CN113151236B - 玉米抗旱基因ZmcPGM2及其应用 - Google Patents

玉米抗旱基因ZmcPGM2及其应用 Download PDF

Info

Publication number
CN113151236B
CN113151236B CN202110425632.2A CN202110425632A CN113151236B CN 113151236 B CN113151236 B CN 113151236B CN 202110425632 A CN202110425632 A CN 202110425632A CN 113151236 B CN113151236 B CN 113151236B
Authority
CN
China
Prior art keywords
drought
zmcpgm2
val
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110425632.2A
Other languages
English (en)
Other versions
CN113151236A (zh
Inventor
伍玺
冯慧
杨万能
代明球
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110425632.2A priority Critical patent/CN113151236B/zh
Publication of CN113151236A publication Critical patent/CN113151236A/zh
Application granted granted Critical
Publication of CN113151236B publication Critical patent/CN113151236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及植物基因工程领域,具体涉及一种玉米抗旱基因ZmcPGM2及其应用,其核苷酸序列如SEQ ID No.1所示;该基因编码的葡萄糖磷酸变位酶氨基酸序列由SEQ ID No.2所示。本发明利用全基因组关联分析(GWAS)结合高通量表型组多光学表型的方法,鉴定到一个干旱相关的基因ZmcPGM2,该基因编码葡萄糖磷酸变位酶,在植物糖代谢过程中发挥着重要的作用,突变该基因后能够提高玉米的抗旱性。

Description

玉米抗旱基因ZmcPGM2及其应用
技术领域
本发明涉及植物基因工程领域,具体涉及一种玉米抗旱基因ZmcPGM2及其应用。
背景技术
干旱是常见的非生物胁迫之一,严重影响着植物的生长和发育,甚至威胁着植物生存。全球范围内大部分土地都处于干旱或半干旱地带,相应的都遭受不同程度的干旱胁迫。随着全球气候变化,干旱胁迫时有发生且逐渐加重,水资源相对缺乏的问题也日益严重,每年全球因干旱导致大幅度的粮食减产,造成了严重的经济损失,干旱已成为制约农业生产和农业经济发展的一个重要因素。同时随着人口的不断增长、耕地面积的减少,如何提高植物的抗旱性,培育抗旱作物,降低干旱带来的减产是保障国家粮食安全的迫切需求。近年来,通过遗传学的方法发掘抗旱新基因或QTL,研究其功能,解析其抗旱遗传与分子机制,结合人工诱变突变体技术或基因编辑技术进行编辑改造,并运用到抗旱育种改良中,已成为植物抗旱分子育种研究的热点和重点。分离鉴定植物中的抗旱基因对于作物抗旱遗传改良及分子育种具有重要意义。
因为固着生长,植物必须要克服各种逆境胁迫。为了生存,植物也相应的进化出了一系列的生理生化机制以应对胁迫。植物的干旱应答是一个极其复杂的过程,涉及到胁迫信号的感知和传导,从而激活下游一系列胁迫相关基因的表达和合成多种蛋白质来响应干旱胁迫。干旱胁迫会造成植物生理和代谢的紊乱,在此过程中发现植物的可溶性糖含量会发生大幅度的变化。可溶性糖是干旱胁迫诱导的小分子溶质之一,主要包括葡萄糖、果糖、蔗糖等,它们参与了植物细胞内信号转导和多种代谢调节过程,影响植物的生长发育及抗性形成。可溶性糖在植物逆境应答中发挥着巨大的作用,它们为植物提供能量,同时作为细胞渗透调节剂,通过渗透调节来降低水势,维持植物细胞的正常生理功能,同时它们在维持植物蛋白质稳定方面也起着重要作用。有研究发现,在植物中超量表达一些可溶性糖合成基因或外源施加可溶性糖有利于提高植物抗旱性,减少产量损失。
因此,一些糖代谢相关的基因在作物抗逆遗传改良和育种中有着潜在的应用价值。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种玉米抗旱基因ZmcPGM2及其应用,该基因编码葡萄糖磷酸变位酶,可以催化葡萄糖-1-磷酸盐和葡萄糖-6-磷酸盐相互转化,在植物糖代谢过程中发挥着重要的作用,同时突变ZmcPGM2基因,能够提高玉米的抗旱性。
为实现上述目的,本发明所设计一种葡萄糖磷酸变位酶,其氨基酸序列的特征为:
(1)由SEQ ID No.2所示的氨基酸序列组成的蛋白质;或
(2)与序列SEQ ID No.2限定的氨基酸序列同源性在95-100%编码相同功能蛋白质的氨基酸序列。
(3)SEQ ID No.2所示的氨基酸序列经增加、缺失或替换一个或多个氨基酸且具有同等活性的由(1)衍生的蛋白。
编码上述葡萄糖磷酸变位酶的基因ZmcPGM2,其核苷酸序列如SEQ ID No.1所示。
本发明还提供了一种上述玉米抗旱基因ZmcPGM2在提高植物抗旱中的应用。
本发明一种上述玉米抗旱基因ZmcPGM2在培育植物新品种中的应用。
本发明原理:
本发明是从甲基磺酸乙酯(EMS)诱变的玉米(B73)全基因组突变体库(http://www.elabcaas.cn/memd/)中订购获得ZmcPGM2的突变体,随后回交3代,确定突变后,用于后续的研究;将突变体及野生型进行代谢物分析,测量2者可溶性糖含量,发现可溶性糖的相对含量存在明显差异,突变体植株内具有更高的糖含量。进行表型分析后,发现在干旱胁迫下突变体相比于野生型具有较高的存活率和水分利用效率以及更短的ASI(散粉-吐丝间隔),相比之下,突变体更耐旱。同时对突变体及野生型植株茎秆进行电子计算机断层扫描(CT),发现突变体相比野生型茎秆更为粗壮,说明该突变体也具有较好的抗倒伏性。
本发明的有益效果:
本发明利用全基因组关联分析(GWAS)结合高通量表型组多光学表型的方法,鉴定到一个干旱相关的基因ZmcPGM2,该基因编码葡萄糖磷酸变位酶,在植物糖代谢过程中发挥着重要的作用,突变该基因后能够提高玉米的抗旱性。
附图说明
图1为ZmcPGM2的突变体和野生型在干旱下代谢物含量分析图;
图2为ZmcPGM2的突变体和野生型在干旱下表型分析图;
图中,a为正常浇水(左)和干旱胁迫(右)条件下,ZmcPGM2的突变体和野生型生长及存活情况,
b为干旱胁迫下ZmcPGM2的突变体和野生型的存活率统计分析,
c为干旱胁迫下ZmcPGM2的突变体和野生型的光合表型统计分析,
d为正常浇水(左)和干旱胁迫(右)条件下,ZmcPGM2的突变体和野生型花期表型统计分析。
具体实施方式
下面结合具体实施例对本发明作进一步的详细描述,以便本领域技术人员理解。
实施例1玉米抗旱基因ZmcPGM2的定位
利用368份玉米自然群体基因型数据(数据来源:http://maizego.org/Resources.html)结合在干旱胁迫下高通量表型组多光学表型数据(http://plantphenomics.hzau.edu.cn/search_maize.action)进行全基因组关联分析(GWAS),参考玉米基因组注释文件,定位到目标基因ZmcPGM2,该基因在干旱胁迫下受到诱导表达,其核苷酸序列如SEQ ID No.1所示;该基因编码的葡萄糖磷酸变位酶氨基酸序列如SEQ IDNo.2所示。
实施例2突变体Zmcpgm2及野生型材料代谢物含量测量
1.获得突变体Zmcpgm2
从甲基磺酸乙酯(EMS)诱变的玉米(B73)全基因组突变体库(EMS诱变的玉米(B73)全基因组突变体库是由齐鲁师范学院玉米分子育种研究院构建而成;http://www.elabcaas.cn/memd/)中订购,随后以B73为母本材料回交3代,得到突变体Zmcpgm2;通过测序及竞争性等位基因特异性PCR(KASP)的方法确定在该SEQ ID No.2所示氨基酸序列上第484个氨基酸发生了终止突变,导致蛋白翻译提前终止。
2.突变体Zmcpgm2及野生型玉米(B73)代谢物含量测量
挑选突变体Zmcpgm2和野生型玉米种子在穴盘中育苗,在玉米2叶一心期移栽到盆栽,将材料分为对照组和干旱组,每组中每个材料15盆,盆栽在移栽前和3叶一心期各施肥一次。对照组一直正常浇水,在4叶一心期时,干旱组开始干旱处理(浇水浇透),而后停止浇水,任其自然干旱。当测得土壤含水量~10%时,对干旱组和对照组的Zmcpgm2及野生型材料最上完全展开叶取样,每3个植株作为一个混样,放入液氮之中,而后利用GC-MS(7890A-5975C,Agilent,USA)测得相应的代谢物含量。通过分析发现该基因影响玉米可溶性糖的含量,Zmcpgm2材料的可溶性糖的相对含量比野生型的更高(图1)。
实施例3突变体Zmcpgm2抗旱表型分析
1.突变体Zmcpgm2及野生型在干旱下存活率分析
挑选突变体Zmcpgm2和野生型材料种子育苗,在玉米2叶一心期移栽到盆栽,将材料分干旱和对照各3个重复,每个重复中每个材料至少10盆,盆栽在移栽前和3叶一心期各施肥一次。对照组一直正常浇水,在玉米4叶一心期时,干旱组开始干旱处理(浇水浇透),而后停止浇水,任其自然干旱。当测得土壤含水量~10%时,对干旱组的材料复水,复水后3天统计植株的存活率。通过比较分析发现,突变体Zmcpgm2相比于野生型材料具有更高的存活率,相比之下Zmcpgm2更抗旱(图2a.b)。
2.突变体Zmcpgm2及野生型干旱下光合参数测量
挑选突变体Zmcpgm2和野生型材料种子育苗,在玉米2叶一心期移栽到塑料盒中(长×宽×高=42cm×32cm×15cm),盒子底部均匀打洞,将Zmcpgm2和野生型对半种植,每盆中各9株,共设置3个重复。植株生长于温度为26-28℃的光照培养室中,昼夜节律为12h日照/12h黑暗。在移栽前和3叶一心期各施肥一次,在玉米4叶一心期时,开始干旱处理(浇水浇透),而后停止浇水。在干旱处理下,每盆挑选Zmcpgm2和野生型材料各6株,利用光合仪LI-COR6800(LI-COR,USA)测量植株的光合速率、蒸腾速率、气孔导度、水分利用效率等光合参数,每间隔1天测一次,同时检测土壤含水量变化。通过比较分析发现,在早期没有胁迫时,野生型的光合参数优于Zmcpgm2,但是在遭受干旱胁迫时(土壤含水量<15%),Zmcpgm2的光合参数都强于野生型,具有更好的光合效率和水分利用效率,相比之下,Zmcpgm2更为耐旱(图2c)。
3.突变体Zmcpgm2及野生型干旱下花期表型调查
挑选突变体Zmcpgm2和野生型材料种子育苗,在玉米2叶一心期移栽到抗旱大棚中,Zmcpgm2和野生型各移栽5行,每行10株,分干旱组和对照组,每组各设置3个重复。在移栽前和4叶一心期,小喇叭口期各施肥一次,在玉米大喇叭口期,开始干旱处理。在干旱处理下,统计Zmcpgm2和野生型的花期数据,包括抽雄期、散粉期以及ASI(散粉-吐丝间隔)。通过比较分析发现,不管在干旱胁迫还是正常条件下Zmcpgm2材料的ASI都短于野生型,说明Zmcpgm2材料具有更好的抗旱性(图2d)。
以上结果说明ZmcPGM2参与植物干旱响应,其突变体植株具有更高的耐旱性。在干旱条件下,Zmcpgm2相比野生型,它具有较高的存活率、光合速率和水分利用效率以及更短的ASI,具有在干旱下实现保产稳产的潜力。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。
序列表
<110> 华中农业大学
<120> 玉米抗旱基因ZmcPGM2及其应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2263
<212> DNA
<213> 玉米(Zea may L)
<400> 1
cgaaaaggtg agataaaacg ctaggagccg aggagaacaa ctgaatgatc caacaccgcc 60
ctcttgtgct ctccctgccc tcccccgcta taataccgcc acgccctcgt cgccatcgtc 120
accacaccac cactccctcc ctgccctctc actcccgatc cctcctccac caccgcttcc 180
tccgcgtcac ccatctcgtc gtcgcctcac gaggcgacca gcggcggacc ctccgcggcg 240
caaccatggg gctcttcact gtgacgaaga aggccaccac gcccttcgac ggccagaagc 300
ccggcacctc cggcctccgc aagaaggtta ctgtattcca gcagccccat tatctgcaga 360
actttgtcca atcaacattc aatgcccttc ctgtggatca agtaagaggt gcaacaattg 420
ttgtctctgg tgatggccgc tatttctcaa aagatgctgt tcagatcata acaaaaatgg 480
ctgctgccaa tggagtaaga cgtgtttggg ttggacaaaa cagtctcatg tctactcctg 540
ctgtatctgc tgtcatccgt gaaagagttg gtgcagatgg atcaaaggct actggtgcct 600
tcatcttgac agcgagccat aacccaggtg gtcctaagga ggacttcggg atcaaataca 660
acatgggaaa tggtgggcct gctcctgaat ctgttaccga caagattttc tctaatacaa 720
cgacaatctc tgaatacctc atctctgaag acctaccaga tgttgatatt tctgttgtcg 780
gtgtcaccag cttcagtgga cccgaaggcc cctttgatgt ggatgttttt gactctagtg 840
tagattacat aaagttaatg aattatgatg cactccatgg tgttgcggga gcttatgcca 900
aacacatctt tgtggaagag cttggtgctg atgaaagctc actgttgaat tgtgtcccga 960
aagaggactt tggaggtggt catccggatc ctaaccttac ctatgcaaaa gagttggttg 1020
aacgcatggg tcttggaaag tcatcctcaa atgttgagcc tcctgaattt ggtgctgcag 1080
ctgatggaga tgctgaccgc aacatgattc ttggtaaaag attctttgtg acaccgtcgg 1140
actctgttgc cattatcgca gccaatgctg ttcaatcaat tccttacttt gcttctggcc 1200
tgaagggagt tgccaggagc atgccaacat ctgctgccct tgatgttgtt gcaaagaatt 1260
tgaaccttaa gttctttgag gtgcctactg gatggaagtt ttttgggaat ttgatggatg 1320
ctggaatgtg ctcaatctgt ggtgaagaaa gctttggcac tgggtctgac cacattcgtg 1380
agaaggatgg catctgggct gtgcttgcat ggctttcaat tattgctttc aagaataagg 1440
acaaccttgg aggagataag cttgtcactg ttgaagatat tgtccgtcag cactgggcca 1500
catatggtcg ccattactac acacgctatg actatgagaa tgttgatgca ggggctgcta 1560
aggagcttat ggcaaaccta gtaagcatgc agtcatcact ttctgatgtt aacaagttgg 1620
tcaaggagat ccggtctgat gtttctgaag tagttgcagc tgacgagttt gagtacaagg 1680
atcctgttga tggctctgtg tccaagcacc agggcatccg atacctcttt ggagatggtt 1740
cacgactggt gttccgcctc tctggaaccg gttctgttgg tgccaccatc cgtgtctaca 1800
tcgagcagta cgagagggac tcctctaaga ccggcaggga ttcacaggac gcccttgctc 1860
cgctggttga tgttgcgctc aagctctcca agatgcaaga gtacactgga cgctctgccc 1920
ccaccgtcat cacataaatt ttgaagagtg ttttagaatg agttgaggcg cttacacaaa 1980
ctttcattcc ggcctcttgt tccatagttt ttcttgcatg ttacatctca ccgatgaata 2040
aaatgtatgt atcagacttg tctcgttttt ttgcccatcc aagcagcaaa ttagccgctg 2100
gcacagcatg cggtaataat cttgtcacag tgctgtaatt gggagcgttt ttcttgttag 2160
aagtgtttct ggtttgtttg agcatttgcg gatcgatttt tctttctgaa gagtatataa 2220
acattttact cacctgtata cactgtcgca gtgtcactaa tgt 2263
<210> 2
<211> 630
<212> PRT
<213> 玉米(Zea may L)
<400> 2
Met Ile Gln His Arg Pro Leu Val Leu Ser Leu Pro Ser Pro Ala Ile
1 5 10 15
Ile Pro Pro Arg Pro Arg Arg His Arg His His Thr Thr Thr Pro Ser
20 25 30
Leu Pro Ser His Ser Arg Ser Leu Leu His His Arg Phe Leu Arg Val
35 40 45
Thr His Leu Val Val Ala Ser Arg Gly Asp Gln Arg Arg Thr Leu Arg
50 55 60
Gly Ala Thr Met Gly Leu Phe Thr Val Thr Lys Lys Ala Thr Thr Pro
65 70 75 80
Phe Asp Gly Gln Lys Pro Gly Thr Ser Gly Leu Arg Lys Lys Val Thr
85 90 95
Val Phe Gln Gln Pro His Tyr Leu Gln Asn Phe Val Gln Ser Thr Phe
100 105 110
Asn Ala Leu Pro Val Asp Gln Val Arg Gly Ala Thr Ile Val Val Ser
115 120 125
Gly Asp Gly Arg Tyr Phe Ser Lys Asp Ala Val Gln Ile Ile Thr Lys
130 135 140
Met Ala Ala Ala Asn Gly Val Arg Arg Val Trp Val Gly Gln Asn Ser
145 150 155 160
Leu Met Ser Thr Pro Ala Val Ser Ala Val Ile Arg Glu Arg Val Gly
165 170 175
Ala Asp Gly Ser Lys Ala Thr Gly Ala Phe Ile Leu Thr Ala Ser His
180 185 190
Asn Pro Gly Gly Pro Lys Glu Asp Phe Gly Ile Lys Tyr Asn Met Gly
195 200 205
Asn Gly Gly Pro Ala Pro Glu Ser Val Thr Asp Lys Ile Phe Ser Asn
210 215 220
Thr Thr Thr Ile Ser Glu Tyr Leu Ile Ser Glu Asp Leu Pro Asp Val
225 230 235 240
Asp Ile Ser Val Val Gly Val Thr Ser Phe Ser Gly Pro Glu Gly Pro
245 250 255
Phe Asp Val Asp Val Phe Asp Ser Ser Val Asp Tyr Ile Lys Leu Met
260 265 270
Asn Tyr Asp Ala Leu His Gly Val Ala Gly Ala Tyr Ala Lys His Ile
275 280 285
Phe Val Glu Glu Leu Gly Ala Asp Glu Ser Ser Leu Leu Asn Cys Val
290 295 300
Pro Lys Glu Asp Phe Gly Gly Gly His Pro Asp Pro Asn Leu Thr Tyr
305 310 315 320
Ala Lys Glu Leu Val Glu Arg Met Gly Leu Gly Lys Ser Ser Ser Asn
325 330 335
Val Glu Pro Pro Glu Phe Gly Ala Ala Ala Asp Gly Asp Ala Asp Arg
340 345 350
Asn Met Ile Leu Gly Lys Arg Phe Phe Val Thr Pro Ser Asp Ser Val
355 360 365
Ala Ile Ile Ala Ala Asn Ala Val Gln Ser Ile Pro Tyr Phe Ala Ser
370 375 380
Gly Leu Lys Gly Val Ala Arg Ser Met Pro Thr Ser Ala Ala Leu Asp
385 390 395 400
Val Val Ala Lys Asn Leu Asn Leu Lys Phe Phe Glu Val Pro Thr Gly
405 410 415
Trp Lys Phe Phe Gly Asn Leu Met Asp Ala Gly Met Cys Ser Ile Cys
420 425 430
Gly Glu Glu Ser Phe Gly Thr Gly Ser Asp His Ile Arg Glu Lys Asp
435 440 445
Gly Ile Trp Ala Val Leu Ala Trp Leu Ser Ile Ile Ala Phe Lys Asn
450 455 460
Lys Asp Asn Leu Gly Gly Asp Lys Leu Val Thr Val Glu Asp Ile Val
465 470 475 480
Arg Gln His Trp Ala Thr Tyr Gly Arg His Tyr Tyr Thr Arg Tyr Asp
485 490 495
Tyr Glu Asn Val Asp Ala Gly Ala Ala Lys Glu Leu Met Ala Asn Leu
500 505 510
Val Ser Met Gln Ser Ser Leu Ser Asp Val Asn Lys Leu Val Lys Glu
515 520 525
Ile Arg Ser Asp Val Ser Glu Val Val Ala Ala Asp Glu Phe Glu Tyr
530 535 540
Lys Asp Pro Val Asp Gly Ser Val Ser Lys His Gln Gly Ile Arg Tyr
545 550 555 560
Leu Phe Gly Asp Gly Ser Arg Leu Val Phe Arg Leu Ser Gly Thr Gly
565 570 575
Ser Val Gly Ala Thr Ile Arg Val Tyr Ile Glu Gln Tyr Glu Arg Asp
580 585 590
Ser Ser Lys Thr Gly Arg Asp Ser Gln Asp Ala Leu Ala Pro Leu Val
595 600 605
Asp Val Ala Leu Lys Leu Ser Lys Met Gln Glu Tyr Thr Gly Arg Ser
610 615 620
Ala Pro Thr Val Ile Thr
625 630

Claims (1)

1.一种ZmcPGM2基因突变体在提高玉米抗旱中的应用,
其特征在于:所述ZmcPGM2基因突变体编码的氨基酸序列如SEQ ID No.2所示的第1个到第483个位点的氨基酸序列。
CN202110425632.2A 2021-04-20 2021-04-20 玉米抗旱基因ZmcPGM2及其应用 Active CN113151236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110425632.2A CN113151236B (zh) 2021-04-20 2021-04-20 玉米抗旱基因ZmcPGM2及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110425632.2A CN113151236B (zh) 2021-04-20 2021-04-20 玉米抗旱基因ZmcPGM2及其应用

Publications (2)

Publication Number Publication Date
CN113151236A CN113151236A (zh) 2021-07-23
CN113151236B true CN113151236B (zh) 2022-06-28

Family

ID=76869096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110425632.2A Active CN113151236B (zh) 2021-04-20 2021-04-20 玉米抗旱基因ZmcPGM2及其应用

Country Status (1)

Country Link
CN (1) CN113151236B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906267A (zh) * 2010-01-06 2013-01-30 先锋国际良种公司 玉米光合作用组织和非光合作用组织昼夜节律的鉴定及其在改良作物方面的用途
CN110564760A (zh) * 2019-08-13 2019-12-13 浙江大学 一种提高光呼吸改良植物耐旱性的方法
CN111566222A (zh) * 2017-12-05 2020-08-21 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2461896B1 (es) * 2010-12-21 2015-03-18 Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional Métodos para obtener plantas resistentes a sequía
MX369986B (es) * 2012-06-04 2018-11-13 Centro De Investig Y De Estudios Avanzados Del I P N Star Metodos para identificar plantas de frijol tolerantes a sequia.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906267A (zh) * 2010-01-06 2013-01-30 先锋国际良种公司 玉米光合作用组织和非光合作用组织昼夜节律的鉴定及其在改良作物方面的用途
CN111566222A (zh) * 2017-12-05 2020-08-21 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷
CN110564760A (zh) * 2019-08-13 2019-12-13 浙江大学 一种提高光呼吸改良植物耐旱性的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Molecular and Biochemical Characterization of Cytosolic Phosphoglucomutase in Maize;Sivalinganna Manjunath等;《Plant Physiol》;19981231;第117卷;997-1006 *
phosphoglucomutase2 [Zea mays];Ware,D.;《GenBank database》;20170206;AQK63457.1 *
Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance;Xi Wu等;《Genome Biology》;20210624;第22卷;1-26 *
干旱胁迫对抗旱性蚕豆幼苗生长特性影响及叶片差异蛋白质组学研究;李萍等;《基因组学与应用生物学》;20171231;第36卷(第01期);340-351 *

Also Published As

Publication number Publication date
CN113151236A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Shah et al. Improving lodging resistance: using wheat and rice as classical examples
JP2015518725A (ja) 複数の宿主−共生生物アソシエーションをスクリーニングすることによる共生体の選択
Xu et al. Genome-wide association study on root traits under different growing environments in wheat (Triticum aestivum L.)
Kuai et al. Response of leaf carbon metabolism and dry matter accumulation to density and row spacing in two rapeseed (Brassica napus L.) genotypes with differing plant architectures
CN110592114A (zh) 水稻生长素糖基转移酶基因的应用
CN113372420B (zh) OsSG2在调控植物种子粒型中的应用
CN105018501A (zh) 拟南芥AtACS2基因在棉花抗旱和早熟方面的应用
CN112210566B (zh) 水稻OsS6K1基因或OsS6K2基因在提高水稻产量和/或抗旱性中的应用
Wang et al. Response of grass interplanting on bacterial and fungal communities in a jujube orchard in Ningxia, northwest China
Yin et al. Carbohydrate, phytohormone, and associated transcriptome changes during storage root formation in alligatorweed (Alternanthera philoxeroides)
Jia et al. Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids
CN113151236B (zh) 玉米抗旱基因ZmcPGM2及其应用
CN114686494B (zh) SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用
Qiu et al. Azolla—a model organism for plant genomic studies
Im et al. Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit
Hauptli et al. Genetically engineered plants: environmental issues
Wei et al. Transcriptome analysis reveals the effects of grafting on sweetpotato scions during the full blooming stages
CN109371041B (zh) 一种增加穗粒数的水稻基因OsHGN及其应用
CN108624618A (zh) 耐干旱植物
CN113563439A (zh) 一种果形发育相关蛋白及其编码基因与应用
CN102643856A (zh) 拟南芥At-ACA8基因在增强植物抗逆性和调控植物生长发育中的应用
CN110184253A (zh) 中间锦鸡儿CiCPK32基因在调控植物抗逆性的应用
Bernardeli et al. Population Genomics and Molecular Breeding of Sorghum
CN117604017B (zh) ZmMETTL基因在调控玉米根系表型和产量中的应用
Dong et al. Transcriptome differential expression analysis of defoliation in different lemon varieties under drought treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant