CN113130680A - 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法 - Google Patents

一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN113130680A
CN113130680A CN202110399565.1A CN202110399565A CN113130680A CN 113130680 A CN113130680 A CN 113130680A CN 202110399565 A CN202110399565 A CN 202110399565A CN 113130680 A CN113130680 A CN 113130680A
Authority
CN
China
Prior art keywords
cdcl
pbbr
cspbbr
doped
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110399565.1A
Other languages
English (en)
Other versions
CN113130680B (zh
Inventor
诸跃进
王晨阳
刘小辉
张京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN202110399565.1A priority Critical patent/CN113130680B/zh
Publication of CN113130680A publication Critical patent/CN113130680A/zh
Application granted granted Critical
Publication of CN113130680B publication Critical patent/CN113130680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法,包括层状分布的导电玻璃层、电子传输层、CsPbBr3多晶膜和碳电极,CsPbBr3多晶膜中掺杂有CdCl2,以使Cd2+取代部分Pb2+,Cl取代部分Br。CdCl2的掺杂能够延缓CsPbBr3多晶膜的生长速度,减少表面孔洞孔径,从而提升CsPbBr3多晶膜的形貌均匀性,同时Cd和Cl均匀分散在CsPbBr3多晶膜中,没有引起离子团聚,同时降低电池中电荷重组,提升载流子提取和传输的速度,对短路电流和开路电压均具有良好的提升效果,Cd和Cl二者相互协同,极大提升太阳能电池的光电性能。

Description

一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法
【技术领域】
本发明涉及一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法,属于钙钛矿制备领域。
【背景技术】
有机无机杂化钙钛矿太阳能电池(PSCs)在过去的十年中,发展迅速。这主要归因于钙钛矿材料非凡的光电特性,如具有较长的载流子寿命,合适的禁带宽度,较好的光吸收等。用无机Cs+取代钙钛矿材料中的有机成分,是提高PSCs稳定性的有效方法。但是,尽管如此,含I-的无机钙钛矿材料依然对湿度环境敏感。于是不含I-的CsPbBr3钙钛矿材料显出其极强的环境稳定性,该材料被认为是最有前途的光活性层。
目前新型的全无机CsPbBr3太阳能电池具有FTO/TiO2/CsPbBr3/carbon的器件结构,不需要空穴传输层(HTLs)和贵金属背电极,与有机-无机杂化PSCs或其他结构的全无机PSCs相比,大大简化制备过程,降低制备成本。
在此基础上,为了进一步提升全无机CsPbBr3太阳能电池的光电效率,对CsPbBr3进行掺杂是一种十分重要的研发思路。但是很多情况下单掺杂对电池的效率提升十分有限,而选择复合掺杂的情况下掺杂元素相互之间具有阻碍作用,很多情况下不仅无法提升效率,甚至对电池的光电性能有害。
【发明内容】
本发明所要解决的技术问题在于克服现有技术的不足而提供一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法。
解决上述技术问题,本发明采用如下技术方案:
一种CdCl2掺杂的全无机钙钛矿太阳能电池,包括层状分布的导电玻璃层、电子传输层、CsPbBr3多晶膜和碳电极,CsPbBr3多晶膜中掺杂有CdCl2,以使Cd2+取代部分Pb2+,Cl-取代部分Br-
本发明的有益效果为:
CdCl2的掺杂能够延缓CsPbBr3多晶膜的生长速度,减少表面孔洞孔径,从而提升CsPbBr3多晶膜的形貌均匀性,同时Cd和Cl均匀分散在CsPbBr3多晶膜中,没有引起离子团聚,同时降低电池中电荷重组,提升载流子提取和传输的速度,对短路电流和开路电压均具有良好的提升效果,Cd和Cl二者相互协同,极大提升太阳能电池的光电性能。
一种CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,包括如下步骤,在导电玻璃层上涂覆电子传输层,在电子传输层上旋涂CsBr,将CdCl2和PbBr2混合然后旋涂至CsBr上,形成掺杂后的PbBr2层,然后在PbBr2层上多次旋涂CsBr,以形成掺杂有CdCl2的CsPbBr3多晶膜,最后在CsPbBr3多晶膜表面制备碳电极。
本发明旋涂CsBr时使用的溶剂为甲醇,旋涂CdCl2和PbBr2时使用的溶剂为DMF。
本发明CdCl2和PbBr2的混合溶液中,PbBr2浓度为1M,CdCl2浓度不超过PbBr2浓度的2%,CsBr溶液中,CsBr浓度为0.07M。
本发明PbBr2层形成后在90℃条件下进行退火,在PbBr2层上每次旋涂完CsBr后在250℃条件下进行退火。
本发明在PbBr2层上旋涂CsBr的次数为4次。
本发明的其他特点和优点将会在下面的具体实施方式、附图中详细的揭露。
【附图说明】
下面结合附图对本发明做进一步的说明:
图1为本发明对比实施例1和实施例1-3中PbBr2层的SEM图;
图2为本发明对比实施例1和实施例1-3中CsPbBr3多晶膜的SEM图;
图3为本发明实施例2中CsPbBr3多晶膜的EDS图;
图4为本发明对比实施例1和实施例2的全无机钙钛矿太阳能电池效率稳定性数据图(25℃,10%RH);
图5为本发明对比实施例1和实施例2的全无机钙钛矿太阳能电池效率稳定性数据图(85℃,40-80%RH)
图6为本发明对比实施例1和实施例2的全无机钙钛矿太阳能电池IPCE曲线图以及整合电流密度曲线。
【具体实施方式】
下面结合本发明实施例的附图对本发明实施例的技术方案进行解释和说明,但下述实施例仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其他实施例,都属于本发明的保护范围。
在下文描述中,出现诸如术语“内”、“外”、“上”、“下”、“左”、“右”等指示方位或者位置关系仅是为了方便描述实施例和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
对比实施例1:
本实施例提供的是全无机钙钛矿太阳能电池,其制备方法如下:
步骤S1:在处理好的FTO(导电玻璃层)表面以4000rpm的转速旋涂30s,沉积厚度为40nm的c-TiO2,然后在450℃条件下退火30min,而后浸泡在40mM TiCl4水溶液中,取出后在70℃条件下加热30min,用去离子水冲洗,烘干后在500℃条件下烧结30min,得到电子传输层;
步骤S2:将0.07M的CsBr的甲醇溶液以2000rpm的转速旋涂至电子传输层上,旋涂30s,在90℃条件下干燥1h,形成CsBr薄膜,然后将1M的PbBr2的DMF溶液以2000rpm的转速旋涂至CsBr薄膜上,旋涂30s,然后在90℃条件下干燥1h,形成PbBr2层;
步骤S3:将0.07M的CsBr的甲醇溶液以2000rpm的转速旋涂至PbBr2层上,旋涂30s,在250℃条件下退火5分钟,以使得PbBr2层逐步转变为CsPbBr3多晶膜,在PbBr2层上共计旋涂四次CsBr的甲醇溶液,最后用异丙醇进行冲洗,并在250℃条件下干燥5分钟;
步骤S4:最后用刮刀涂布法将碳浆涂在CsPbBr3多晶膜上,在90℃下退火30min,形成碳电极。
实施例1:
实施例1与对比实施例1的区别在于,将步骤S2中PbBr2的DMF溶液替换为PbBr2和CdCl2共混的DMF溶液,PbBr2浓度为1M,CdCl2浓度为0.005M。
实施例2:
实施例2与实施例1的区别在于,CdCl2浓度为0.01M。
实施例3:
实施例3与实施例2的区别在于,CdCl2浓度为0.02M。
参见图1,图1中a、b、c和d依次为对比实施例1、实施例1、实施例2和实施例3中PbBr2层的SEM图,测试样品中PbBr2层直接制备在FTO表面,省略了CsBr薄膜的制备过程。
可以看到,在对比实施例1中未掺有CdCl2的情况下,PbBr2层中具有许多孔洞。在实施例1中,随着CdCl2的掺入,PbBr2层中孔洞数量和尺寸都明显减小。在实施例2中,CdCl2掺入浓度的增加,促使绝大部分孔洞尺寸明显缩减,使得PbBr2层对下方FTO的覆盖效果得到极大增强。相应的,在实际完整电池制备过程中,确保了PbBr2和其下方CsBr的充分接触,有助于后期形成均匀的CsPbBr3多晶膜。在实施例3中,随着CdCl2掺入浓度的进一步增加,PbBr2层上孔洞尺寸重新开始增加,导致其成膜性显著下降。
参见图2,图2中a、b、c和d依次为对比实施例1、实施例1、实施例2和实施例3中CsPbBr3多晶膜的SEM图。可以看到,随着CdCl2掺杂浓度的增加,CsPbBr3多晶膜的晶粒尺寸先增大,后减小,在CsPbBr3多晶膜晶粒尺寸增大过程中,晶界减少,从而抑制载流子的符合。而在CdCl2过量掺杂的情况下,多余的CdCl2无法进入晶体结构中,在晶界处产生堆积,对CsPbBr3多晶膜产生了破坏,使得CsPbBr3多晶膜表面产生孔洞,对载流子传输造成较大影响。
参见图3,CdCl2掺杂浓度为0.01M的情况下,Cs、Pb、Br、Cd、Cl这五种元素在CsPbBr3多晶膜中均分布均匀,在CsPbBr3多晶膜中引入Cd和Cl没有造成离子团聚。
参见图4,在常温低湿的条件下,前面40天中,实施例2中的全无机钙钛矿太阳能电池效率相比刚制备完成时有所提升,在40天-90天这个时间范围内,其效率虽然相比刚制备完成时有所衰减,但是衰减程度很小,效率稳定性较高,其前100天整体稳定性测试性能明显优于对比实施例1。
参见图5,在高温高湿条件下,在前260小时中,实施例2中的全无机钙钛矿太阳能电池效率相比刚制备完成时效率都有所提升,之后才开始相比刚制备完成时的效率发生衰减。与之相对,对比实施例1中全无机钙钛矿太阳能电池效率仅在前60小时中相比刚制备完成时有所提升,在之后的时间范围内,电池效率相比刚制备完成时已经有比较明显的下降。
由此可见,在低温低湿以及高温高湿条件下,CdCl2的掺杂对电池效率稳定性都有非常明显的提升。
参见图6,图6中位于上方的IPCE曲线对应实施例2中的全无机钙钛矿太阳能电池,位于下方的IPCE曲线对应对比实施例1中的全无机钙钛矿太阳能电池。可以看到,CdCl2的掺杂使得全无机钙钛矿太阳能电池在300-550nm这一波段内的所有IPCE值都有显著提升,明显有别于其他单掺杂和复合掺杂的钙钛矿太阳能电池的IPCE曲线(部分波段IPCE值提升且部分波段IPCE值下降),因此CdCl2的掺杂对IPCE曲线的改善效果十分明显。
通过对图6中IPCE曲线进行计算分析,可以得到实施例2中全无机钙钛矿太阳能电池的整合短路电流密度为7.95mA/cm2,而对比实施例1中整合短路电流密度为6.29mA/cm2,说明CdCl2的掺杂能够有效提升太阳能电池的短路电流密度Jsc
对比实施例2:
本对比实施例与实施例1的区别在于,将CdCl2替换为CdBr2,CdBr2浓度为0.005M。
对比实施例3:
本对比实施例与实施例2的区别在于,将CdCl2替换为CdBr2,CdBr2浓度为0.01M。
对比实施例4:
本对比实施例与实施例3的区别在于,将CdCl2替换为CdBr2,CdBr2浓度为0.02M。
实施例1-3以及对比实施例1-4的光电性能数据如表1所示。
表1
Figure BDA0003019592830000051
Figure BDA0003019592830000061
通过比较对比实施例1和实施例1-3,可以看出,CdCl2的掺杂对短路电流密度的提升具有较为明显的效果,同时对开路电压也具有很明显的提升。在实施例2中电池效率达到最优值。
通过实施例1和对比实施例2比对,实施例2和对比实施例3比对,实施例3和对比实施例4比对,可以明显看到,在相同掺杂浓度下,Cl的掺杂能够在Cd作用基础上进一步提升电池的短路电流密度,但是对开路电压几乎没有作用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,熟悉该本领域的技术人员应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (6)

1.一种CdCl2掺杂的全无机钙钛矿太阳能电池,其特征在于,包括层状分布的导电玻璃层、电子传输层、CsPbBr3多晶膜和碳电极,CsPbBr3多晶膜中掺杂有CdCl2,以使Cd2+取代部分Pb2+,Cl-取代部分Br-
2.一种CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,其特征在于,包括如下步骤,在导电玻璃层上涂覆电子传输层,在电子传输层上旋涂CsBr,将CdCl2和PbBr2混合然后旋涂至CsBr上,形成掺杂后的PbBr2层,然后在PbBr2层上多次旋涂CsBr,以形成掺杂有CdCl2的CsPbBr3多晶膜,最后在CsPbBr3多晶膜表面制备碳电极。
3.根据权利要求2所述的CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,其特征在于,旋涂CsBr时使用的溶剂为甲醇,旋涂CdCl2和PbBr2时使用的溶剂为DMF。
4.根据权利要求3所述的CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,其特征在于,CdCl2和PbBr2的混合溶液中,PbBr2浓度为1M,CdCl2浓度不超过PbBr2浓度的2%,CsBr溶液中,CsBr浓度为0.07M。
5.根据权利要求2所述的CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,其特征在于,PbBr2层形成后在90℃条件下进行退火,在PbBr2层上每次旋涂完CsBr后在250℃条件下进行退火。
6.根据权利要求2所述的CdCl2掺杂的全无机钙钛矿太阳能电池的制备方法,其特征在于,在PbBr2层上旋涂CsBr的次数为4次。
CN202110399565.1A 2021-04-14 2021-04-14 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法 Active CN113130680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110399565.1A CN113130680B (zh) 2021-04-14 2021-04-14 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110399565.1A CN113130680B (zh) 2021-04-14 2021-04-14 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN113130680A true CN113130680A (zh) 2021-07-16
CN113130680B CN113130680B (zh) 2023-04-07

Family

ID=76776415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110399565.1A Active CN113130680B (zh) 2021-04-14 2021-04-14 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113130680B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104158A (zh) * 2017-06-15 2017-08-29 绍兴文理学院 一种掺杂CdTe纳米光伏材料的制备方法
CN108878554A (zh) * 2018-06-26 2018-11-23 暨南大学 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用
CN110190151A (zh) * 2019-05-08 2019-08-30 武汉理工大学 一种CsPbBr3无机钙钛矿薄膜的制备方法及其应用
CN110828588A (zh) * 2019-11-07 2020-02-21 宁波大学科学技术学院 一种碳基溴化铋修饰的钙钛矿太阳能电池及其制备方法
CN111668340A (zh) * 2020-06-03 2020-09-15 东北电力大学 一种Cd3Cl2O2薄膜及其制备方法和薄膜太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104158A (zh) * 2017-06-15 2017-08-29 绍兴文理学院 一种掺杂CdTe纳米光伏材料的制备方法
CN108878554A (zh) * 2018-06-26 2018-11-23 暨南大学 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用
CN110190151A (zh) * 2019-05-08 2019-08-30 武汉理工大学 一种CsPbBr3无机钙钛矿薄膜的制备方法及其应用
CN110828588A (zh) * 2019-11-07 2020-02-21 宁波大学科学技术学院 一种碳基溴化铋修饰的钙钛矿太阳能电池及其制备方法
CN111668340A (zh) * 2020-06-03 2020-09-15 东北电力大学 一种Cd3Cl2O2薄膜及其制备方法和薄膜太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘根才: ""稀土掺杂全无机铅卤钙钛矿量子点的光学性质及应用研究", 《中国博士学位论文全文数据库 基础科学辑 2019年第11期》 *

Also Published As

Publication number Publication date
CN113130680B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Dong et al. A green anti‐solvent process for high performance carbon‐based CsPbI2Br all‐inorganic perovskite solar cell
CN110635039B (zh) 一种钝化钙钛矿的方法及钙钛矿太阳能电池
CN109980092B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
CN111944161B (zh) 一种钙钛矿太阳能电池中的Eu-MOFs界面修饰层
CN109300805A (zh) 真空控制CsPbIxBr3-x钙钛矿生长的方法和光伏器件
CN113224241A (zh) 钙钛矿太阳能电池及其制备方法
CN115188893A (zh) 一种钙钛矿太阳能电池及制备方法
CN113193126B (zh) 一种实现无甲胺钙钛矿薄膜表面重构的制备方法及其应用
Wang et al. Aniline Sulfonic Acid Induced Uniform Perovskite Film for Large‐Scale Photovoltaics
Sun et al. Chemical Reduction of Iodine Impurities and Defects with Potassium Formate for Efficient and Stable Perovskite Solar Cells
CN107845729B (zh) 钙钛矿太阳能电池及其制备方法
CN113130680B (zh) 一种CdCl2掺杂的全无机钙钛矿太阳能电池及其制备方法
CN108767112A (zh) 具有不同空穴传输层的BiI3太阳能电池及其制备方法
CN110311037B (zh) 一种柔性钙钛矿太阳能电池用空穴传输层及其制备方法和应用
Huang et al. Efficient and stable hybrid conjugated polymer/perovskite quantum dot solar cells
CN111634939A (zh) 一种稀土Sm掺杂的全无机钙钛矿、制备方法及其应用
CN113140680B (zh) 一种HEMA掺杂的CsPbI2Br太阳能电池及其制备方法
Yu et al. Polyvinyl pyrrolidone induced “Confinement effect” on PbI2 and the improvement on crystallization and thermal stability of perovskite
CN114883496A (zh) 一种双界面处理的高效钙钛矿太阳电池结构及其制备方法
CN114242824A (zh) 一种全无机钙钛矿太阳能电池及其制备方法
CN112054123A (zh) 电子传输层及其制备方法、钙钛矿太阳能电池及其制备方法
CN113394348B (zh) 半电池的制备方法、半电池和具有其的太阳能电池
CN116782681B (zh) 一种反型钙钛矿太阳能电池及其制备方法
CN115000185B (zh) 一种氟化铵盐钝化的碳基无机钙钛矿太阳能电池及其制备方法
CN112133836B (zh) 一种原位生长制备的钙钛矿太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant