CN113111434A - 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法 - Google Patents

一种基于凸混合整数规划的组合动力飞行器轨迹优化方法 Download PDF

Info

Publication number
CN113111434A
CN113111434A CN202110339391.XA CN202110339391A CN113111434A CN 113111434 A CN113111434 A CN 113111434A CN 202110339391 A CN202110339391 A CN 202110339391A CN 113111434 A CN113111434 A CN 113111434A
Authority
CN
China
Prior art keywords
aircraft
optimization
integer programming
mixed integer
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110339391.XA
Other languages
English (en)
Other versions
CN113111434B (zh
Inventor
张冉
侯忻宜
李惠峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202110339391.XA priority Critical patent/CN113111434B/zh
Publication of CN113111434A publication Critical patent/CN113111434A/zh
Application granted granted Critical
Publication of CN113111434B publication Critical patent/CN113111434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其步骤如下:一、划分飞行阶段,确定不同模态对应的整数变量:二、建立组合动力飞行器轨迹优化问题模型;三、建立轨迹优化的凸混合整数规划问题;四、采用模型补偿方法迭代求解凸混合整数规划问题;通过以上步骤,可以建立基于凸混合整数规划的飞行器轨迹优化问题,实现组合动力飞行器的模态选择和轨迹优化,解决了轨迹优化问题中优化变量包括整数变量的问题。本发明所述方法科学,工艺性好,具有广阔推广应用价值。

Description

一种基于凸混合整数规划的组合动力飞行器轨迹优化方法
技术领域
本发明提供一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,属于航空航天技术中的轨迹规划领域。
背景技术
高超声速飞行器面临的飞行环境复杂,飞行空域和速域跨度大,单一动力形式往往难以满足飞行器宽包线飞行的要求。随着冲压发动机技术的日趋成熟,采用组合动力形式的飞行器受到了越来越广泛的关注,通过在不同飞行阶段选择不同的动力形式,可以使飞行器具有更强的机动性和任务适应性。其中,基于某项性能指标最优的阶段模态选择策略和相应的轨迹规划是该类飞行器设计过程中非常重要的一个环节。
在现有文献中,组合动力飞行器的轨迹优化方法主要集中在天地往返运载器的上升段,其模态切换策略确定,优化变量中仅存在连续变量。然而,对于临近空间高超声速飞行器而言,飞行过程中模态切换策略未知,需要由优化算法给出相应的整数变量取值,目前现有方法难以应用。此类问题属于混合最优控制问题,离散后的优化问题为混合整数非线性规划问题,进行整数变量松弛后的问题具有非凸特性,如果直接采用非凸混合整数非线性规划算法,则会由于问题规模过于大而导致求解困难。
综上所述,本发明基于凸混合整数规划,对具有整数变量和连续变量的组合动力飞行器进行轨迹优化,最终得到模态切换策略和最优飞行轨迹。该方法具有一定独创性。
发明内容
(一)本发明的目的
本发明的目的是为了解决上述问题,提出一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,旨在解决轨迹优化模型中存在整数变量的情况,使得飞行器能够通过切换不同的模态,实现最大航程飞行。
(二)技术方案
本发明提供一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其具体步骤如下:
步骤一、划分飞行阶段,确定不同模态对应的整数变量;
根据总飞行时间和发动机特性,采用等时间间隔方法划分飞行阶段,每一个阶段飞行器可选择不同动力形式对应的模态,选取整数变量进行表示;
步骤二、建立组合动力飞行器轨迹优化问题模型:
选取控制量和状态量,对飞行器的运动方程进行归一化处理,根据不同模态建立控制量和整数变量约束,以及对应的发动机开机条件约束;
步骤三、建立轨迹优化的凸混合整数规划问题;
将非凸非线性的运动模型和过程约束在参考轨迹处进行线性化,并将问题离散转化为一系列凸混合整数规划问题;
步骤四、采用模型补偿方法迭代求解凸混合整数规划问题;
给定初始猜想作为第一次迭代的参考轨迹,在之后的序列迭代过程中,将上一次迭代的优化结果作为本次线性化的参考轨迹,以此对模型进行补偿;当满足收敛条件时,停止求解;
其中,在步骤一中所述的“划分飞行阶段”,是指将总飞行时间划分为多个子区间,每个子区间内飞行器可以选择一种动力模态;
其中,在步骤一中所述的“整数变量”,对应于不同的发动机模态,属于方法的优化变量;
其中,在步骤一中所述的“划分飞行阶段,确定不同模态对应的整数变量”,其具体作法如下:
确定飞行器的发动机模型和总飞行时间,将优化时间划分为P个阶段,每个阶段选取两个整数变量a1p和a2p,p=1,2,...,P,a1p为1表示飞行器选取火箭模态,a2p为1表示飞行器选取冲压模态,a1p和a2p均为0表示无动力滑翔模态。
其中,在步骤二中所述的“轨迹优化问题”,是指同时包含整数变量和连续变量的混合最优控制问题,其中包含存在整数变量的发动机开机条件约束形式;
其中,在步骤二中所述的“建立组合动力飞行器轨迹优化问题模型”,其具体作法如下:
建立飞行器的质心运动模型,基于两点假设:1)将地球视为均质圆球,考虑地球曲率的影响,2)假设地球无自转;选取状态量和控制量,并对飞行器的运动方程进行归一化处理;
火箭模态的推力为T1,质量流量为R1,冲压模态的推力为T2,质量流量为R2,对应的控制量约束如下:
Figure BDA0002998755290000031
其中M为充分大的正数,选取为1×105
无动力滑翔模态对应的控制量约束为:
Figure BDA0002998755290000032
对于冲压模态,存在发动机开机条件约束,状态量和控制量对应的约束可统一写为以下形式:
Figure BDA0002998755290000033
其中X和U表示冲压发动机开机条件包括的状态量和控制量,Xmin和Xmax分别表示状态量最小值和最大值,Umin和Umax分别表示控制量最小值和最大值。
其中,在步骤三中所述的“建立轨迹优化的凸混合整数规划问题”,其具体作法如下:
将轨迹优化问题模型中的运动方程和过程约束在参考轨迹处进行线性化,经过离散后,转化为一系列凸混合整数规划子问题,采用“Mosek”求解器进行求解,可得到每个子问题的最优解;
所述的“凸混合整数规划问题”,可表示如下:
Figure BDA0002998755290000041
其中J为性能指标,选取为终端经度θK最大,也即航程最远;
Figure BDA0002998755290000042
为松弛后的临近项,k为离散点序列号,k=1,2,...,K,K为离散点数;x=[r,θ,φ,V,γ,ψ,m]为飞行器的状态量,r为地球中心到飞行器重心的径向距离,θ和φ分别为对应的经度和纬度,V为飞行器相对于地球的速度,γ为飞行路径角,表示飞行器的速度方向与水平面的夹角,ψ为航向角,表示飞行器的速度方向在水平面的投影与正东方向的夹角,m为质量;u=[α,T,R,s]为控制量,α为攻角,T为推力,R为质量流量,s为节流系数;xk和uk分别表示第k个离散点处状态量和控制量的值;A、B、C和Z为系数矩阵;[r0;θ0;φ0;V0;γ0;ψ0;m0]为状态量初值,mK和mmin分别为终端质量和飞行器净质量;θK为终端经度,D为状态量和控制量的定义域;
其中,在步骤四中所述的“模型补偿方法”,是指采用上一次凸混合整数规划问题迭代求解的状态量和控制量作为当前迭代的参考轨迹,为公知技术;
其中,在步骤四中所述的“迭代求解”,是指采用数学优化求解器即“Mosek求解器”对凸混合整数规划问题进行求解,当两次迭代的状态量差值最大值满足设定容差时,停止迭代;根据经验,设定位置容差为0.03公里;
其中,在步骤四中所述的“采用模型补偿方法迭代求解凸混合整数规划问题”,其具体作法如下:
轨迹优化问题经过线性化和离散化后转化为一个凸混合整数规划问题,采用“CVX”对该问题进行建模,“CVX”是专门用来求解凸优化问题的建模软件包,求解器选为“Mosek”;优化方法中每次对子问题进行求解时,需要将运动方程和约束在参考轨迹处线性化;初始参考轨迹人为给出,之后的迭代过程中,将上一次优化结果作为本次线性化的参考轨迹,以此对线性化问题模型进行补偿;当两次迭代结果之间的误差小于规定容差ε时,可认为轨迹收敛;选取离散形式的两次迭代地心距之差最大值作为误差;当max(r-r)≤ε时,迭代结束,ε取为0.03公里。
(三)本发明的优点及功效
本发明的优点及功效在于:
(1)本发明提出了基于凸混合整数规划的轨迹优化迭代方法,解决了组合动力飞行器轨迹优化模型中存在模态切换的问题,在一定时间内可得到最优模态切换策略和飞行轨迹;
(2)本发明所述方法科学,工艺性好,具有广阔推广应用价值。
附图说明
图1是本发明所述方法流程图。
图2是飞行器模态切换策略图。
图3是高度-时间曲线图。
图4是速度-时间曲线图。
图5攻角-时间曲线图。
图6是推力-时间曲线图。
图7是质量流量-时间曲线图。
具体实施方式
下面将结合附图和实施案例对本发明作进一步的详细说明。
本发明提供一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其流程图如图1所示,它包括以下几个步骤:
步骤一、划分飞行阶段,确定不同模态对应的整数变量:
确定飞行器的发动机模型和总飞行时间,将优化时间划分为P个阶段,每个阶段选取两个整数变量a1p和a2p,p=1,2,...,P。a1p为1表示飞行器选取火箭模态,a2p为1表示飞行器选取冲压模态,a1p和a2p均为0表示无动力滑翔模态;
步骤二、建立组合动力飞行器轨迹优化问题模型:
建立飞行器的质心运动模型,基于两点假设:1)将地球视为均质圆球,考虑地球曲率的影响,2)假设地球无自转;选取状态量和控制量,并对飞行器的运动方程进行归一化处理,得到:
Figure BDA0002998755290000061
其中,飞行器的状态量为x=[r,θ,φ,V,γ,ψ,m],控制量为u=[α,T,R,s];地心距r为飞行器所在位置与地心的距离,通过地球半径R0进行归一化,θ和φ为飞行器的经度和纬度,V为飞行器相对地球的速度,归一化系数为
Figure BDA0002998755290000062
g0为海平面处的重力加速度;γ为飞行路径角,表示飞行器的速度方向与水平面的夹角,ψ为航向角,表示飞行器的速度方向在水平面的投影与正东方向的夹角,m为飞行器的质量,通过质量初始值m0归一化;α和σ分别表示攻角和倾侧角,时间变量t采用
Figure BDA0002998755290000063
归一化,T为推力,R为质量流量,s为节流系数,T和R与s有关;
升力和阻力用g0归一化,具体表达式如下:
Figure BDA0002998755290000071
Figure BDA0002998755290000072
其中升力系数CL和阻力系数CD是关于攻角α和马赫数Ma的函数,S为飞行器的参考面积,ρ为大气密度。
火箭模态的推力为T1,质量流量为R1,冲压模态的推力为T2,质量流量为R2,对应的控制量约束如下:
Figure BDA0002998755290000073
其中M为充分大的正数,选取为1×105
无动力滑翔模态对应的控制量约束为:
Figure BDA0002998755290000074
对于冲压模态,存在发动机开机条件约束,状态量和控制量对应的约束可统一写为以下形式:
Figure BDA0002998755290000075
其中X和U表示冲压发动机开机条件包括的状态量和控制量,Xmin和Xmax分别表示状态量最小值和最大值,Umin和Umax分别表示控制量最小值和最大值;
规定飞行器在每个阶段内只能选取一种模态,因此添加整数变量约束:
a1p+a2p≤1,p=1,2,...,P (10)
步骤三、建立轨迹优化的凸混合整数规划问题
将轨迹优化问题模型中的运动方程和过程约束在参考轨迹处进行线性化,经过离散后,转化为一系列凸混合整数规划子问题,采用“Mosek”求解器进行求解,可得到每个子问题的最优解;
对步骤二中所述轨迹规划问题在参考轨迹处线性化;运动方程可写为
Figure BDA0002998755290000081
其中x=[r,θ,φ,V,γ,ψ,m],u=[α,T,R,s],在参考轨迹
Figure BDA0002998755290000082
处线性化,得到:
Figure BDA0002998755290000083
其中
Figure BDA0002998755290000084
分别为运动方程(11)右端项对状态量x和控制量u的雅克比矩阵,矩阵中各个变量的取值为参考轨迹
Figure BDA0002998755290000085
和控制量
Figure BDA0002998755290000086
所对应的变量在t时刻的值;可采用相同方法将不等式约束中的非线性项进行线性化;
在性能指标中加入邻近项,自适应调整优化变量的约束范围,增加额外的松弛变量η=[η12]作为优化参数,可得到如下形式的性能指标和约束:
J=J0j (12)
Figure BDA0002998755290000087
其中,u1和u2分别表示控制量中的攻角和节流系数,η1和η2表示对应的松弛变量;
将连续的最优控制问题转化为离散的参数优化问题;取离散点数为K,间隔为Δt,离散点tk,k=1,2,...,K;采用梯形法对运动微分方程进行离散:
xk+1=xk+(Δt/2)(Akxk+Bkuk+Zk+Ak+1xk+1+Bk+1uk+1+Zk+1) (13)
对其他不等式约束和等式约束进行离散化处理,得到凸混合整数规划问题表示如下:
Figure BDA0002998755290000091
式中:θK为终端经度,η1k和η2k分别为松弛变量在第k个离散点的值,[r0;θ0;φ0;V0;γ0;ψ0;m0]为状态量初值,mK和mmin分别为终端质量和飞行器净质量,C为系数矩阵,D为状态量和控制量的定义域;优化变量包括状态量和控制量xk={rkkk,Vkkk,mk},uk={αk,Tk,Rk,sk},k=1,...,K,整数变量ap={a1p,a2p},p=1,2,...,P,以及参数ηk={η1k2k},k=1,...,K;
步骤四、采用模型补偿方法迭代求解凸混合整数规划问题
轨迹优化问题经过线性化和离散化后转化为一个凸混合整数规划问题,采用“CVX”对该问题进行建模,“CVX”是专门用来求解凸优化问题的建模软件包,求解器选为“Mosek”;优化方法中每次对子问题进行求解时,需要将运动方程和约束在参考轨迹处线性化;初始参考轨迹人为给出,之后的迭代过程中,将上一次优化结果作为本次线性化的参考轨迹,以此对线性化问题模型进行补偿;当两次迭代结果之间的误差小于规定容差ε时,可认为轨迹收敛;选取离散形式的两次迭代地心距之差最大值作为误差;当
Figure BDA0002998755290000092
时,迭代结束,ε取为0.03公里;
仿真案例:
本案例仅作为方法演示,并非实际飞行任务;设飞行器初始质量为5000千克,初始高度为20千米,初始速度为1200米每秒,初始经度和纬度均为0度,初始飞行路径角和航向角均为0度;火箭模态推力选取为30千牛,比冲为300秒,冲压模态推力和质量流量为高度、马赫数和节流系数的函数;飞行器的燃料质量为1000千克,飞行时间选为200秒,目的是得到最远航程的飞行轨迹,等效于终端经度最大的飞行轨迹;
根据本发明所述步骤,以航程最大为优化指标,对飞行器进行轨迹优化;优化得到的模态切换策略如图2所示,其中0表示无动力滑翔模态,1表示火箭模态,2表示冲压模态;高度和速度随时间变化的曲线分别如图3和图4所示。图5为优化得到的攻角-时间曲线,图6为推力-时间曲线,图7为质量流量-时间曲线;
仿真案例验证了本发明一种基于凸混合整数规划的组合动力飞行器轨迹优化方法能够有效解决飞行器的模态切换策略和轨迹优化问题,得到航程最远的轨迹,适用于组合动力飞行器的轨迹优化问题。

Claims (5)

1.一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其特征在于:其具体步骤如下:
步骤一、划分飞行阶段,确定不同模态对应的整数变量;
根据总飞行时间和发动机特性,采用等时间间隔方法划分飞行阶段,每一个阶段飞行器可选择不同动力形式对应的模态,选取整数变量进行表示;
步骤二、建立组合动力飞行器轨迹优化问题模型:
选取控制量和状态量,对飞行器的运动方程进行归一化处理,根据不同模态建立控制量和整数变量约束,以及对应的发动机开机条件约束;
步骤三、建立轨迹优化的凸混合整数规划问题;
将非凸非线性的运动模型和过程约束在参考轨迹处进行线性化,并将问题离散转化为一系列凸混合整数规划问题;
步骤四、采用模型补偿方法迭代求解凸混合整数规划问题;
给定初始猜想作为第一次迭代的参考轨迹,在之后的序列迭代过程中,将上一次迭代的优化结果作为本次线性化的参考轨迹,以此对模型进行补偿;当满足收敛条件时,停止求解。
2.根据权利要求1所述的一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其特征在于:
在步骤一中所述的“划分飞行阶段”,是指将总飞行时间划分为多个子区间,每个子区间内飞行器能选择一种动力模态;
在步骤一中所述的“整数变量”,对应于不同的发动机模态,属于方法的优化变量;
在步骤一中所述的“划分飞行阶段,确定不同模态对应的整数变量”,其具体作法如下:
确定飞行器的发动机模型和总飞行时间,将优化时间划分为P个阶段,每个阶段选取两个整数变量a1p和a2p,p=1,2,...,P,a1p为1表示飞行器选取火箭模态,a2p为1表示飞行器选取冲压模态,a1p和a2p均为0表示无动力滑翔模态。
3.根据权利要求1所述的一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其特征在于:
在步骤二中所述的“轨迹优化问题”,是指同时包含整数变量和连续变量的混合最优控制问题,其中包含存在整数变量的发动机开机条件约束形式;
在步骤二中所述的“建立组合动力飞行器轨迹优化问题模型”,其具体作法如下:
建立飞行器的质心运动模型,基于两个条件:1)将地球视为均质圆球,考虑地球曲率的影响,2)地球无自转;选取状态量和控制量,并对飞行器的运动方程进行归一化处理;
火箭模态的推力为T1,质量流量为R1,冲压模态的推力为T2,质量流量为R2,对应的控制量约束如下:
Figure FDA0002998755280000021
其中M为充分大的正数,选取为1×105
无动力滑翔模态对应的控制量约束为:
Figure FDA0002998755280000022
对于冲压模态,存在发动机开机条件约束,状态量和控制量对应的约束统一写为以下形式:
Figure FDA0002998755280000023
其中X和U表示冲压发动机开机条件包括的状态量和控制量,Xmin和Xmax分别表示状态量最小值和最大值,Umin和Umax分别表示控制量最小值和最大值。
4.根据权利要求1所述的一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其特征在于:
在步骤三中所述的“建立轨迹优化的凸混合整数规划问题”,其具体作法如下:
将轨迹优化问题模型中的运动方程和过程约束在参考轨迹处进行线性化,经过离散后,转化为一系列凸混合整数规划子问题,采用“Mosek”求解器进行求解,能得到每个子问题的最优解;
所述的“凸混合整数规划问题”,能表示如下:
Figure FDA0002998755280000031
其中J为性能指标,选取为终端经度θK最大,也即航程最远;
Figure FDA0002998755280000032
为松弛后的临近项,k为离散点序列号,k=1,2,...,K,K为离散点数;x=[r,θ,φ,V,γ,ψ,m]为飞行器的状态量,r为地球中心到飞行器重心的径向距离,θ和φ分别为对应的经度和纬度,V为飞行器相对于地球的速度,γ为飞行路径角,表示飞行器的速度方向与水平面的夹角,ψ为航向角,表示飞行器的速度方向在水平面的投影与正东方向的夹角,m为质量;u=[α,T,R,s]为控制量,α为攻角,T为推力,R为质量流量,s为节流系数;xk和uk分别表示第k个离散点处状态量和控制量的值;A、B、C和Z为系数矩阵;[r0;θ0;φ0;V0;γ0;ψ0;m0]为状态量初值,mK和mmin分别为终端质量和飞行器净质量;θK为终端经度,D为状态量和控制量的定义域。
5.根据权利要求1所述的一种基于凸混合整数规划的组合动力飞行器轨迹优化方法,其特征在于:
在步骤四中所述的“迭代求解”,是指采用数学优化求解器即“Mosek求解器”对凸混合整数规划问题进行求解,当两次迭代的状态量差值最大值满足设定容差时,停止迭代;设定位置容差为0.03公里;
在步骤四中所述的“采用模型补偿方法迭代求解凸混合整数规划问题”,其具体作法如下:
轨迹优化问题经过线性化和离散化后转化为一个凸混合整数规划问题,采用“CVX”对该问题进行建模,“CVX”是专门用来求解凸优化问题的建模软件包,求解器选为“Mosek”;优化方法中每次对子问题进行求解时,需要将运动方程和约束在参考轨迹处线性化;初始参考轨迹人为给出,之后的迭代过程中,将上一次优化结果作为本次线性化的参考轨迹,以此对线性化问题模型进行补偿;当两次迭代结果之间的误差小于规定容差ε时,能认为轨迹收敛;选取离散形式的两次迭代地心距之差最大值作为误差;当
Figure FDA0002998755280000041
时,迭代结束,ε取为0.03公里。
CN202110339391.XA 2021-03-30 2021-03-30 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法 Active CN113111434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110339391.XA CN113111434B (zh) 2021-03-30 2021-03-30 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110339391.XA CN113111434B (zh) 2021-03-30 2021-03-30 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法

Publications (2)

Publication Number Publication Date
CN113111434A true CN113111434A (zh) 2021-07-13
CN113111434B CN113111434B (zh) 2022-07-15

Family

ID=76712690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110339391.XA Active CN113111434B (zh) 2021-03-30 2021-03-30 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法

Country Status (1)

Country Link
CN (1) CN113111434B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721646A (zh) * 2021-08-11 2021-11-30 中山大学 一种考虑二次拉升的组合动力飞行器轨迹快速规划方法
CN114154253A (zh) * 2022-02-10 2022-03-08 北京理工大学 考虑发动机关机和参数强非线性的连续推力轨迹优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793626A (zh) * 2015-03-06 2015-07-22 成都市优艾维机器人科技有限公司 一种引入飞行员意图的航迹规划方法
CN110806690A (zh) * 2018-08-06 2020-02-18 上海交通大学 无人机航迹规划的无损凸优化实现方法
CN110989626A (zh) * 2019-12-27 2020-04-10 四川大学 一种基于控制参数化的无人机路径规划方法
CN111897214A (zh) * 2020-06-24 2020-11-06 哈尔滨工业大学 一种基于序列凸优化的高超声速飞行器轨迹规划方法
CN112258896A (zh) * 2019-07-03 2021-01-22 四川大学 基于航迹的无人机融合空域运行方法
US20210086921A1 (en) * 2017-12-07 2021-03-25 Dalian University Of Technology Method for designing reentry trajectory based on flight path angle planning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793626A (zh) * 2015-03-06 2015-07-22 成都市优艾维机器人科技有限公司 一种引入飞行员意图的航迹规划方法
US20210086921A1 (en) * 2017-12-07 2021-03-25 Dalian University Of Technology Method for designing reentry trajectory based on flight path angle planning
CN110806690A (zh) * 2018-08-06 2020-02-18 上海交通大学 无人机航迹规划的无损凸优化实现方法
CN112258896A (zh) * 2019-07-03 2021-01-22 四川大学 基于航迹的无人机融合空域运行方法
CN110989626A (zh) * 2019-12-27 2020-04-10 四川大学 一种基于控制参数化的无人机路径规划方法
CN111897214A (zh) * 2020-06-24 2020-11-06 哈尔滨工业大学 一种基于序列凸优化的高超声速飞行器轨迹规划方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721646A (zh) * 2021-08-11 2021-11-30 中山大学 一种考虑二次拉升的组合动力飞行器轨迹快速规划方法
CN114154253A (zh) * 2022-02-10 2022-03-08 北京理工大学 考虑发动机关机和参数强非线性的连续推力轨迹优化方法
CN114154253B (zh) * 2022-02-10 2022-05-10 北京理工大学 考虑发动机关机和参数强非线性的连续推力轨迹优化方法

Also Published As

Publication number Publication date
CN113111434B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN110413000B (zh) 一种基于深度学习的高超声速飞行器再入预测校正容错制导方法
CN110276479B (zh) 飞机质量变化的巡航阶段燃油消耗预测方法
CN113111434B (zh) 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法
Wang et al. Robust nonlinear flight control of a high-performance aircraft
CN107908114B (zh) 飞行器鲁棒非线性控制方法及鲁棒控制器系统
CN102749851B (zh) 一种挠性高超声速飞行器的精细抗干扰跟踪控制器
CN109858106A (zh) 基于高斯伪谱法的飞行器小翼伸缩量优化方法
CN103592847B (zh) 一种基于高增益观测器的高超声速飞行器非线性控制方法
CN110109361A (zh) 一种高超声速飞行器快速平滑自适应滑模控制方法
CN111813146B (zh) 基于bp神经网络预测航程的再入预测-校正制导方法
CN103942401A (zh) 一种优化高精度自适应模块化的航天器弹道多约束轨迹工具包及方法
CN106444807A (zh) 一种栅格舵与侧喷流的复合姿态控制方法
CN108459505B (zh) 一种适合控制迭代设计的非常规布局飞行器快速建模方法
CN113126643A (zh) 一种高超声速飞行器智能鲁棒再入制导方法及系统
CN106896722A (zh) 采用状态反馈与神经网络的高超飞行器复合控制方法
CN111680357B (zh) 一种变循环发动机机载实时模型的部件级无迭代构建方法
CN112947534A (zh) 一种高超声速飞行器下压段自适应伪谱法轨迹优化方法
CN113885320A (zh) 一种基于混合量子鸽群优化的飞行器随机鲁棒控制方法
CN107065544A (zh) 基于攻角幂函数的高超飞行器神经网络控制方法
CN107831653B (zh) 一种抑制参数摄动的高超声速飞行器指令跟踪控制方法
CN107315419B (zh) 一种实现飞艇远距离定点悬停的三段式控制策略
CN110826288A (zh) 一种基于免疫克隆选择的再入轨迹优化方法
Jesus et al. Surrogate based MDO of a canard configuration aircraft
CN114859712A (zh) 面向油门约束的飞行器制导控制一体化方法
Stradtner et al. Multi-Fidelity Aerodynamic Data Set Generation for Early Aircraft Design Phases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant