CN113144225A - 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用 - Google Patents

一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用 Download PDF

Info

Publication number
CN113144225A
CN113144225A CN202110337422.8A CN202110337422A CN113144225A CN 113144225 A CN113144225 A CN 113144225A CN 202110337422 A CN202110337422 A CN 202110337422A CN 113144225 A CN113144225 A CN 113144225A
Authority
CN
China
Prior art keywords
solution
gacl
preparation
high purity
bombardment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110337422.8A
Other languages
English (en)
Inventor
李桂铤
毛献金
陈海涛
陆天鸿
王明芳
黄文涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Huixuan Medicine Technology Co ltd
Original Assignee
Guangdong Huixuan Medicine Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Huixuan Medicine Technology Co ltd filed Critical Guangdong Huixuan Medicine Technology Co ltd
Priority to CN202110337422.8A priority Critical patent/CN113144225A/zh
Publication of CN113144225A publication Critical patent/CN113144225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/121Solutions, i.e. homogeneous liquid formulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供一种高放射性核纯度的68Ga‑GaCl3溶液的制备方法及应用。该制备方法通过:以68Zn‑Zn(NO3)2溶液为靶材,利用质子轰击68Zn‑Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。本发明利用质子轰击68Zn‑Zn(NO3)2液体靶生产正电子核素68Ga,经分离纯化后获得可用于正电子放射性药物生产标记的68GaCl3溶液,并且其化学指标与商业获得的一致,为我国制定68Ga放射性药物的质量标准提供了依据。并且该放射性标记物可以直接用于PSMA、FAPI、BBN等标记小分子药物以及标记多肽示踪剂,促进了68Ga标记放射性药物在广东地区的研究与广泛应用。

Description

一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用
技术领域
本发明涉及放射医学技术领域,具体涉及一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用。
背景技术
正电子发射计算机断层(PET)显像已广泛应用于疾病临床诊断和疗效评价。有关正电子核素68Ga的研究可追溯至20世纪50年代末,早期发展缓慢;随着技术的进步,2000年以后相关研究逐渐增多,并在2010年左右出现爆发式增长。目前68Ga在PET显像中的应用仅次于18F。68Ga由68Ge/68Ga发生器生产。68Ge/68Ga发生器中68Ge的半衰期是270.8d,制备所得68Ga的物理半衰期为67.71min,在衰变过程中的正电子衰变率占89%,Emax为1.92MeV,剩余的11%为电子俘获,适用于标记小分子药物的药代动力学研究以及标记多肽示踪剂。较短的半衰期有效降低了病人承受的辐照剂量,同时也给核医学化学师足够的制备时间,便于推广应用。
现有68Ga都是通过68Ge-68Ga锗镓发生器制备获得,价廉易得,可与单光子发射计算机断层显像(SPECT)中应用最为广泛的99mTc媲美。与99mTc相比,68Ga显像具有更高的灵敏度和空间分辨率,且可以定量,预计在不久的将来将会取代部分99mTc药物。与18F、11C等非金属核素传统标记多肽等生物小分子相比,68Ga标记具有方法简便快速、条件温和、便于药盒化等优点,且成本低廉,适合普及推广。随着68Ge/68Ga发生器相关技术的日趋成熟、蛋白质/多肽类示踪剂配位化学标记技术的进步、蛋白质组学和基因组学的发展以及对疾病特定生物化学过程关键化合物的掌握,促进了68Ga标记示踪剂在全球的广泛研究与应用。近几年,国内数家单位陆续引进68Ge/68Ga发生器,并在68Ga标记显像剂临床应用方面作出了可喜的成绩。然而,68Ga标记药物的临床应用长期受制于锗镓发生器的68Ge漏穿及淋洗液不纯等问题,近年来,药物级锗镓发生器获批投入市场,生产68Ga纯度虽有大幅度提高,但仍无法解决产生68Ge漏穿和杂质离子的问题。另外,锗镓发生器一次淋洗68Ga放射性有限,用于一次标记药物只能满足3-5个患者PET显像需要,完全不能满足68Ga产业化生产和标记及其临床诊断的需要。
目前,镓-68可以通过两种不同的方法得到的。第一种是最常用的方法,即上文介绍的Ge-68/Ga-68发生器系统,68Ge是68Ga的母体同位素,半衰期为270.8天(约9个月),这种发生器系统易洗提,并且提取的Ga-68直接用于放射性药物的标记,但主要问题就是存在68Ge漏穿及淋洗液不纯。第二种方法,由于其复杂性和非常昂贵的费用而较少使用,即利用回旋加速器通过质子轰击固体Zn-68靶质子来生产68Ga,利用高能量的质子轰击68Zn核,经该过程形成68Ga核素并释放中子,相应的核反应可表示为68Zn(p,n)68Ga。68Ga回旋加速器生产后的另一个重要步骤是回收再利用68Zn靶,从固体靶上洗脱68Ga,利用树脂纯化中洗脱溶液,通过加热蒸发,剩下的残留物溶解在HCl溶液中,并置于阴离子交换色谱柱中。虽然这种方法可以获得较高的产率,但其过程是一个缓慢、复杂和昂贵的工艺。因此,有必要开发更为简单并经济的高放射性核纯度的68Ga-GaCl3制备技术。
发明内容
针对现有技术存在的问题,本发明旨在提供一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用。本发明的技术方案为:
第一个方面,本发明提供一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,通过:以68Zn-Zn(NO3)2溶液为靶材,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。
进一步地,所述制备方法具体包括:
步骤一,采用68Zn-Zn(NO3)2溶液填充靶,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应得到68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液;
步骤二,采用强阳离子交换柱对步骤一获得的68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液进行纯化,得到68Ga-GaCl3溶液。
进一步地,所述步骤一的控制参数为:轰击束流为35μA~45μA,加速能量为14MeV~16MeV,轰击时间小于90分钟。
进一步地,所述步骤二的控制参数为:所选用的阳离子交换柱以苯乙烯-二乙烯基苯聚合物为基质,键合苯磺酸作为固定相,以氢离子作为交换平衡离子。以0.5~0.84M的氢溴酸丙酮水溶液作为杂质洗脱液,并以3M以上的HCl溶液作为68Ga的洗脱液。
第二个方面,本发明提供一种68Ga-GaCl3溶液,是采用上述制备方法获得。
第三个方面,本发明提供上述68Ga-GaCl3溶液在放射性标记上的应用。
进一步地,所述应用为在标记NOTA-BBN上的应用。
本发明的有益效果总结如下:
1、本发明填补了国内利用液体靶生产金属同位素标记物的空白。
2、本发明利用质子轰击68Zn-Zn(NO3)2液体靶生产正电子核素68Ga,经分离纯化后获得可用于正电子放射性药物生产标记的68GaCl3溶液,并且其化学指标与目前已经商业化的68Ga一致,其核纯度如图1,为我国制定68Ga放射性药物的质量标准提供了依据。
3、经本发明制备的Ga-68标记物标记放射性药物,能有效提高PET诊断的准确性。
4、本发明解决了68Ga标记药物的临床应用长期受制于锗镓发生器的68Ge漏穿及淋洗液不纯等问题,直接生产的68GaCl3用于FAPI、BBN等标记小分子药物以及标记多肽示踪剂,促进了68Ga标记放射性药物在广东地区的研究与广泛应用。
附图说明
图1为68Ge/68Ga发生器制备的68GaCl3和本发明实施例1所制备的68GaCl3的核纯度对比。
具体实施方式
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
实施例1
本实施例提供一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,通过:以68Zn-Zn(NO3)2溶液为靶材,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。具体包括以下步骤:
(1)采用68Zn-Zn(NO3)2溶液填充靶,利用质子轰击68Zn-Zn(NO3)2液体靶,轰击束流为40μA,加速能量为15MeV,轰击时间为1h。经68Zn(p,n)68Ga核反应得到68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液;
(2)采用强阳离子交换柱对步骤一获得的68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液进行纯化,所选用的阳离子交换柱以苯乙烯-二乙烯基苯聚合物为基质,键合苯磺酸作为固定相,以氢离子作为交换平衡离子。以0.84M的氢溴酸丙酮水溶液作为杂质洗脱液,然后以3M的HCl溶液作为68Ga的洗脱液,30min内即可得到68Ga-GaCl3溶液,产量达130mCi,核纯度为99.7%。本实施例获得的68Ga-GaCl3溶液的核纯度结果与对比例1进行了比较,结果如图1所示,表明本实施例获得的68Ga-GaCl3溶液的核纯度与现有市售68Ge/68Ga发生器制备的68Ga-GaCl3溶液核纯度相当。
实施例2
本实施例提供一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,通过:以68Zn-Zn(NO3)2溶液为靶材,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。具体包括以下步骤:
(1)采用68Zn-Zn(NO3)2溶液填充靶,利用质子轰击68Zn-Zn(NO3)2液体靶,轰击束流为35μA,加速能量为14MeV,轰击时间为70min。经68Zn(p,n)68Ga核反应得到68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液;
(2)采用强阳离子交换柱对步骤一获得的68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液进行纯化,所选用的阳离子交换柱以苯乙烯-二乙烯基苯聚合物为基质,键合苯磺酸作为固定相,以氢离子作为交换平衡离子。以0.84M的氢溴酸丙酮水溶液作为杂质洗脱液,然后以3M的HCl溶液作为68Ga的洗脱液,30min内即可得到68Ga-GaCl3溶液,产量达136mCi,核纯度为99.9%。。
实施例3
本实施例提供一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,通过:以68Zn-Zn(NO3)2溶液为靶材,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。具体包括以下步骤:
(1)采用68Zn-Zn(NO3)2溶液填充靶,利用质子轰击68Zn-Zn(NO3)2液体靶,轰击束流为45μA,加速能量为16MeV,轰击时间为50min。经68Zn(p,n)68Ga核反应得到68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液;
(2)采用强阳离子交换柱对步骤一获得的68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液进行纯化,所选用的阳离子交换柱以苯乙烯-二乙烯基苯聚合物为基质,键合苯磺酸作为固定相,以氢离子作为交换平衡离子。以0.5M的氢溴酸丙酮水溶液作为杂质洗脱液,然后以3M的HCl溶液作为68Ga的洗脱液,30min内即可得到68Ga-GaCl3溶液,产量达115mCi,核纯度为99.7%。
实施例4
68Ga-NOTA-BBN的标记,具体标记方法如下:
用10mL玻璃瓶收集2mL实施例1获得的68GaCl3溶液,向溶液中加150μL的NaOAc(1.25M)溶液调pH至4,再加入100μL 1M HEPES溶解的DOTA\NOTA-BBN(15μg,10nmol)溶液。反应混合液在95~100℃反应10min后,冷却反应,向反应液中加入10mL的水稀释后过plusC18柱,产物吸附在plus C18,再用5mL的水洗plus C18柱,洗去残留的68GaCl3和无机化合物。用乙醇(2mL)洗脱plus C18柱得到产物68Ga-NOTA-BBN,在氮气流下,减压除去乙醇后,加入PBS配成的溶液,通过0.22μm无菌滤膜后使用。68Ga-DOTA\NOTA-BBN未衰变校正的标记产率为50%,放射标记总时间是25min,比活度是1.1×1010Bq/mmol;放射性纯度大于95%。
液相色谱仪(shimadzu),HPLC分析条件:分析柱InertSustainC18(5μm,4.6×150mm),梯度洗脱:0-2min时,0.1%TFA的乙腈溶液/0.1%TFA的水溶液:5/95;逐渐升到25min时,0.1%TFA的乙腈溶液/0.1%TFA的水溶液:80/20。流速为1mL/min,紫外检测波长220nm。
获得的68Ga-NOTA-BBN注射液,依据并参照欧洲药典(3109)标准和我国的放射性药物质量保证标准,对68GaCl3溶液和68Ga-NOTA-BBN注射液进行了相应的质量检验,也制定了68Ga-NOTA-BBN注射液的pH值、放射性核素纯度、放射性化学纯度和化学纯度等企业质量标准,最终产品完全符合我国药典关于放射性药品的规范要求。
对比例1
将市售的68Ge/68Ga发生器制备68Ga-GaCl3溶液进行核纯度检测,结果如图1所示,该68Ga-GaCl3溶液由广州原子高科股份有限公司提供。
综上所述,本发明利用质子轰击68Zn-Zn(NO3)2液体靶生产正电子核素68Ga,经分离纯化后获得可用于正电子放射性药物生产标记的68GaCl3溶液,该68GaCl3溶液化学指标与商业获得的一致,可以直接用于FAPI、BBN等标记小分子药物以及标记多肽示踪剂。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,其特征在于:通过:以68Zn-Zn(NO3)2溶液为靶材,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应获得。
2.权利要求1所述的一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,其特征在于:所述制备方法具体包括:
步骤一,采用68Zn-Zn(NO3)2溶液填充靶,利用质子轰击68Zn-Zn(NO3)2液体靶,经68Zn(p,n)68Ga核反应得到68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液;
步骤二,采用强阳离子交换柱对步骤一获得的68Ga-Ga(NO3)3/68Zn-Zn(NO3)2混合液进行纯化,得到68Ga-GaCl3溶液。
3.根据权利要求2所述的一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,其特征在于:所述步骤一的控制参数为:轰击束流为35μA~45μA,加速能量为14MeV~16MeV,轰击时间小于90分钟。
4.根据权利要求2所述的一种高放射性核纯度的68Ga-GaCl3溶液的制备方法,其特征在于:所述步骤二的控制参数为:所选用的阳离子交换柱以苯乙烯-二乙烯基苯聚合物为基质,键合苯磺酸作为固定相,以氢离子作为交换平衡离子。以0.5~0.84M的氢溴酸丙酮水溶液作为杂质洗脱液,并以3M以上的HCl溶液作为68Ga的洗脱液。
5.一种68Ga-GaCl3溶液,其特征在于:是采用权利要求1~4任意一项所述的制备方法获得。
6.权利要求5所述的68Ga-GaCl3溶液在放射性标记上的应用。
7.根据权利要求6所述的应用,其特征在于:所述68Ga-GaCl3溶液在标记NOTA-BBN上的应用。
CN202110337422.8A 2021-03-30 2021-03-30 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用 Pending CN113144225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337422.8A CN113144225A (zh) 2021-03-30 2021-03-30 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337422.8A CN113144225A (zh) 2021-03-30 2021-03-30 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用

Publications (1)

Publication Number Publication Date
CN113144225A true CN113144225A (zh) 2021-07-23

Family

ID=76885221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337422.8A Pending CN113144225A (zh) 2021-03-30 2021-03-30 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113144225A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1139862A (en) * 1967-02-14 1969-01-15 Pfizer & Co C Ash-trap process for de-ashing basic antibiotics
CN1341762A (zh) * 2001-09-10 2002-03-27 中国原子能科学研究院伍险峰 一种放射性同位素镓-67的制备工艺
US20070031329A1 (en) * 2003-04-11 2007-02-08 Irina Velikyan Method of obtaining gallium-68 and use thereof and device for carrying out said method
US20080277350A1 (en) * 2004-11-26 2008-11-13 Franck Roesch Method and Device For Isolating a Chemically and Radiochemically Cleaned 68 Ga-Radionuclide and For Marking a Marking Precursor With the 68 Ga-Radionuclide
US20100015058A1 (en) * 2008-06-25 2010-01-21 Stanford University Radiolabeled bbn-rgd heterodimers for cancer targeting
US20160358683A1 (en) * 2015-06-05 2016-12-08 Ion Beam Applications Process for producing gallium-68 through the irradiation of a solution target
US20170221594A1 (en) * 2014-05-15 2017-08-03 Mayo Foundation For Medical Education And Research Solution target for cyclotron production of radiometals
US20180158559A1 (en) * 2015-06-05 2018-06-07 Ncm Usa Bronx Llc Method and system for producing gallium-68 radioisotope by solid targeting in a cyclotron
US20190198187A1 (en) * 2016-08-26 2019-06-27 Mayo Foundation For Medical Education And Research Rapid Isolation of Cyclotron-Produced Gallium-68

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1139862A (en) * 1967-02-14 1969-01-15 Pfizer & Co C Ash-trap process for de-ashing basic antibiotics
CN1341762A (zh) * 2001-09-10 2002-03-27 中国原子能科学研究院伍险峰 一种放射性同位素镓-67的制备工艺
US20070031329A1 (en) * 2003-04-11 2007-02-08 Irina Velikyan Method of obtaining gallium-68 and use thereof and device for carrying out said method
US20080277350A1 (en) * 2004-11-26 2008-11-13 Franck Roesch Method and Device For Isolating a Chemically and Radiochemically Cleaned 68 Ga-Radionuclide and For Marking a Marking Precursor With the 68 Ga-Radionuclide
US20100015058A1 (en) * 2008-06-25 2010-01-21 Stanford University Radiolabeled bbn-rgd heterodimers for cancer targeting
US20170221594A1 (en) * 2014-05-15 2017-08-03 Mayo Foundation For Medical Education And Research Solution target for cyclotron production of radiometals
US20160358683A1 (en) * 2015-06-05 2016-12-08 Ion Beam Applications Process for producing gallium-68 through the irradiation of a solution target
US20180158559A1 (en) * 2015-06-05 2018-06-07 Ncm Usa Bronx Llc Method and system for producing gallium-68 radioisotope by solid targeting in a cyclotron
US20190198187A1 (en) * 2016-08-26 2019-06-27 Mayo Foundation For Medical Education And Research Rapid Isolation of Cyclotron-Produced Gallium-68

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
MELISSA E. RODNICK等: "Cyclotron-based production of 68Ga,[68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target", 《EJNMMI RADIOPHARMACY AND CHEMISTRY》 *
MELISSA E. RODNICK等: "Cyclotron-based production of 68Ga,[68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target", 《EJNMMI RADIOPHARMACY AND CHEMISTRY》, vol. 5, no. 25, 30 June 2020 (2020-06-30), pages 3 - 5 *
MUKESH K PANDEY等: "Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution", 《AM J NUCL MED MOL IMAGING》 *
MUKESH K PANDEY等: "Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution", 《AM J NUCL MED MOL IMAGING》, vol. 4, no. 4, 15 June 2014 (2014-06-15), pages 1 - 2 *
STEFANO RIGAA等: "Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target", 《PHYSICA MEDICA》 *
STEFANO RIGAA等: "Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target", 《PHYSICA MEDICA》, vol. 55, 25 October 2018 (2018-10-25), pages 116 - 126, XP085542214, DOI: 10.1016/j.ejmp.2018.10.018 *
杨春慧等: "~(68)Ga标记放射性药物的制备及应用研究进展", 《同位素》 *
杨春慧等: "~(68)Ga标记放射性药物的制备及应用研究进展", 《同位素》, vol. 30, no. 03, 4 July 2017 (2017-07-04), pages 3 - 5 *
紫医生: "助力新药研发和临床诊疗的新型显像剂——68Ga-FAPI-04的合成与实验研究", 《知乎》 *
紫医生: "助力新药研发和临床诊疗的新型显像剂——68Ga-FAPI-04的合成与实验研究", 《知乎》, 24 May 2020 (2020-05-24), pages 1 *

Similar Documents

Publication Publication Date Title
Bartoś et al. New separation method of no-carrier-added 47Sc from titanium targets
CN111485123B (zh) 一种从大量、低比活度Mo溶液中分离99mTc的装置及方法
RU2542733C1 (ru) Способ получения радиоизотопа лютеций-177
Jalilian et al. IAEA activities on 67Cu, 186Re, 47Sc theranostic radionuclides and radiopharmaceuticals
US20180158559A1 (en) Method and system for producing gallium-68 radioisotope by solid targeting in a cyclotron
Jang et al. A preliminary biodistribution study of [99mTc] sodium pertechnetate prepared from an electron linear accelerator and activated carbon-based 99mTc generator
KR101041181B1 (ko) Cu-64를 제조하기 위해 Cu-64가 형성된 Ni-64 농축 표적으로부터 Cu-64를 분리하는 방법
CN113144225A (zh) 一种高放射性核纯度的68Ga-GaCl3溶液的制备方法及应用
CN115432730A (zh) 一种无载体医用同位素Cu-64纯化方法和自动化纯化工艺
KR102490458B1 (ko) 68Ge/68Ga 발생기로부터 유래하는 용출물로부터 Ga-68을 정제하는 방법 및 이러한 방법에 사용하기 위한 크로마토그래피 컬럼
KR101041180B1 (ko) Ni-64를 회수하여 Ni-64 농축표적의 제조에 재활용하는Cu-64의 제조방법
Wang et al. Production of medical isotope 68Ge based on a novel chromatography separation technique and assembling of 68Ge/68Ga generator
JP2011105567A (ja) 高純度99mTc濃縮方法及び濃縮装置
CN113173595B (zh) 一种回旋加速器制备的68Ga粗品的纯化方法
Valdovinos et al. 55 Co separation from proton irradiated metallic nickel
CN221558040U (zh) 一种放射性核素89Zr的盐酸草酸双体系纯化系统
CN116068069A (zh) 一种制备高纯锆的方法
Lee et al. Production of cobalt-57 for industrial and medical applications in RFT-30 cyclotron facility
US11521762B2 (en) Purification process for the preparation of non-carrier added copper-64
Thakare et al. Separation of carrier-free 111 In formed in the 12 C+ Rh reaction
Watanabe et al. Chelating ion-exchange methods for the preparation of no-carrier-added 64Cu
KR100906781B1 (ko) Cu-64를 Ga-67 생성물의 폐기물로부터 생산하는 방법
CN117959932A (zh) 一种放射性核素89Zr的盐酸草酸双体系纯化系统及方法
Maruyama et al. A simple method for the separation of 125Sb from neutron-irradiated tin
Vyas et al. Radiochemical separation of 89 Zr: a promising radiolabel for immuno-PET

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210723