体积来获得中孔体积。
如先前所提及,DDR结构类型包括角共享SiO4/2和/或AlO4/2四面体,该角共享SiO4/2和/或AlO4/2四面体被布置成使得晶格在两个维度上含有8环笼开口。DDR类沸石的维数和孔尺寸已使其成为用于分离应用的有前景的材料。一个示例性分离应用是烯烃与链烷烃的分离,诸如丙烯与丙烷的分离。(参见例如W.Zhu等人的化学公社第2453至2454页(1999年);J.Gascon等人的微孔中孔材料,第115卷,第585至593页(2008年)(Chem.Commun.p.2453-2454(1999);J.Gascon et al.Micropor.Mesopor.Mater.,115,585-593(2008))。另一个示例性分离应用是从氮气和/或甲烷中分离二氧化碳(参见例如S.Himeno等人的微孔中孔材料,第98卷,第62至69页(2007年)(《Micropor Mesopor.Mater.,98,62-69(2007));S.E.Jee和D.S.Shaoll的美国化学学会杂志,第131卷,第7896至7904页(2009年)(J.Am.Chem.Soc.131,7896-7904(2009))。在大多数这些分离应用中,优选的是将活性吸附组分掺入膜中,并且沸石膜的制造是本领域中熟知的(参见例如M.A.Carreon等人的美国化学学会杂志,第130卷,第5412至5413页(2008年)(J.Am.Chem.Soc.130,5412-5413(2008));K.Weh等人的微孔中孔材料,第54卷,第27至36页(2002年)(Micropor.Mesopor.Mater.54,27-36(2002));T.Tomita、K.Nakayama、H.Sakai的微孔中孔材料,第68卷,第71至75页(2004年)(Micropor.Mesopor.Mater.,68,71-75(2004));以及US6488741、US6953493、US8263512)。在沸石膜制造中,吸附组分由沸石晶种生长,并且优选晶种尽可能小。在DDR类沸石的情况下,主要通过将大晶体研磨至更小尺寸诸如200nm来制成晶种(参见US8821616)。已报告的更小的晶体仅为纯二氧化硅形式(例如,US9901882)。
与现有技术相比,UZM-63作为纳米晶体直接由合成凝胶制成,而无需通过研磨或碾磨来减小晶体尺寸。如表2中所述选择合成参数,其使得能够形成UZM-63的球状聚集体。不同于先前报告的具有DDR类沸石的小晶体全二氧化硅沸石,诸如在US8821616或US9901882中报告的那些,UZM-63纳米晶体在沸石骨架中含有SiO4/2和AlO4/2四面体两者。UZM-63的球状性质与沸石骨架中Al原子的存在所赋予的酸度相结合使得UZM-63是用于分离应用和催化这两者的有效材料。本发明的UZM-63组合物可在各种烃转化过程中用作催化剂或催化剂载体。烃转化过程是本领域熟知的,并且包括裂化、加氢裂化、芳族化合物和异链烷烃两者的烷基化、异构化、聚合、重整、氢化、脱氢、烷基转移、脱烷基化、水合、脱水、加氢处理、加氢脱氮、加氢脱硫、甲醇制烯烃、甲烷化和合成气转变过程。
UZM-63材料还可用作将甲醇转化成烯烃的催化剂。甲醇可为液相或气相,其中气相是优选的。甲醇与UZM-63催化剂的接触可以连续模式或成批模式进行,其中连续模式是优选的。甲醇与UZM-63催化剂接触的时间量必须足以将甲醇转化成所需的轻质烯烃产物。当所述过程以成批方法进行时,接触时间从0.001小时至1小时并且优选从0.01小时至1.0小时变化。在较低温度下使用较长的接触时间,而在较高温度下使用较短的时间。当所述过程以连续模式进行时,基于甲醇的重时空速(WHSV)可从1hr-1至1000hr-1并且优选从1hr-1至100hr-1变化。
一般来讲,所述过程必须在高温下进行,以便以足够快的速率形成轻质烯烃。因此,所述过程应在300℃至600℃、优选400℃至550℃并且最优选435℃至525℃的温度下进行。所述过程可在包括自生压力的宽压力范围内进行。因此,压力可从0kPa(0psig)至1724kPa(250psig)并且优选从34kPa(5psig)至345kPa(50psig)变化。
任选地,甲醇原料可用惰性稀释剂稀释以便更有效地将甲醇转化成烯烃。可用的稀释剂的示例为氦气、氩气、氮气、一氧化碳、二氧化碳、氢气、蒸汽、石蜡烃例如甲烷、芳香烃例如苯、甲苯以及它们的混合物。稀释剂的用量可显著变化,并且通常为原料的5摩尔%至90摩尔%,并且优选25摩尔%至75摩尔%。
反应区的实际构型可以是本领域已知的任何催化剂反应设备。因此,可使用单个反应区或者串联或并联布置的若干区。在此类反应区中,甲醇原料流过含有UZM-63催化剂的床。当使用多个反应区时,可串联使用一种或多种UZM-63催化剂以制得所需的产物混合物。可使用动态床系统(例如,流化床或移动床)来代替固定床。此类动态系统将有利于可能需要的UZM-63催化剂的任何再生。如果需要再生,UZM-63催化剂可作为移动床被连续引入再生区,在该再生区中该催化剂可通过诸如在含氧气氛中氧化的手段再生以去除含碳材料。
实施例
为了更充分地示出本发明,示出了以下实施例。应当理解,这些实施例仅是举例说明的,并且不旨在对如所附权利要求中示出的本发明的宽范围进行过度限制。以下实施例中呈现的X-射线图使用标准x-射线粉末衍射技术获得。辐照源是高强度的x-射线管,其在45kV和35mA下操作。来自铜K-α辐照的衍射图案通过合适的基于计算机的技术获得。在2°至56°(2θ)下连续扫描平坦的压缩粉末样品。由表示为θ的衍射峰的位置获得晶面间距(d),其单位为埃,其中θ是如由数字化数据所观察到的布拉格角。强度由减去背景之后的衍射峰积分面积来确定,“Io”为最强线或峰的强度,并且“I”为其他峰中的每个峰的强度。
如本领域技术人员将理解的,参数2θ的确定经历人为和机械误差两者,所述误差的组合可赋予每个报告的2θ值±0.4°的不确定度。这种不确定度当然也体现在报告的d-间距值,其由2θ值计算。这种不精确性在本领域中普遍存在,并且不足以消除本发明的结晶材料彼此之间以及与现有技术的组合物的分化。在所报告的一些x-射线图中,d-间距的相对强度由符号vs、s、m、w和vw指示,其分别表示非常强、强、中等、弱和非常弱。根据100×I/Io,将上述名称定义为:
vw=0-5;w=5-15;m=15-40:s=40-75并且vs=75-100
实施例1
将8.04克的去离子水添加到100mL烧杯中。向水中添加0.47克的液体铝酸钠,随后添加13.82克的二甲基二异丙基氢氧化铵和4.33克的热解法二氧化硅。用顶置式搅拌器以300RPM将浆液混合15分钟。将混合物转移到45cc高压釜中,并在2小时内静音加热至175℃,并在175℃下保持五天。冷却至室温后,经由离心将材料分离,并且在100℃下干燥过夜。材料的XRD分析显示出以下峰:
通过XRD将该材料鉴定为UZM-63。
实施例2
将4.93克的去离子水添加到100mL烧杯中。向水中添加0.68克的液体铝酸钠,随后添加16.83克的二甲基二异丙基氢氧化铵(DMDIPAOH;SAChem,10%w/w),随后添加4.21克的热解法二氧化硅和0.16克的UZM-63晶种。用顶置式搅拌器以300RPM将浆液混合15分钟。将混合物转移到45cc高压釜中,并在2小时内加热至175℃,并在175℃下保持八天,同时以40RPM滚动。冷却至室温后,经由离心将材料分离,并且在100℃下干燥过夜。ICP分析显示44.7%Si、2.49%Al和0.83%Na(重量百分比)的组成。材料的XRD分析显示出以下峰:
通过XRD将该材料鉴定为UZM-63。
实施例3
将3.43克的去离子水添加到100mL烧杯中。向水中添加0.68克的液体铝酸钠和0.07克的氢氧化钾,随后添加12.24克的二甲基二异丙基氢氧化铵、4.15克的热解法二氧化硅和0.16克的UZM-63晶种。用顶置式搅拌器以300RPM将浆液混合15分钟。将混合物转移到45cc高压釜中,并在2小时内加热至175℃,并在175℃下保持七天,同时以40RPM滚动。冷却至室温后,经由离心将材料分离,并且在100℃下干燥过夜。材料的XRD分析显示出以下峰:
实施例4
将来自实施例2的产物在空气中于600℃下煅烧6小时。炉以2℃/分钟的速率升温至目标温度。将煅烧的粉末在80℃下在1M的NH4NO3溶液中离子交换一次,持续2小时,以获得UZM-63铵形式。然后通过在空气中于500℃下加热铵形式2小时而将该材料转化成质子形式。由77K下的氮吸附确定,发现该材料的表面积和中孔体积分别为275m2/g和0.082cc/g。
实施例5
在Cahn微量天平中检查来自实施例4的产物的烯烃/石蜡分离。在30-80℃的温度下在50-2200托的压力范围内获得丙烯和丙烷的吸附等温线。30℃下的示例等温线呈现于图4中。在该温度下和在60托下,观察到丙烯对丙烷的摩尔选择率为4.2。
实施例6
实施例4的产物通过40/60标准不锈钢网片设定尺寸。将325mg设定尺寸的固体置于固定床反应器中进行甲醇制烯烃(MTO)催化测试。将床加热至435℃,并且在5psig压力下将甲醇进料料流引入到反应器中。在穿透时观察到以下产物选择性:
物质 选择率(%)
乙烯 36.52
乙烷 0.81
丙烯 40.12
丙烷 1.88
总C4 10.93
总C5 5.48

Claims (12)

1.一种UZM-63材料,所述UZM-63材料包含晶粒的球形聚集体,所述晶粒的球形聚集体具有DDR骨架类型,所述DDR骨架类型包括8环通道、至少0.025cc/g的中孔体积、60nm或更小的平均晶粒直径、以及20至50的Si/Al2比率,其中UZM-63材料具有合成态形式且基于无水由经验式表示的经验组成:
Mm n+Qq p+AlSiyOz
其中M表示碱金属或碱土金属,Q表示有机铵阳离子,其为二甲基二异丙基铵阳离子,“m”表示M与Al的摩尔比并且具有0.02至0.95的值,“n”为一种或多种金属M的电荷,“q”为有机铵阳离子与Al的摩尔比并且具有0.02至0.95的值,“p”为一种或多种有机铵阳离子的电荷,“y”为Si与Al的摩尔比并且具有8至25的比率,并且“z”为O与Al的摩尔比并且具有由以下公式确定的值:
z=(m●n+q●p+3+4●y)/2
并且特征在于至少具有表1中示出的d-间距和相对强度的以下x-射线衍射图:
2.根据权利要求1所述的UZM-63材料,其中所述中孔体积为至少0.04cc/g。
3.根据权利要求1所述的UZM-63材料,其中所述平均晶粒直径为50nm或更小。
4.根据权利要求1所述的UZM-63材料,其中所述平均晶粒直径为40nm或更小。
5.一种制备根据权利要求1-4中任一项所述的UZM-63材料的方法,所述方法包括制备含有反应源的反应混合物,所述反应源根据由下式表示的氧化物摩尔比来描述:
aQ2O:bM3-nO:Al2O3:cSiO2:dH2O
其中“a”具有1至10的值,“b”具有0.05至0.95的值,“c”具有20至50的值,并且“d”具有250至1000的值,其中将Q、M、Al和Si的反应源组合成反应混合物,将所述反应混合物在125℃至200℃的温度下加热1天至21天的时间;以及从所述反应混合物中分离固体产物,其中M表示碱金属或碱土金属,Q表示有机铵阳离子,其为二甲基二异丙基铵阳离子。
6.根据权利要求5所述的方法,其中Al的反应源选自由沉淀氧化铝、氢氧化铝、铝盐和氧化铝溶胶组成的组。
7.根据权利要求5所述的方法,其中Al的反应源选自铝醇盐。
8.根据权利要求5所述的方法,其中Si的反应源选自由原硅酸四乙酯、胶态二氧化硅和沉淀二氧化硅组成的组。
9.根据权利要求1-4中任一项所述的UZM-63材料在分离分子种类的混合物、去除污染物或催化烃转化过程的方法中的用途,所述方法包括使进料流与所述UZM-63材料接触,所述UZM-63材料具有DDR骨架类型,所述DDR骨架类型包括8环通道、至少0.025cc/g的中孔体积、60nm或更小的平均晶粒直径、以及20至50的Si/Al2比率,其中在进料流与所述UZM-63材料接触之前将UZM-63材料煅烧、离子交换和加热。
10.根据权利要求9所述的用途,其中所述烃转化过程选自由芳族化合物或异链烷烃的烷基化、异构化、聚合、重整、脱氢、烷基转移、脱烷基化、水合、脱水、加氢处理、甲醇制烯烃、甲烷化和合成气转变过程组成的组。
11.根据权利要求9所述的用途,其中所述烃转化过程选自由裂化和氢化组成的组。
12.根据权利要求9所述的用途,其中所述烃转化过程选自由加氢裂化、加氢脱氮、加氢脱硫组成的组。
CN201980076934.4A 2018-11-21 2019-11-21 沸石材料uzm-63 Active CN113164939B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862770590P 2018-11-21 2018-11-21
US62/770,590 2018-11-21
PCT/US2019/062562 WO2020106931A1 (en) 2018-11-21 2019-11-21 Zeolitic material uzm-63

Publications (2)

Publication Number Publication Date
CN113164939A CN113164939A (zh) 2021-07-23
CN113164939B true CN113164939B (zh) 2024-04-16

Family

ID=70728669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980076934.4A Active CN113164939B (zh) 2018-11-21 2019-11-21 沸石材料uzm-63

Country Status (4)

Country Link
US (1) US10710887B2 (zh)
EP (1) EP3883686A4 (zh)
CN (1) CN113164939B (zh)
WO (1) WO2020106931A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918091A (zh) * 2003-12-19 2007-02-21 环球油品有限责任公司 再生去除痕量一氧化碳
DE102016202516A1 (de) * 2015-02-23 2016-08-25 Technische Universität Dresden Hierarchisierter ZSM-58 Zeolith

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ214838A (en) * 1985-02-26 1988-02-29 Mobil Oil Corp Zsm-58 zeolite and its preparation
ATE496005T1 (de) * 2004-04-20 2011-02-15 Uop Llc Uzm-8- und uzm-8hs-zeolithzusammensetzungen auf basis von kristallinem aluminosilicat und herstellungsverfahren dafür
US8545602B2 (en) * 2007-05-18 2013-10-01 Exxonmobil Research And Engineering Company Removal of CO2, N2, and H2S from gas mixtures containing same
US7687423B2 (en) * 2008-06-26 2010-03-30 Uop Llc Selective catalyst for aromatics conversion
US8821616B2 (en) * 2011-04-04 2014-09-02 Georgia Tech Research Corporation Zeolite DDR nanoparticles
EP2928579B1 (en) * 2012-12-06 2019-01-16 ExxonMobil Research and Engineering Company Gas separation method using selective adsorbents
US9868642B2 (en) * 2014-11-20 2018-01-16 Exxonmobil Research And Engineering Company Synthesis of DDR framework-type molecular sieves
US9597655B2 (en) * 2014-12-15 2017-03-21 Exxonmobil Research And Engineering Company Boron selectivated molecular sieves and their use in sorptive separations
US10167201B2 (en) * 2015-03-03 2019-01-01 Uop Llc High meso-surface area, low Si/Al ratio pentasil zeolite
US9738537B2 (en) * 2015-07-23 2017-08-22 Chevron U.S.A. Inc. Crystalline molecular sieves and synthesis thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918091A (zh) * 2003-12-19 2007-02-21 环球油品有限责任公司 再生去除痕量一氧化碳
DE102016202516A1 (de) * 2015-02-23 2016-08-25 Technische Universität Dresden Hierarchisierter ZSM-58 Zeolith

Also Published As

Publication number Publication date
US20200156950A1 (en) 2020-05-21
US10710887B2 (en) 2020-07-14
EP3883686A4 (en) 2023-03-01
CN113164939A (zh) 2021-07-23
EP3883686A1 (en) 2021-09-29
WO2020106931A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Izadbakhsh et al. Effect of SAPO-34's composition on its physico-chemical properties and deactivation in MTO process
JP4777260B2 (ja) カバサイトタイプ分子篩、その合成、及びオキシジネートをオレフィンへ変換することにおけるそれらの使用
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
US20120004485A1 (en) Uzm-5, uzm-5p, and uzm-6 crystalline aluminosilicate zeolites and methods for preparing the same
US10518256B2 (en) High charge density metallophosphate molecular sieves
JP2004513861A (ja) 結晶性アルミノ珪酸塩ゼオライト性組成物:uzm−4及びその組成物を用いたプロセス
JP5687762B2 (ja) モレキュラーシーブssz−81
US5347060A (en) Phase-transfer catalysis with onium-containing synthetic mesoporous crystalline material
US8747655B1 (en) UZM-44 aluminosilicate zeolite
US11033887B2 (en) High charge density metallophosphate molecular sieves
JP5730390B2 (ja) モレキュラーシーブssz−81を調製する方法
Reddy et al. Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream
US7635462B2 (en) Method of making porous crystalline materials
CN113164939B (zh) 沸石材料uzm-63
CN112272587B (zh) 结晶金属磷酸盐、其制备方法和用途
US8017824B2 (en) Hydrocarbon conversion processes using UZM-29 and UZM-29HS crystalline zeolitic compositions
CN112236395B (zh) 结晶金属磷酸盐、其制备方法和用途
Gui et al. Quasi-solid state synthesis of EU-1 zeolite and its catalytic properties for the isomerization of C 8 aromatics
US20220355280A1 (en) Novel zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same
Baradaran et al. Effect of pH on the synthesis of ZSM-5 zeolite using TEOS and performance of H-ZSM-5 catalyst in propane aromatization
Reddy et al. EFFECT OF PARTICLE SIZE OF ZSM-5 ZEOLITE ON CATALYTIC PERFORMANCE
高煒哲 Zeolite composite catalyst design, preparation and application in low-carbon C1 chemistry synthesis
Öhrman Synthesis and characterization of zeolite coatings on monolith supports

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant