CN113121941A - 一种纳米FeS颗粒复合材料及其制备方法与应用 - Google Patents
一种纳米FeS颗粒复合材料及其制备方法与应用 Download PDFInfo
- Publication number
- CN113121941A CN113121941A CN201911411300.8A CN201911411300A CN113121941A CN 113121941 A CN113121941 A CN 113121941A CN 201911411300 A CN201911411300 A CN 201911411300A CN 113121941 A CN113121941 A CN 113121941A
- Authority
- CN
- China
- Prior art keywords
- nano
- fes
- particle composite
- solution
- polyvinyl alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28047—Gels
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F289/00—Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
- C08J9/0071—Nanosized fillers, i.e. having at least one dimension below 100 nanometers
- C08J9/008—Nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/048—Elimination of a frozen liquid phase
- C08J2201/0484—Elimination of a frozen liquid phase the liquid phase being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/028—Xerogel, i.e. an air dried gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2429/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2429/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2429/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
- C08K2003/3009—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明提供了一种纳米FeS颗粒复合材料及其制备方法与应用。本发明利用丙烯酰胺、木质素磺酸钠和聚乙烯醇交联互穿网络形成内部自带厌氧空间的水凝胶,并在其内部通过原位负载和原位还原的方式合成FeS纳米颗粒,实现纳米FeS的分散并有效避免纳米FeS被氧化;制备方法简单,无需额外的交联剂,操作方便。通过所述制备方法得到的纳米FeS颗粒复合材料中FeS颗粒的分散性高,抗氧化性强,易于保存,活性位点得到了有效的保持,对Cr(Ⅵ)的去除效果显著;使用方便,适用性好,在去除重金属领域具有良好的应用前景。
Description
技术领域
本发明属于纳米材料技术领域,涉及一种纳米FeS颗粒复合材料及其制备方法与应用;特别涉及一种用水凝胶实现纳米颗粒高度分散的复合材料及其制备与应用。
背景技术
纳米材料,是指结构单元尺寸在1~100nm的颗粒;由于尺寸很小,其性质会发生很大变化。并且,由于其尺度已接近光的波长,同时具有较大比表面的特殊效应,因此往往不同于该物质在整体状态时所表现的性质,例如熔点、光学、导热、磁性、导电特性等。
纳米FeS在环境吸附重金属的应用效果极佳,但是由于其易团聚和易氧化的特性,导致其使用受阻,只能在厌氧环境下使用,无法发挥其吸附高活性的优势。
现如今,分散纳米颗粒的方法有很多,固体负载是最常见的,由于负载量比较低,而且负载不牢固容易脱落,导致应用不广泛;利用聚合物充当分散剂的方式可以起到很好的分散,但是会覆盖纳米颗粒的活性位点,导致纳米颗粒活性下降,应用受阻。纳米颗粒尤其是FeS纳米颗粒抗氧化的方法比较局限,只是放在无氧环境下保存,应用麻烦。寻求更好的分散方法制备高度分散的纳米颗粒和易于保存的方式至关重要。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种纳米FeS颗粒复合材料的制备方法;利用丙烯酰胺、木质素磺酸钠和聚乙烯醇交联互穿网络形成水凝胶,在所述的水凝胶内部通过原位负载和原位还原的方式合成FeS纳米颗粒,实现纳米FeS的分散,所得到的水凝胶干燥后内部的自带厌氧空间可以很好的保存纳米FeS,使其不容易被氧化。
本发明的另一目的在于提供一种纳米FeS颗粒复合材料,通过所述的纳米FeS颗粒复合材料的制备方法制得,纳米FeS在其中高度分散,纳米FeS的高抗氧化性能可得到很好的保持。
本发明的又一目的在于提供所述的纳米FeS颗粒复合材料的应用。
本发明的目的通过下述技术方案实现:
一种纳米FeS颗粒复合材料的制备方法,包括如下步骤:
(1)在丙烯酰胺溶液中加入可溶性铁盐,混合均匀后,再加入木质素磺酸钠使其完全溶解,最后加入聚乙烯醇溶液,混合均匀;
(2)在步骤(1)得到的溶液中加入引发剂,混合均匀后静置待其形成凝胶,清洗,干燥后得到干凝胶;
(3)将步骤(2)得到的干凝胶浸泡于含有还原剂的可溶性硫化物溶液中,或者先将所述的干凝胶浸泡于还原剂溶液中,再加入可溶性硫化物后继续浸泡;固液分离取固体,清洗,干燥后得到纳米FeS颗粒复合材料。
步骤(1)中所述的聚乙烯醇优选为中粘度的聚乙烯醇,平均分子量110000~130000。分子量太低致粘度不够,强度低,无法更好的包裹分散纳米粒子,但分子量太高很难分散混合。此时使用聚乙烯醇更利于分散,能够更好的将铁离子包裹,从而使其不影响后续的引发反应。
步骤(1)中聚乙烯醇溶液的浓度优选为1%(w/v)~4%(w/v),加入量优选按聚乙烯醇溶液与丙烯酰胺溶液的体积比为(2~5):30进行配比。
步骤(1)中所述的丙烯酰胺、可溶性铁盐和木质素磺酸钠优选按质量比为(2~5):(5~10):(5~10)进行配比。
步骤(1)中所述的丙烯酰胺溶液优选为丙烯酰胺水溶液;所述的丙烯酰胺溶液中丙烯酰胺质量与溶剂体积优选按(2~5)g:30mL进行配比。
步骤(1)中所述的可溶性铁盐优选为氯化铁。
步骤(1)中所述的丙烯酰胺和聚乙烯醇溶剂优选为水;通过搅拌使其完全溶解,所述的搅拌优选为机械搅拌。
步骤(2)中所述的引发剂优选为过硫酸钾。
步骤(2)中所述的加入引发剂的量为0.1~0.5g。
步骤(2)中所述的引发剂的加入量优选按其与丙烯酰胺的质量比为(0.1~0.5):(2~5)进行配比。
步骤(2)中所述的混合时优选进行搅拌;所述的搅拌优选为机械搅拌,搅拌时间优选为1~2h。
步骤(2)中所述的清洗优选用水进行清洗。
步骤(3)中所述的还原剂优选为强还原剂;更优选为硼氢化钠,其还原性强,对包裹的铁离子具有更好的反应性。
步骤(3)中所述的浸泡优选为不断搅拌浸泡,所述的搅拌优选为机械搅拌。
步骤(3)中所述的可溶性硫化物优选为硫化钠。
步骤(3)中所述的还原剂的浓度优选为0.01~0.05mol/L,可溶性硫化物的浓度优选为0.5~1mol/L。
步骤(3)中的溶液的溶剂优选为水。
步骤(3)中所述的浸泡的操作优选为将所述的干凝胶浸泡于含有还原剂的可溶性硫化物溶液中。
步骤(3)中所述的浸泡时间优选为2~6h。
步骤(2)和/或步骤(3)中所述的干燥优选为冷冻干燥。
步骤(1)、(2)、(3)中所述的水优选为去离子水、蒸馏水或超纯水。
一种纳米FeS颗粒复合材料,通过所述的纳米FeS颗粒复合材料的制备方法制得。
所述的纳米FeS颗粒复合材料内部厌氧空间使其具有很强的抗氧化性能。
所述的纳米FeS颗粒复合材料在去除重金属领域中的应用。
所述的重金属优选为水体中的重金属;进一步优选为Cr(Ⅵ)。
本发明利用丙烯酰胺和聚乙烯醇先将可溶性铁盐(如氯化铁)高度分散,聚乙烯醇可以更好的包裹铁离子,使其不影响聚合反应,再利用木质素磺酸钠与其聚合形成大分子,利用聚乙烯醇大分子与之交联互穿,内部形成互穿的网络空间。再用强还原剂(如硼氢化钠)在原位将铁盐还原成亚铁,再与硫化物(如硫化钠)原位反应得到FeS,此时的纳米FeS高度分散。此复合材料经过冷冻干燥后,大分子脱水将纳米颗粒包裹,形成厌氧环境,阻止了FeS纳米颗粒的氧化,保持了其高活性;并在实现了对纳米粒子有效分散的同时,保持了纳米颗粒的活性位点,分散的FeS纳米颗粒对去除Cr(Ⅵ)具有高活性。
本发明相对于现有技术具有如下的优点及效果:
(1)通过原位还原和原位合成的方式制备纳米颗粒,制得的FeS分散性更好。
(2)本发明的制备方法简单,操作方便,经过简单的混合和浸泡过程即可完成。
(3)大分子之间的互穿网络,互相缠绕,实现物理交联,不需要额外的交联剂即可完成。
(4)此方法分散的纳米颗粒抗氧化性好。
(5)本发明高度分散的纳米颗粒去除Cr(Ⅵ)的效果明显。
附图说明
图1是实施例1所得的分散的纳米颗粒复合材料的扫描电镜图(×3000)。
图2是实施例1所得到的分散的纳米颗粒复合材料的透射电镜图(×10000)。
图3是实施例1得到的分散的纳米颗粒复合材料的抗氧化性能结果照片图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中用到的试剂均购买于阿拉丁。
实施例1
(1)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的聚乙烯醇(平均分子量110000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.01mol/L(终浓度)硼氢化钠和0.5mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为2h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例2
(1)将3g丙烯酰胺溶于30mL水中,加入8g氯化铁,充分搅拌,混合均匀,再加入7g木质素磺酸钠,搅拌至完全溶解,最后加入3mL浓度为3%(w/v)的聚乙烯醇(平均分子量120000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.01mol/L(终浓度)硼氢化钠和0.5mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为2h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例3
(1)将5g丙烯酰胺溶于30mL水中,加入10g氯化铁,充分搅拌,混合均匀,再加入10g木质素磺酸钠,搅拌至完全溶解,最后加入5mL浓度为4%(w/v)的聚乙烯醇(平均分子量130000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.01mol/L(终浓度)硼氢化钠和0.5mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为2h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例4
(1)将2g丙烯酰胺溶于30mL水中,加入10g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为4%(w/v)的聚乙烯醇(平均分子量130000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.3g引发剂过硫酸钾,搅拌1.5h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.03mol/L(终浓度)硼氢化钠和0.8mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为5h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例5
(1)将5g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入5mL浓度为4%(w/v)的聚乙烯醇(平均分子量130000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.5g引发剂过硫酸钾,搅拌2h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.05mol/L(终浓度)硼氢化钠和1mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为6h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例6
(1)将5g丙烯酰胺溶于30mL水中,加入10g氯化铁,充分搅拌,混合均匀,再加入10g木质素磺酸钠,搅拌至完全溶解,最后加入5mL浓度为4%(w/v)的聚乙烯醇(平均分子量130000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.5g引发剂过硫酸钾,搅拌2h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.05mol/L(终浓度)硼氢化钠和1mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为6h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例7
(1)将3g丙烯酰胺溶于30mL水中,加入6g氯化铁,充分搅拌,混合均匀,再加入6g木质素磺酸钠,搅拌至完全溶解,最后加入3mL浓度为2%(w/v)的聚乙烯醇(平均分子量120000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.3g引发剂过硫酸钾,搅拌2h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.03mol/L(终浓度)硼氢化钠和0.8mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为5h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例8
(1)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的聚乙烯醇(平均分子量110000)溶液,搅拌混合均匀;
(2)在步骤(1)得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;
(3)将步骤(2)制备的干凝胶浸泡在溶解有0.01mol/L(终浓度)硼氢化钠和0.5mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为2h,分离冲洗干净,冷冻干燥后即得到分散的纳米FeS颗粒复合材料。
实施例9无分散的FeS的制备
取10g氯化铁,溶解于30mL水中,加入0.01mol/L硼氢化钠溶液2mL,反应30min。加入1g硫化钠,搅拌反应2h,分离用水冲洗干净,冷冻干燥后即得到纯的FeS材料。
实施例10
为了更好的体现实验方案的可行性,特进行以下对比实验。
(1)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的聚乙二醇(平均分子量6000)溶液,搅拌混合均匀;在上述得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置后无法生成凝胶。在本发明研究中发现,聚乙二醇的包裹性和分散性无法实现本发明目的。
(2)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的海藻酸钠(1%粘度:5000mPa.s)溶液,混合液迅速固化,无法分散,无法进行后一步反应。
(3)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的顺丁烯二酸酐溶液,搅拌混合均匀;在上述得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置后无法生成凝胶,证明了原料必须选择聚乙烯醇将铁离子包裹,否则影响聚合。
(4)将2g丙烯酰胺溶于30mL水中,加入5g氯化铁,充分搅拌,混合均匀,再加入5g木质素磺酸钠,搅拌至完全溶解,最后加入2mL浓度为1%(w/v)的聚乙烯醇(平均分子量110000)溶液,搅拌混合均匀;在上述得到的溶液中加入0.1g引发剂过硫酸钾,搅拌1h,混合均匀,静置待其成凝胶,用水冲洗干净,冷冻干燥后备用;将上述制备的干凝胶浸泡在溶解有0.01mol/L(终浓度)还原剂维生素C和0.5mol/L(终浓度)硫化钠的200mL水溶液中,浸泡时间为2h,分离冲洗干净,冷冻干燥后没有生成FeS,说明还原性不够。
实施例11
下面通过相关实验数据进一步说明本发明的有益效果。
本发明实施例制备的分散的FeS纳米复合材料,用于去除重金属Cr(Ⅵ)废水溶液,对溶液的Cr(Ⅵ)含量进行测量,吸附前后对比,得到吸附率,测定吸附效果。下面是以实施例中制备的FeS纳米复合材料为例得到的实验数据。
常温下将实施例1得到的纳米复合材料0.03g加入到100mg/L的Cr(Ⅵ)水溶液50mL中,放入摇床80r/min,分别吸附5、10、15、20、25、30、40、60、90、120min取样,用GB/T 7466-1987(水质总铬的测定二苯碳酰二肼分光光度法)的方法检测Cr(Ⅵ)的浓度,得到Cr(Ⅵ)去除率为92.7%。
根据以上条件,将实施例2~8的制备的材料按相同的方式用于去除溶液中的Cr(Ⅵ),得到平衡去除率分别为95.3%,91.7%,92.1%,94.6%,93.3%,92.4%,91.2%,与实施例1的相近。
将实施例9得到的纯FeS按相同的方式用于去除溶液中的Cr(Ⅵ),得到平衡去除率为34.7%,与本发明制得的分散的FeS复合材料具有很大差别。
将实施例1得到的分散的FeS复合材料和实施例9得到的纯FeS放于自然环境中24h,以比较它们的抗氧化性。结果如图3所示,本发明得到分散的FeS复合材料颜色始终无变化,具有更强的抗氧化性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种纳米FeS颗粒复合材料的制备方法,其特征在于,包括如下步骤:
(1)在丙烯酰胺溶液中加入可溶性铁盐,混合均匀后,再加入木质素磺酸钠使其完全溶解,最后加入聚乙烯醇溶液,混合均匀;
(2)在步骤(1)得到的溶液中加入引发剂,混合均匀后静置待其形成凝胶,清洗,干燥后得到干凝胶;
(3)将步骤(2)得到的干凝胶浸泡于含有还原剂的可溶性硫化物溶液中,或者先将所述的干凝胶浸泡于还原剂溶液中,再加入可溶性硫化物后继续浸泡;固液分离取固体,清洗,干燥后得到纳米FeS颗粒复合材料。
2.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(1)中所述的聚乙烯醇为中粘度的聚乙烯醇;
步骤(1)中所述的丙烯酰胺溶液中丙烯酰胺质量与溶剂体积按(2~5)g:30mL进行配比;
步骤(3)中所述的还原剂的浓度为0.01~0.05mol/L。
3.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(1)中所述的聚乙烯醇的平均分子量为110000~130000;
步骤(1)中所述的丙烯酰胺、可溶性铁盐和木质素磺酸钠按质量比为(2~5):(5~10):(5~10)进行配比;
步骤(3)中所述的还原剂为强还原剂。
4.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(1)中聚乙烯醇溶液的浓度为1%(w/v)~4%(w/v);
步骤(2)中所述的引发剂的加入量为0.1~0.5g;
步骤(3)中所述的还原剂为硼氢化钠。
5.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(1)中聚乙烯醇溶液的加入量按聚乙烯醇溶液与丙烯酰胺溶液的体积比为(2~5):30进行配比;
步骤(2)中所述的引发剂的加入量按其与丙烯酰胺的质量比为(0.1~0.5):(2~5)进行配比;
步骤(3)中所述的可溶性硫化物为硫化钠。
6.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(1)中所述的可溶性铁盐为氯化铁;
步骤(3)中所述的浸泡时间为2~6h;
步骤(2)和/或步骤(3)中所述的干燥为冷冻干燥。
7.根据权利要求1所述的纳米FeS颗粒复合材料的制备方法,其特征在于:
步骤(2)中所述的引发剂为过硫酸钾;
步骤(3)中所述的可溶性硫化物的浓度为0.5~1mol/L;
步骤(3)中所述的浸泡的操作为将所述的干凝胶浸泡于含有还原剂的可溶性硫化物溶液中。
8.一种纳米FeS颗粒复合材料,其特征在于:
通过权利要求1~7任一项所述的纳米FeS颗粒复合材料的制备方法制得。
9.权利要求8所述的纳米FeS颗粒复合材料在去除重金属领域中的应用。
10.根据权利要求9所述的纳米FeS颗粒复合材料在去除重金属领域中的应用,其特征在于:
所述的重金属为水体中的重金属;
所述的重金属优选为Cr(Ⅵ)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911411300.8A CN113121941B (zh) | 2019-12-31 | 2019-12-31 | 一种纳米FeS颗粒复合材料及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911411300.8A CN113121941B (zh) | 2019-12-31 | 2019-12-31 | 一种纳米FeS颗粒复合材料及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113121941A true CN113121941A (zh) | 2021-07-16 |
CN113121941B CN113121941B (zh) | 2022-06-21 |
Family
ID=76770134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911411300.8A Active CN113121941B (zh) | 2019-12-31 | 2019-12-31 | 一种纳米FeS颗粒复合材料及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113121941B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113416552A (zh) * | 2021-06-18 | 2021-09-21 | 煜环环境科技有限公司 | 一种土壤修复剂及其制备方法、应用 |
CN114620821A (zh) * | 2022-03-09 | 2022-06-14 | 华南农业大学 | 一种基于硫化亚铁螯合物活化过硫酸盐去除水体中污染物的方法 |
CN116924544A (zh) * | 2023-09-14 | 2023-10-24 | 中南大学 | 一种微蚀含铜废水的资源化处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070090057A1 (en) * | 2005-09-13 | 2007-04-26 | John Burckle | Process for the purification of acidic metal-bearing waste waters to permissable discharge levels with recovery of marketable metal products |
CN101921443A (zh) * | 2010-08-06 | 2010-12-22 | 浙江大学 | 纳米粒子均相掺杂的高强度智能化水凝胶的制备方法 |
CN102924860A (zh) * | 2012-10-29 | 2013-02-13 | 天津大学 | 一种水凝胶原位杂化纳米银复合材料及其制备方法 |
CN104478004A (zh) * | 2014-12-31 | 2015-04-01 | 湖南大学 | 改性FeS纳米微粒及其制备方法和应用 |
CN110372832A (zh) * | 2019-06-17 | 2019-10-25 | 江苏大学 | 一种木质素基高分子树脂吸附剂的制备方法及应用 |
-
2019
- 2019-12-31 CN CN201911411300.8A patent/CN113121941B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070090057A1 (en) * | 2005-09-13 | 2007-04-26 | John Burckle | Process for the purification of acidic metal-bearing waste waters to permissable discharge levels with recovery of marketable metal products |
CN101921443A (zh) * | 2010-08-06 | 2010-12-22 | 浙江大学 | 纳米粒子均相掺杂的高强度智能化水凝胶的制备方法 |
CN102924860A (zh) * | 2012-10-29 | 2013-02-13 | 天津大学 | 一种水凝胶原位杂化纳米银复合材料及其制备方法 |
CN104478004A (zh) * | 2014-12-31 | 2015-04-01 | 湖南大学 | 改性FeS纳米微粒及其制备方法和应用 |
CN110372832A (zh) * | 2019-06-17 | 2019-10-25 | 江苏大学 | 一种木质素基高分子树脂吸附剂的制备方法及应用 |
Non-Patent Citations (1)
Title |
---|
LUDWIG, RD等: "In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113416552A (zh) * | 2021-06-18 | 2021-09-21 | 煜环环境科技有限公司 | 一种土壤修复剂及其制备方法、应用 |
CN113416552B (zh) * | 2021-06-18 | 2022-06-28 | 煜环环境科技有限公司 | 一种土壤修复剂及其制备方法、应用 |
CN114620821A (zh) * | 2022-03-09 | 2022-06-14 | 华南农业大学 | 一种基于硫化亚铁螯合物活化过硫酸盐去除水体中污染物的方法 |
CN116924544A (zh) * | 2023-09-14 | 2023-10-24 | 中南大学 | 一种微蚀含铜废水的资源化处理方法 |
CN116924544B (zh) * | 2023-09-14 | 2023-12-19 | 中南大学 | 一种微蚀含铜废水的资源化处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113121941B (zh) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113121941B (zh) | 一种纳米FeS颗粒复合材料及其制备方法与应用 | |
Sahraei et al. | Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water | |
CN109202100B (zh) | 一种纳米零价铁及其制备方法及应用 | |
CN107999037B (zh) | 一种磁性高分子吸附材料、制备方法和应用 | |
Arms et al. | Dispersions of electrically conducting polypyrrole particles in aqueous media | |
Chen et al. | In‐situ formation of silver nanoparticles on poly (N‐isopropylacrylamide)‐coated polystyrene microspheres | |
Xiang et al. | Preparation of a novel pH-responsive silver nanoparticle/poly (HEMA–PEGMA–MAA) composite hydrogel | |
Li et al. | Preparation and characterization of pH-and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker | |
Yang et al. | Synthesis of novel sunflower-like silica/polypyrrole nanocomposites via self-assembly polymerization | |
Kodoth et al. | Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions | |
Huang et al. | Salicylaldehyde-functionalized block copolymer nano-objects: one-pot synthesis via polymerization-induced self-assembly and their simultaneous cross-linking and fluorescence modification | |
CN109569548B (zh) | 一种用于海水提铀的磁性纳米功能材料及其制备方法 | |
CN111203177B (zh) | 一种EDTA-Pb废水的高效处理方法 | |
CN102827330A (zh) | 一种温敏性核壳结构凝胶纳米粒子的制备方法及其产物的应用 | |
Xie et al. | Preparation magnetic cassava residue microspheres and its application for Cu (II) adsorption | |
Lan et al. | Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition | |
TW200526342A (en) | Granular metal powder | |
He et al. | Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag+ | |
Gospodinova et al. | Preparation and characterization of aqueous polyaniline dispersions | |
Mackiewicz et al. | Environmentally sensitive, quickly responding microgels with lattice channels filled with polyaniline | |
Shi et al. | Biomimetic self-assembly of calcium phosphate templated by PNIPAAm nanogels for sustained smart drug delivery | |
Zhu et al. | Dual-responsive copolymer hydrogel as broad-spectrum adsorbents for metal ions | |
Mandal et al. | Dispersion polymerization of pyrrole using ethylhydroxy‐ethylcellulose as a stabilizer | |
Li et al. | Synthesis and properties of silver nanoparticles in chitosan‐based thermosensitive semi‐interpenetrating hydrogels | |
Hajizadeh et al. | Characterization of macroporous carbon-cryostructured particle gel, an adsorbent for small organic molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |