CN113130696B - 基于量子限制斯塔克效应的光开关 - Google Patents

基于量子限制斯塔克效应的光开关 Download PDF

Info

Publication number
CN113130696B
CN113130696B CN202110403020.3A CN202110403020A CN113130696B CN 113130696 B CN113130696 B CN 113130696B CN 202110403020 A CN202110403020 A CN 202110403020A CN 113130696 B CN113130696 B CN 113130696B
Authority
CN
China
Prior art keywords
cdse
nanosheets
degassing
solution
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110403020.3A
Other languages
English (en)
Other versions
CN113130696A (zh
Inventor
张家雨
陈伟敏
项文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110403020.3A priority Critical patent/CN113130696B/zh
Publication of CN113130696A publication Critical patent/CN113130696A/zh
Application granted granted Critical
Publication of CN113130696B publication Critical patent/CN113130696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种基于量子限制斯塔克效应的光开关,其特征在于,在石英衬底上刻蚀交叉指型电极,交叉电极之间沉积有序取向的II‑VI族半导体纳米片(NPLs)层,其中主要通过液‑液界面自组装,控制油酸/二甘醇(OA/DEG)溶液中油酸的比例,使得纳米片面朝下,两侧边缘分别朝向正负电极,从而增强量子限制斯塔克效应,实现光开关的高对比度。本发明是基于量子限制斯塔克效应的全光开关,设计原理清晰,结构简单,偏振无依赖,高开关比,实现高性能光开关。

Description

基于量子限制斯塔克效应的光开关
技术领域
本发明属于光电开关技术领域,尤其是一种基于量子限制斯塔克效应的光开关。
背景技术
信息互联网时代的飞速发展,对光通信技术的信息存储、传输速率、可靠性提出了更高的要求。光开关作为集成光学系统基本单元器件之一,在芯片内的信息互连、数据远距离传输、网络之间的光信号交换等领域发挥十分重要的作用。此外,光开关还是实现光子计算机和量子计算机的基石,它的性能往往决定了整个系统性能的上限。因此,实现具有高速率、低功耗、高对比度、小尺寸等特性的高性能光开关至关重要。目前,这些光开关大多采用电光控制的光开关,网络中的各个节点频繁的光/电和电/光转换,存在串话、高损耗、传输速率受限等缺点。实现全光开关,即光控开光,是实现全光信号处理技术,突破“电子瓶颈”的重要基本单元器件,在通讯网络中具有很大的价值应用。
随着工业生产对于器件集成度需求的提升,以普通三维材料为基础的器件已经难以达到应用要求,低维半导体器件的兴起将有望解决这个问题。许多低维半导体纳米材料由于特殊的空间结构,能级分布在特定波段发生显著的非线性光学变化,从而广泛应用于非线性光学领域。准零维量子点材料、准一维纳米线材料和二维纳米材料都存在一系列丰富的相关特性。其中,量子限制斯塔克效应的物理起源是在外电场的作用下,量子阱结构中电子-空穴之间的库仑力相互作用形成内建电场,在内外电场共同作用下,导致能带结构的畸变,吸收边移动等现象。基于量子限制斯塔克效应的量子点非线性光开关行为,具有皮秒量级的开关时间,并且不受输入光信号的偏振模式影响。但是基于量子点的全光开关,对于光的滤波效果不显著,光开关比不大,可靠性降低。
发明内容
本发明要解决的技术问题是现有量子点光开关的缺点和不足,提出了一种基于量子限制斯塔克效应的光开关。该光开关为纳米片,开关调制深度优于基于量子点的光开关的调制深度,且具有高开关比、偏振无依赖、结构简单等特性。
本发明的一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,具体包括如下步骤:
步骤1,在石英衬底上刻蚀交叉指型电极;
对石英衬底烘烤脱水,在石英衬底上涂光刻胶,用掩膜版挡住衬底进行曝光、显影,用高真空镀膜机镀镀多金属膜;清洗掉光刻胶得到周期性的电极结构,即交叉指型电极,交叉指型电极的两侧有金属线引出端,用于连接外部电压的正负极。
步骤2,在交叉电极之间沉积有序取向的II-VI族半导体纳米片(NPLs)层,所述II-VI族半导体纳米片为CdSe/CdS纳米片,且为核/壳异质结构的CdSe/CdS纳米片。
进一步的,步骤2中核/壳异质结构的CdSe/CdS纳米片的制备过过程如下:
步骤2.1,CdSe核纳米片的制备;
Se前驱体的制备:粉和十八烯加入玻璃瓶中;用聚四氟乙烯塞封口密封,超声后得到Se粉悬浊液体。
Cd前驱体的制备:氧化镉、油酸和十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,升温至240℃,直至溶液从浑浊变成无色透明,再降温至60℃;将透明前驱体溶液转移至玻璃取样瓶中,用聚四氟乙烯塞封口密封,通入氩气除气。
S前驱体的制备:辛硫醇和十八烯加入玻璃取样瓶;用聚四氟乙烯塞封口密封,通入氩气除气,摇晃使充分混合。
将氧化镉、十四酸、十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,在110℃温度下除气30min;继续升温至285℃,直至溶液无色透明,再降温至90℃;注入Se前驱体溶液,再次除气;升温至195℃时,加入醋酸镉;继续升温至240℃,反应得到CdSe核纳米片;快速降至室温,当温度降至180℃时注入油酸;用正己烷-乙醇混合溶液离心提纯,最后将沉淀分散在正己烷中。
步骤2.2,CdSe/CdS核/壳纳米片的制备
取CdSe纳米片、Cd前驱体溶液和十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气鼓泡除气,室温除气40min;升温至80℃继续除气20min;在氩气保护下,设置300℃升温;温度升至180℃时,注入油胺。同时,硫前驱通过注射泵开始注入,速度为3mL h-1;前驱体注入完成后,保持在300℃退火10min;冷却至室温,在温度降至240℃时加入正己烷,降温至180℃时加入油酸;用甲醇进行原位提纯两次,去除溶液中过多的十八烯;加入正己烷-乙醇混合溶液离心提纯,将制备好的CdSe/CdS核/壳纳米片分散在正己烷中。
进一步的,步骤2中在交叉电极之间沉积有序取向的II-VI族半导体纳米片(NPLs)层,具体为:
1)在聚四氟乙烯井内放置上交叉电极作为基板;
2)将油酸/二甘醇(OA/DEG)溶液加入井中,然后加入CdSe/CdS核/壳纳米片正己烷溶液;
3)用玻璃培养皿覆盖聚四氟乙烯井以减慢正己烷蒸发的速度;
4)己烷溶剂完全蒸发后,缓慢排出二甘醇DEG,使自组装膜沉积在基质上,纳米片面朝下,两侧边缘分别朝向正负电极。
有益效果:基于量子限制斯塔克效应,通过控制CdSe/CdS核/壳纳米片有序取向,实现高性能的全光开关。胶体半导体纳米片具有与量子阱类似的电子结构,且其光学性能可以在核/壳异质结构中进一步提升。控制纳米片有序取向,让纳米片面朝下,其中两侧边缘分别朝向正负电极,在外电场的作用下,荧光光谱相较于量子点的光谱移动红移的更多,此时对于输入光信号的自然展宽,在实现“关”这个功能下,透过率大大降低,从而实现了高对比度的光开关。本发明是基于量子限制斯塔克效应的全光开关,设计原理清晰,结构简单,偏振无依赖,高开关比,对于低维材料的非线性光学特性在光学元器件,光通信领域具有重要意义。
附图说明
图1为本发明的器件电极结构图。
图2为聚四氟乙烯井图。
其中1、交叉指型电极;2、CdSe/CdS纳米片;3、聚四氟乙烯井中。
具体实施方式
本发明的一种基于量子限制斯塔克效应的光开关的制备方法,具体包括如下步骤:
步骤1,在石英衬底上刻蚀交叉指型电极1,电极间距在几个微米量级;具体为:
对石英衬底以150~200℃烘烤的温度脱水烘烤,在石英衬底上涂一层负性su8光刻胶,厚度约为2μm;软烤,去除光刻胶中的大部分溶剂并使胶的曝光特性固定,软烤温度是90~100℃,时间为10min;用掩膜版挡住衬底进行曝光;曝光后烘烤,激活曝光后的光刻胶化学性能,温度为90℃,时间为5min;显影,浸泡在浓度为5%的NaOH溶液,通过控制浸泡时间控制显影程度;硬烤,在真空或干燥氮气的气氛中,以150~200℃烘烤,去除残余显影液和蒸馏水;用高真空镀膜机镀上一层厚度为2μm的Au;用丙酮等光刻胶清洗液浸泡已镀Au的石英片,去除su-8及其上面的Au得到周期性的电极结构,即交叉指型电极1,交叉指型电极1的两侧有金属线引出端,用于连接外部电压的正负极,如图1所示。
步骤2,在交叉电极之间沉积有序取向的II-VI族半导体纳米片(NPLs)层,所述II-VI族半导体纳米片为CdSe/CdS纳米片2,且为核/壳异质结构,具体为包括如下步骤:
步骤2.1,CdSe核纳米片(4MLs)的制备
Se前驱体的制备:180mg Se粉和15mL十八烯加入20mL玻璃瓶;用聚四氟乙烯塞封口密封,超声30min,得到Se粉悬浊液体。
Cd前驱体的制备:0.51364g氧化镉、2.51g油酸和40mL十八烯加入100mL三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,在80℃温度下除气30min;升温至240℃,直至溶液从浑浊变成无色透明,再降温至60℃;将透明前驱体溶液转移至40mL的玻璃取样瓶中,用聚四氟乙烯塞封口密封,通入氩气除气10分钟。
S前驱体的制备:252μL辛硫醇和36mL十八烯加入40mL的玻璃取样瓶;用聚四氟乙烯塞封口密封,通入氩气除气10min;摇晃10min使充分混合。
将70mg氧化镉、340mg十四酸、28mL十八烯加入100mL三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,在110℃温度下除气30min;继续升温至285℃,直至溶液无色透明,再降温至90℃;注入2mL的Se前驱体溶液,再次除气;升温至195℃时,加入160mg醋酸镉;继续升温至240℃,反应10min,得到CdSe核纳米片;快速降至室温,当温度降至180℃时注入1mL油酸;将原溶液分成两管,用20mL正己烷-乙醇混合溶液(3:1)离心提纯,最后将制成的CdSe核纳米片分散在正己烷中。
步骤2.2,CdSe/CdS核/壳纳米片的制备
取上述一半CdSe纳米片、2.15mLCd前驱体溶液和3mL十八烯加入50mL三口烧瓶;磁力搅拌的条件下,通入氩气鼓泡除气,室温除气40min;升温至80℃继续除气20min;在氩气保护下,设置300℃升温;温度升至180℃时,注入1mL油胺。同时,硫前驱通过注射泵开始注入,速度为3mL h-1;前驱体注入完成后,保持在300℃退火10min;用湿毛巾冷却至室温,在温度降至240℃时加入5mL正己烷,降温至180℃时加入1mL油酸;用甲醇进行原位提纯两次,去除溶液中过多的十八烯;加入正己烷-乙醇混合溶液离心提纯,将制备好的CdSe/CdS核/壳纳米片分散在正己烷中,每个CdSe/CdS核/壳纳米片中含有4个单层的CdSe核纳米片(~1.4nm)。
步骤2.3交叉指型电极1放入聚四氟乙烯井3的方形槽内,加入CdSe/CdS核/壳纳米片正己烷溶液,通过液-液界面自组装控制纳米晶体取向。
在聚四氟乙烯井3中放置上述制备的交叉指型电极1作为基板,聚四氟乙烯井3为3mm×3mm大小的方形槽,井的底部有一个排水孔,如图2所示;将约2.4mL的油酸(4.2mM)/二甘醇(OA/DEG)溶液加入井中,然后从顶部加入上述制备的CdSe/CdS核/壳纳米片正己烷溶液;用玻璃培养皿覆盖聚四氟乙烯井3以减慢正己烷蒸发的速度;己烷溶剂完全蒸发后,缓慢排出二甘醇DEG,使自组装膜沉积在基质上,其中纳米片面朝下,两侧边缘分别朝向正负电极。

Claims (5)

1.一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,具体包括如下步骤:
步骤1,在石英衬底上刻蚀交叉指型电极;
步骤2,在交叉电极之间沉积有序取向的II-VI族半导体纳米片NPLs层,所述有序取向是指纳米片面朝下,其中两侧边缘分别朝向正负电极,所述II-VI族半导体纳米片为CdSe/CdS纳米片,且为核/壳异质结构的CdSe/CdS纳米片。
2.根据权利要求1所述一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,步骤1中在石英衬底上刻蚀交叉指型电极,具体过程为:
对石英衬底烘烤脱水,在石英衬底上涂光刻胶,用掩膜版挡住衬底进行曝光、显影,用高真空镀膜机镀金属膜;清洗掉光刻胶得到周期性的电极结构,即交叉指型电极,交叉指型电极的两侧有金属线引出端,用于连接外部电压的正负极。
3.根据权利要求1所述一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,步骤2中核/壳异质结构的CdSe/CdS纳米片的制备过程如下:
步骤2.1,CdSe核纳米片的制备;
Se前驱体的制备:Se粉和十八烯加入玻璃瓶中;用聚四氟乙烯塞封口密封,超声后得到Se粉悬浊液体;
Cd前驱体的制备:氧化镉、油酸和十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,升温至240℃,直至溶液从浑浊变成无色透明,再降温至60℃;将透明前驱体溶液转移至玻璃取样瓶中,用聚四氟乙烯塞封口密封,通入氩气除气;
S前驱体的制备:辛硫醇和十八烯加入玻璃取样瓶;用聚四氟乙烯塞封口密封,通入氩气除气,摇晃使充分混合;
将氧化镉、十四酸、十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气进行鼓泡除气,在110℃温度下除气30min; 继续升温至285℃,直至溶液无色透明,再降温至90℃;注入Se前驱体溶液,再次除气;升温至195℃时,加入醋酸镉;继续升温至240℃,反应得到CdSe核纳米片;快速降至室温,当温度降至180℃时注入油酸;用正己烷-乙醇混合溶液离心提纯,最后将沉淀分散在正己烷中;
步骤2.2,CdSe/CdS核/壳纳米片的制备
取CdSe纳米片、Cd前驱体溶液和十八烯加入三口烧瓶;磁力搅拌的条件下,通入氩气鼓泡除气,室温除气40 min;升温至80℃继续除气20 min;在氩气保护下,设置300℃升温;温度升至180℃时,注入油胺;同时,硫前驱通过注射泵开始注入,速度为3 mL h-1;前驱体注入完成后,保持在300℃退火10 min;冷却至室温,在温度降至240℃时加入正己烷,降温至180℃时加入油酸;用甲醇进行原位提纯两次,去除溶液中过多的十八烯;加入正己烷-乙醇混合溶液离心提纯,将制备好的CdSe/CdS核/壳纳米片分散在正己烷中。
4.根据权利要求1所述一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,步骤2中在交叉电极之间沉积有序取向的II-VI族半导体纳米片NPLs层,具体为:
1)在聚四氟乙烯井内放置上交叉电极作为基板;
2)将油酸/二甘醇(OA / DEG)溶液加入井中,然后加入CdSe/CdS核/壳纳米片正己烷溶液;
3)用玻璃培养皿覆盖聚四氟乙烯井以减慢正己烷蒸发的速度;
4)己烷溶剂完全蒸发后,缓慢排出二甘醇DEG,使自组装膜沉积在基质上,纳米片面朝下,两侧边缘分别朝向正负电极。
5.根据权利要求1所述一种基于量子限制斯塔克效应的光开关的制备方法,其特征在于,电极间距为几个微米量级。
CN202110403020.3A 2021-04-15 2021-04-15 基于量子限制斯塔克效应的光开关 Active CN113130696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110403020.3A CN113130696B (zh) 2021-04-15 2021-04-15 基于量子限制斯塔克效应的光开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110403020.3A CN113130696B (zh) 2021-04-15 2021-04-15 基于量子限制斯塔克效应的光开关

Publications (2)

Publication Number Publication Date
CN113130696A CN113130696A (zh) 2021-07-16
CN113130696B true CN113130696B (zh) 2022-07-22

Family

ID=76776490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110403020.3A Active CN113130696B (zh) 2021-04-15 2021-04-15 基于量子限制斯塔克效应的光开关

Country Status (1)

Country Link
CN (1) CN113130696B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147555A2 (en) * 2013-03-18 2014-09-25 Jawaharlal Nehru Centre For Advanced Scientific Research Cd-based-chalcogenide/cds core-shell nanomaterial, defective/defect-free core nanocrystal, methods and applications thereof
CN105487264A (zh) * 2015-12-29 2016-04-13 东南大学 一种基于量子限制斯塔克效应的电光调制器件制备方法
CN110127631A (zh) * 2019-04-26 2019-08-16 湖北大学 一种蓝光闪锌矿CdSe/CdS核冠结构纳米片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2966474B1 (fr) * 2010-10-25 2013-12-20 Solarwell Procede de fabrication d'un materiau nanocristallin
CN110511758A (zh) * 2019-09-19 2019-11-29 青岛大学 一种CdSe/CdS核壳纳米片材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147555A2 (en) * 2013-03-18 2014-09-25 Jawaharlal Nehru Centre For Advanced Scientific Research Cd-based-chalcogenide/cds core-shell nanomaterial, defective/defect-free core nanocrystal, methods and applications thereof
CN105487264A (zh) * 2015-12-29 2016-04-13 东南大学 一种基于量子限制斯塔克效应的电光调制器件制备方法
CN110127631A (zh) * 2019-04-26 2019-08-16 湖北大学 一种蓝光闪锌矿CdSe/CdS核冠结构纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices;Hu, ZH 等;《NANO LETTERS》;20061018;第6卷(第11期);全文 *
Low-Threshold Amplified Spontaneous Emission and Lasing from Thick-Shell CdSe/CdS Core/Shell Nanoplatelets Enabled by High-Temperature Growth;Zhang, L 等;《ADVANCED OPTICAL MATERIALS》;20191219;全文 *

Also Published As

Publication number Publication date
CN113130696A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
Heo et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods
Jeong et al. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process
CN105022178A (zh) 基于平面波导的石墨烯相位型光调制器
CN105044929A (zh) 基于石墨烯微环结构的热光调制器及其制造方法
CN1908795A (zh) 一种硅基并联mos电容结构高速电光调制器及制作方法
CN105676484A (zh) 基于ito材料的吸收型光调制器结构
CN101738748B (zh) 一种制备高速电吸收调制器的方法
CN111061069A (zh) 基于硅和相变材料的槽型复合波导的电光调制器
CN104882383A (zh) 一种基于等离激元增强光控量子点薄膜晶体管的制备方法
CN110611008B (zh) 一种太阳能电池的增透涂层的制备方法
CN113130696B (zh) 基于量子限制斯塔克效应的光开关
KR20110000966A (ko) 이중 기공을 갖는 역전 광결정 구조체 및 그 제조방법과, 염료감응 태양전지 및 그 제조방법
CN106291990A (zh) 硅基注氧电容型电光调制器
US10418490B2 (en) Field effect transistor and manufacturing method thereof
CN103618047B (zh) 一种环保无重金属量子点太阳能电池及其制作方法
CN105023950A (zh) 一种具有高开关电流比的石墨烯晶体管及其制备方法
CN107221563A (zh) 一种底栅自对准结构金属氧化物薄膜晶体管及其制备方法
CN113471310B (zh) 一种基于混维体系的高增益光探测器及其制备方法
CN109360894B (zh) 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法
JP2011187646A (ja) 光学変換装置及び同装置を含む電子機器
CN204989674U (zh) 基于石墨烯微环结构的热光调制器
CN109343237B (zh) 一种锗硅量子阱电致折射率调制器和集成光电子器件
CN109560203B (zh) 纳米结构在阳极光栅凹陷处的钙钛矿电池及其制备方法
CN109560202B (zh) 纳米结构在阳极光栅凸起处的钙钛矿电池及其制备方法
CN111545768A (zh) 一种大环径银纳米环及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant