CN109360894B - 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法 - Google Patents

纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法 Download PDF

Info

Publication number
CN109360894B
CN109360894B CN201811402635.9A CN201811402635A CN109360894B CN 109360894 B CN109360894 B CN 109360894B CN 201811402635 A CN201811402635 A CN 201811402635A CN 109360894 B CN109360894 B CN 109360894B
Authority
CN
China
Prior art keywords
cathode
layer
grating
perovskite battery
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811402635.9A
Other languages
English (en)
Other versions
CN109360894A (zh
Inventor
相春平
袁占生
郑文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN201811402635.9A priority Critical patent/CN109360894B/zh
Publication of CN109360894A publication Critical patent/CN109360894A/zh
Application granted granted Critical
Publication of CN109360894B publication Critical patent/CN109360894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了纳米结构在阴极光栅凸起处的钙钛矿电池,包括衬底,所述衬底上依次设置有阴极层、电子传输层、有源层、空穴传输层和阳极层。所述的阴极层上设有周期性凸出于阴极层的金属光栅,所述金属光栅凸起处的表面上设有绝缘纳米结构。本发明还公开了上述纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法。本发明的有益之处在于:提供一种纳米结构在阴极光栅凸起处的钙钛矿电池,利用金属纳米光栅和绝缘纳米粒子复合结构,将波长在500~800nm范围内入射光的电场局限在阴极附近来增强有源层背离入射方向位置的光吸收,进而平衡载流子产生速度。仅利用一道光刻制程便可以得到金属纳米光栅和绝缘纳米结构,工艺成熟,节省成本。

Description

纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法
技术领域
本发明涉及钙钛矿太阳能电池技术领域,特别涉及一种纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法。
背景技术
钙钛矿太阳能电池的有源层材料(CH3NH3PbX3,X=Cl,Br,I)具有高的光吸收效率和长的载流子扩散长度,被认为是未来最具开发潜力的薄膜太阳能电池技术。目前,钙钛矿太阳能电池的光电转换效率最高可达22%。钙钛矿材料的本征吸收谱在波长800nm以下,其中波长小于500nm为钙钛矿材料的强吸收范围,钙钛矿材料对波长在600~800nm的红黄光吸收效率比较低。
现有技术中,通常引入纳米粒子来增强钙钛矿材料在红黄光范围处的吸收。常规引入纳米粒子的方法为涂覆法,即将含有纳米粒子的溶液涂覆在薄膜上,加热使溶剂挥发,纳米粒子便沉积在薄膜上。这种方法沉积的纳米粒子位置分布随机,对于钙钛矿电池器件而言,因钙钛矿材料折射率高,随机分布的纳米粒子对光吸收增强效果有限。而且,涂覆纳米粒子的方法通常会把溶剂或其他杂质引到钙钛矿材料中,导致钙钛矿的性能急剧下降。
发明内容
针对上述问题,本发明的目的在于提供一种纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法,主要用于增强钙钛矿太阳能电池对红光和黄光的吸收。
为了实现上述目的,本发明采用的技术方案如下:
纳米结构在阴极光栅凸起处的钙钛矿电池,包括衬底,所述衬底上依次设置有阴极层、电子传输层、有源层、空穴传输层和阳极层,所述的阴极层上设有周期性凸出于阴极层的金属光栅,所述金属光栅凸起处的表面上设有绝缘纳米结构。
进一步地,所述阴极层的材料为银(Ag)或金(Au)或铝(Al)。
进一步地,所述阳极层的材料为透明氧化铟 锡(ITO)或透明氧化铝锌(AZO)。太阳光从阳极上端入射至器件内部。
进一步地,所述金属光栅的周期为200~400nm,高度为10~70nm,形状为矩形或梯形。
本发明还公开了上述纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,包括如下步骤:
步骤1:在衬底上沉积阴极层和绝缘层薄膜;
步骤2:在绝缘层薄膜上涂光刻胶,对光刻胶进行曝光;
步骤3:显影光刻胶,刻蚀绝缘层薄膜,形成周期性凸出于阴极层的绝缘纳米结构,利用刻蚀后形成的绝缘纳米结构作为掩膜再刻蚀一定厚度的阴极层形成金属光栅,祛除光刻胶;
步骤4:在金属光栅及绝缘纳米结构的上方依次制作电子传输层、有源层和空穴传输层;
步骤5:在空穴传输层的顶部沉积阳极层,从而制备得到纳米结构在阴极光栅凸起处的钙钛矿电池。
进一步地,步骤3和步骤4之间还包括步骤31:加热达到绝缘层材料的熔点,使得绝缘纳米结构熔化,降温后成半球状或半椭球状纳米粒子。
进一步地,所述绝缘纳米结构的加热方法为直接对衬底进行加热或采用激光照射绝缘层表面使其熔化。当衬底和芯片上的其他所有材料的熔点高于待热熔回流的材料时,可以利用衬底直接加热的方法;当衬底和芯片上的其他任何一种材料的熔点低于待热熔回流的材料时,用衬底加热的方式会先直接熔化熔点低的材料,因此要选择激光热退火处理,激光照射到光栅上的绝缘层,使其熔化,退掉激光后回流成球状。
进一步地,所述纳米粒子的直径为70~180nm。
进一步地,步骤1中沉积阴极层采用的方法为溅射或蒸镀。
进一步地,步骤1中沉积有绝缘层薄膜采用的方法为化学气相沉积或刮涂。
进一步地,步骤2中对光刻胶的曝光采用的是掩膜曝光或全息曝光,光刻胶为正胶或负胶。
进一步地,步骤3中刻蚀绝缘层薄膜采用的方法为干法蚀刻或湿法蚀刻,刻蚀阴极层采用的方法为干法蚀刻,这样可以保证金属光栅原貌。
进一步地,步骤4中制作电子传输层、有源层及空穴传输层的方法为刮涂。
进一步地,所述的阴极层为银(Ag)薄膜、金(Au)薄膜、铝(Al)薄膜中的一种,所述的阳极层为透明氧化铟 锡(ITO)薄膜或透明氧化铝锌(AZO)薄膜。
进一步地,所述的绝缘层薄膜为二氧化硅(SiO2)薄膜、硅(Si)薄膜和PMMA薄膜中的一种。
本发明具有如下有益效果:利用金属纳米光栅和绝缘纳米粒子复合结构,将波长在 500~800nm范围内入射光的电场局限在阴极附近来提高有源层背离入射方向的光吸收,进而平衡载流子产生速率,提高钙钛矿太阳能电池对红光和黄光的吸收。仅利用一道光刻制程便可以得到金属纳米光栅和绝缘纳米结构,工艺成熟,节省成本。而且相对于传统的采用涂覆方法得到的随机分布的纳米粒子结构,本发明中采用了自对准工艺,使得绝缘纳米粒子与金属光栅具有一一对应的位置关系,纳米粒子完整的位于光栅凸起位置处。在钙钛矿太阳能电池器件结构中,具有对应关系的纳米粒子和周期性光栅复合结构比随机分布的纳米粒子和周期性光栅复合结构具有更好的增强吸收和平衡载流子分布的效果。
附图说明
图1为本发明中钙钛矿电池的结构示意图。
图2为本发明中钙钛矿电池的制备工艺流程图。
图3为条形梳状电极的结构示意图。
图4为省略加热步骤时绝缘纳米结构的形状示意图。
主要组件符号说明:10、衬底;100、二氧化硅(SiO2)薄膜;1、阴极层;2、电子传输层;3、有源层;4、空穴传输层;5、阳极层;6、金属光栅;7、绝缘纳米结构;8、光刻胶;9、掩膜板。
具体实施方式
下面结合附图和具体实施方式,对本发明做进一步说明。
如图1所示,纳米结构在阴极光栅凸起处的钙钛矿电池,包括衬底10,衬底10上依次设置有阴极层1、电子传输层2、有源层3、空穴传输层4和阳极层5,阴极层1为金(Au)、银(Ag)、铝(Al)等材料制成的金属薄膜,阳极层5为透明的氧化铟 锡(ITO)薄膜或氧化铝锌(AZO)薄膜。阴极层1上设有周期性凸出于阴极层1的金属光栅6,金属光栅6凸起处的表面上设有绝缘纳米结构7,绝缘纳米结构7的材料为二氧化硅(SiO2)、硅(Si)或 PMMA,形状为半球状或半椭球状,直径在70~180nm之间。金属光栅6的周期为200~400nm,高度为10~70nm,形状为矩形或梯形。
上述纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,如图2所示,包括如下步骤:
步骤1:在衬底10上通过溅射或蒸镀的方法沉积银薄膜,在银薄膜的上方通过化学气相沉积的方法沉积二氧化硅(SiO2)薄膜100。
步骤2:在二氧化硅(SiO2)薄膜100上涂光刻胶8,在光刻胶的上方放上掩膜板9,对光刻胶8进行掩膜曝光;也可以采用全息曝光的方法对光刻胶8进行整面曝光。
步骤3:刻蚀二氧化硅(SiO2)薄膜100,形成绝缘纳米结构7,刻蚀的方法为干法刻蚀或湿法刻蚀,刻蚀一定厚度的银薄膜,刻蚀的方法为干法刻蚀,祛除光刻胶8;也可以通过控制银薄膜的刻蚀深度,形成条形梳状电极,如图3所示。
步骤31:加热达到二氧化硅(SiO2)薄膜100的熔点,使得绝缘纳米结构7熔化,降温后成半球状或半椭球状纳米粒子,制成的纳米粒子的直径为70~180nm,加热方法为直接对衬底10进行加热或采用激光照射使绝缘纳米结构7熔化;该步骤也可以省略,那样的话,绝缘纳米结构7就不会形成半球状或半椭球状,如图4所示。
步骤4:在制作好的复合纳米光栅上通过刮涂的方式依次涂上电子传输层2、有源层3 和空穴传输层4。
步骤5:空穴传输层4的顶部沉积透明或半透明的氧化铟 锡(ITO)薄膜或氧化铝锌(AZO) 薄膜,从而制备得到纳米结构在阴极光栅凸起处的钙钛矿电池。
下表为纳米结构在阴极光栅凸起处的钙钛矿电池与传统电池的性能对比:
Figure BDA0001875935470000041
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上对本发明做出各种变化,均为本发明的保护范围。

Claims (14)

1.纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于,所述纳米结构在阴极光栅凸起处的钙钛矿电池,包括衬底,所述衬底上依次设置有阴极层、电子传输层、有源层、空穴传输层和阳极层,所述的阴极层上设有周期性凸出于阴极层的金属光栅,所述金属光栅凸起处的表面上设有绝缘纳米结构;
还包括如下步骤:
步骤1:在衬底上沉积阴极层和绝缘层薄膜;
步骤2:在绝缘层薄膜上涂光刻胶,对光刻胶进行曝光;
步骤3:显影光刻胶,刻蚀绝缘层薄膜,形成周期性凸出于阴极层的绝缘纳米结构,利用刻蚀后形成的绝缘纳米结构作为掩膜再刻蚀一定厚度的阴极层形成金属光栅,祛除光刻胶;
步骤4:在金属光栅及绝缘纳米结构的上方依次制作电子传输层、有源层和空穴传输层;
步骤5:在空穴传输层的顶部沉积阳极层,从而制备得到纳米结构在阴极光栅凸起处的钙钛矿电池。
2.如权利要求1所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述阴极层的材料为银或金或铝。
3.如权利要求1所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述阳极层的材料为透明氧化铟 锡或透明氧化铝锌。
4.如权利要求1所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述金属光栅的周期为200~400nm,高度为10~70nm,形状为矩形或梯形。
5.如权利要求1所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤3和步骤4之间还包括步骤31:加热达到绝缘纳米材料的熔点,使得绝缘纳米结构熔化,降温后成半球状或半椭球状纳米粒子。
6.如权利要求5所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述绝缘纳米结构的加热方法为直接对衬底进行加热或采用激光照射使其熔化。
7.如权利要求5所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述纳米粒子的直径为70~180nm。
8.如权利要求4所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤1中沉积阴极层采用的方法为溅射或蒸镀。
9.如权利要求4所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤1中沉积绝缘层薄膜采用的方法为化学气相沉积或刮涂。
10.如权利要求4所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤2中对光刻胶的曝光采用的是掩膜曝光或全息曝光,光刻胶为正胶或负胶。
11.如权利要求4所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤3中刻蚀绝缘层薄膜采用的方法为干法蚀刻或湿法蚀刻,刻蚀阴极层采用的方法为干法蚀刻。
12.如权利要求4所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:步骤4中制作电子传输层、有源层及空穴传输层的方法为刮涂。
13.如权利要求4-12中任一项所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述的阴极层为银薄膜、金薄膜、铝薄膜中的一种,所述的阳极层为透明氧化铟 锡薄膜或透明氧化铝锌薄膜。
14.如权利要求4-12中任一项所述的纳米结构在阴极光栅凸起处的钙钛矿电池的制备方法,其特征在于:所述的绝缘层薄膜为二氧化硅薄膜、硅薄膜、PMMA薄膜中的一种。
CN201811402635.9A 2018-11-22 2018-11-22 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法 Active CN109360894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811402635.9A CN109360894B (zh) 2018-11-22 2018-11-22 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811402635.9A CN109360894B (zh) 2018-11-22 2018-11-22 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109360894A CN109360894A (zh) 2019-02-19
CN109360894B true CN109360894B (zh) 2022-07-29

Family

ID=65338466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811402635.9A Active CN109360894B (zh) 2018-11-22 2018-11-22 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109360894B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687290B (zh) * 2019-02-22 2021-01-15 中国科学院半导体研究所 电泵浦钙钛矿复合腔激光器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086121A1 (ja) * 2010-12-21 2012-06-28 コニカミノルタエムジー株式会社 金属格子の製造方法ならびに該製造方法によって製造された金属格子およびこの金属格子を用いたx線撮像装置
CN103811589A (zh) * 2014-02-17 2014-05-21 中国科学院半导体研究所 半导体薄膜太阳能电池前后表面的陷光结构制备方法
CN103901516A (zh) * 2012-12-26 2014-07-02 清华大学 光栅的制备方法
KR101496609B1 (ko) * 2014-02-03 2015-02-26 재단법인 멀티스케일 에너지시스템 연구단 나노범프 구조를 갖는 유기태양전지 및 그의 제조방법
CN106299131A (zh) * 2016-09-21 2017-01-04 淮海工学院 SPPs薄膜异质结和钙钛矿叠层的太阳电池及其制备方法
CN107068865A (zh) * 2016-12-12 2017-08-18 苏州大学 一种钙钛矿太阳能电池及其制备方法
CN107452880A (zh) * 2017-09-19 2017-12-08 安徽大学 一种基于小周期有机太阳能电池结构
CN107479121A (zh) * 2017-08-25 2017-12-15 深圳市华星光电技术有限公司 纳米金属光栅的制备方法及纳米金属光栅
CN107591483A (zh) * 2017-08-22 2018-01-16 电子科技大学 一种混合陷光结构的钙钛矿太阳能电池及其制备方法
CN108231507A (zh) * 2017-12-12 2018-06-29 东南大学 一种基于新型纳米结构的光阴极及其制备方法
CN108807689A (zh) * 2018-06-27 2018-11-13 集美大学 一种含有复合纳米光栅的钙钛矿太阳能电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911373B2 (en) * 2002-09-20 2005-06-28 Intel Corporation Ultra-high capacitance device based on nanostructures

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086121A1 (ja) * 2010-12-21 2012-06-28 コニカミノルタエムジー株式会社 金属格子の製造方法ならびに該製造方法によって製造された金属格子およびこの金属格子を用いたx線撮像装置
CN103901516A (zh) * 2012-12-26 2014-07-02 清华大学 光栅的制备方法
KR101496609B1 (ko) * 2014-02-03 2015-02-26 재단법인 멀티스케일 에너지시스템 연구단 나노범프 구조를 갖는 유기태양전지 및 그의 제조방법
CN103811589A (zh) * 2014-02-17 2014-05-21 中国科学院半导体研究所 半导体薄膜太阳能电池前后表面的陷光结构制备方法
CN106299131A (zh) * 2016-09-21 2017-01-04 淮海工学院 SPPs薄膜异质结和钙钛矿叠层的太阳电池及其制备方法
CN107068865A (zh) * 2016-12-12 2017-08-18 苏州大学 一种钙钛矿太阳能电池及其制备方法
CN107591483A (zh) * 2017-08-22 2018-01-16 电子科技大学 一种混合陷光结构的钙钛矿太阳能电池及其制备方法
CN107479121A (zh) * 2017-08-25 2017-12-15 深圳市华星光电技术有限公司 纳米金属光栅的制备方法及纳米金属光栅
CN107452880A (zh) * 2017-09-19 2017-12-08 安徽大学 一种基于小周期有机太阳能电池结构
CN108231507A (zh) * 2017-12-12 2018-06-29 东南大学 一种基于新型纳米结构的光阴极及其制备方法
CN108807689A (zh) * 2018-06-27 2018-11-13 集美大学 一种含有复合纳米光栅的钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN109360894A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Deng et al. Nanoimprinted grating‐embedded perovskite solar cells with improved light management
Kim et al. Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer
CN102709402B (zh) 基于图形化金属衬底的薄膜太阳电池及其制作方法
US20060151025A1 (en) Active layer for solar cell and the manufacturing method making the same
TW201135949A (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
CN105655420B (zh) 石墨烯光吸收特性的玻璃基波导型光电探测器及制备方法
CN109616541A (zh) 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN102184995B (zh) 用于太阳能电池的长程等离子体激元波导阵列增效单元
CN109360894B (zh) 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法
JP2006156646A (ja) 太陽電池の製造方法
CN104362219A (zh) 一种晶体硅太阳能电池制造工艺
CN109560203B (zh) 纳米结构在阳极光栅凹陷处的钙钛矿电池及其制备方法
CN101847670B (zh) 激光干涉技术辅助电化学技术制备纳米栅极的方法
Lee et al. Random nanohole arrays and its application to crystalline Si thin foils produced by proton induced exfoliation for solar cells
DE102007041392A1 (de) Verfahren zum Fertigen einer Solarzelle mit einer doppellagigen Dielektrikumschicht
US8633053B2 (en) Photovoltaic device
CN109638160B (zh) 纳米结构在阴极光栅凹陷处的钙钛矿电池及其制备方法
CN109560202B (zh) 纳米结构在阳极光栅凸起处的钙钛矿电池及其制备方法
CN107123703A (zh) 基于独立式二硫化锡纳米片的垂直光电探测器及制备方法
KR101578813B1 (ko) 광산란용 금속 나노구조층을 갖는 투명전극과 이를 이용한 태양전지 및 이들의 제조방법
CN102709378A (zh) 一种选择性发射极晶体硅太阳能电池的制备方法
KR20110007499A (ko) 태양 전지 및 그 제조 방법
JP2011096730A (ja) 薄膜太陽電池およびその製造方法
CN106558625A (zh) 太阳能电池及其制造方法
TWI618093B (zh) 具備高熱穩定性效能之有機太陽能電池之製備方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant