CN113101973B - 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法 - Google Patents

一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法 Download PDF

Info

Publication number
CN113101973B
CN113101973B CN202110387146.6A CN202110387146A CN113101973B CN 113101973 B CN113101973 B CN 113101973B CN 202110387146 A CN202110387146 A CN 202110387146A CN 113101973 B CN113101973 B CN 113101973B
Authority
CN
China
Prior art keywords
boc
hydrogel
mixed
powder
photochromic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110387146.6A
Other languages
English (en)
Other versions
CN113101973A (zh
Inventor
赵巍
熊德智
郭晶晶
李世博
叶瑶
佘凯翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN202110387146.6A priority Critical patent/CN113101973B/zh
Publication of CN113101973A publication Critical patent/CN113101973A/zh
Application granted granted Critical
Publication of CN113101973B publication Critical patent/CN113101973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Colloid Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法,通过溶胶凝胶法制备出了氯氧铋/海藻酸钙(简称BOC‑CA)水凝胶微珠。该水凝胶微珠由片状BiOCl均匀负载于CA水凝胶微珠表面及内部网络结构中,直径为6‑7mm,球形度达到98.3%,平均含水率为95.2%。该BOC‑CA水凝胶微珠具有较好的紫外光催化响应、光致变色特性以及可回收循环降解罗丹明B(RhB)性能,在紫外光照射条件下75分钟内便可达到完全降解RhB的效果,且多次循环降解表现出性能增强的趋势。该微珠在紫外光照下由白色变为黑色,静置一段时间微珠颜色能够恢复到初始状态。本发明提出的使用凝胶微珠固定BiOCl光催化剂的方法为解决粉体光催化剂材料的回收问题提供了一种切实有效的途径。

Description

一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及 其制备方法
技术领域
本发明属于化学材料制备领域,具体涉及一种高活性光致变色BOC-CA光催化水凝胶微珠及其制备方法,通过溶胶凝胶法制备得到该材料,在光催化降解处理工业废水和粉体回收方面有着非常重要的用途。
背景技术
光催化技术是一种新型的绿色氧化还原技术,广泛应用于水体中难降解有机物的去除。近年来,传统光催化剂以一种颗粒状的粉体分散在溶液中,存在着易团聚、难回收、难重复利用、损失量大等问题,利用具有可再生、产量大、可生物降解等优点的天然高分子海藻酸钠为原料,成型制备出在环境净化领域具有良好应用前景的负载光催化功能粉体的微球材料,实现回收简便、可循环利用且减少粉体损失的目的。
目前,海藻酸盐水凝胶的制备分物理交联和化学交联,物理交联工艺较为简单,依靠氢键或者离子键在聚合物链间形成可逆的交联,其中离子交联较为普遍,利用海藻酸钠具有离子交换的特性,易与金属离子交联,形成的“蛋-盒”结构的水凝胶。离子交联成型海藻酸盐凝胶的方法有两种,第一种为简单扩散法,即将金属离子源溶解于溶液中,通过滴加海藻酸钠溶液到金属离子溶液中,离子从溶液中向海藻酸钠内部扩散交联成型。第二种为原位凝胶法,与扩散法不同,金属离子源分散于海藻酸钠溶液内部,经缓慢释放后再与海藻酸钠反应成型。离子源的释放方式及种类对凝胶微珠的球形度和内部结构均有一定的影响。本发明选择扩散法和原位凝胶法相结合的方案,可得到大小均匀、球形度较高、结构稳定及光催化性能优异的BOC-CA水凝胶微珠。
本发明基于工艺简单、绿色无污染的原则,首先采用超声分散和磁力搅拌制备出Ca-BOC-SA混合胶体,然后配制出一定体积比的氯化钙与冰乙酸混合溶液,在一定高度将混合胶体滴入制备好的混合溶液,再经老化、过滤即可。该材料具有较好的球形度、稳定的内部结构以及优异的光催化性能,为解决粉体光催化剂降解有机污染物后回收利用问题提供了一种切实有效的方法。
发明内容
本发明提供一种高活性光致变色BOC-CA光催化水凝胶微珠及其制备方法。制备步骤如下:
(1)制备Ca-BOC-SA混合胶体。将0.2g-1g的CaCO3和0.06g-0.6g BiOCl粉末溶于定量去离子水中,超声分散后搅拌配制Ca-BOC混合悬浊液,再将0.2g-0.6g的SA粉末加入到Ca-BOC混合悬浊液中,磁力搅拌1h至完全溶解,配制成Ca-BOC-SA混合胶体。
(2)制备氯化钙与冰乙酸混合溶液。称取1g CaCl2于100mL烧杯中,加入5mL去离子水,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制体积比为9∶1的氯化钙与冰乙酸混合溶液。
(3)制备BOC-CA水凝胶微珠。将Ca-BOC-SA混合胶体用直径约为5cm的滴管自液面约为25cm的高度滴入氯化钙与冰乙酸混合溶液中,反应2h后用去离子水浸泡48h,期间每8h换水一次,过滤后即可得到BOC-CA水凝胶微珠。
(4)优选的制备工艺,原位凝胶法和扩散法结合制备BOC-CA水凝胶微珠。CaCO3粉体为1g,去离子水20mL,海藻酸钠粉体为0.4g,45mL冰乙酸,BOC粉末为0.4g。
此工艺制备的BOC-CA水凝胶微珠由片状BOC和CA水凝胶微珠组成,BOC粉体附着在CA网络结构上,BOC纳米片粒径在1μm左右的,水凝胶微珠粒径在6-7mm,该水凝胶微珠在紫外光照下变黑,静置一段时间微珠颜色恢复。
本发明的主要优点如下:
(1)利用产量大、可再生降解的海藻酸钠材料,通过简单工艺制备出在环境净化领域具有良好应用前景的可回收型BOC-CA光催化水凝胶微珠。
(2)该水凝胶微珠在紫外光照下具有光致变色特性和较好的光催化降解RhB效果,多次循环仍能够保持良好球型形貌和逐渐增强的光催化效率
附图说明
图1是实施例1中BOC-CA水凝胶微珠的宏观数码照片。
图2是实施例1中BOC-CA水凝胶微珠的光学显微镜图。
图3是实施例1中BOC-CA水凝胶微珠干燥后的X射线衍射图。
图4是实施例1-4中BOC-CA水凝胶微珠在紫外光下降解RhB图。
图5是实施例1中BOC-CA水凝胶微珠在紫外光下循环降解RhB图。
图6是实施例2中BOC-CA水凝胶微珠颜色循环变化图。
具体实施方式
下面通过具体实施例和附图对本发明作进一步的说明。本发明的实施例是为了更好地使本领域的技术人员更好地理解本发明,并不对本发明作任何的限制。
实施例1
(1)制备Ca-BOC-SA混合胶体。将1g的CaCO3和0.4g BiOCl粉末溶于去离子水中,超声分散后搅拌配制Ca-BOC混合悬浊液,再将0.4g的SA粉末加入到Ca-BOC混合悬浊液中,磁力搅拌1h至完全溶解,配制成Ca-BOC-SA混合胶体。
(2)制备氯化钙与冰乙酸混合溶液。称取1g CaCl2于100mL烧杯中,加入5mL去离子水,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制体积比为9∶1的氯化钙与冰乙酸混合溶液。
(3)制备BOC-CA水凝胶,将Ca-BOC-SA混合胶体用直径约为5cm的滴管自液面约25cm的高度滴入氯化钙与冰乙酸混合溶液中,反应2h后用去离子水浸泡48h,期间每8h换水一次,过滤后即可得到2wt%BOC-CA水凝胶微珠。
(4)采用300W的氙灯紫外光光源和浓度为5mg/L罗丹明B,对BOC-CA水凝胶材料光催化性能测试进行评估。采用公式
Figure BSA0000239114500000031
计算降解率,其中C和C0分别表示反应时间t min和0min处罗丹明B的浓度。
图1为本实施例中BOC-CA水凝胶微珠的宏观数码照片,可以看出BOC-CA水凝胶微珠直径约在6-7mm,插图可看出水凝胶微珠在水溶液中分散均匀并能够稳定漂浮于水体表面,便于更好地回收和接受光信号;微珠的含水率和球形度均超过95%,球形BOC-CA易于在水面滚动,受光均匀。
图2为本实施例中BOC-CA水凝胶微珠的光学显微镜图,可以看出BOC-CA水凝胶微珠具有良好球型形貌,稳定的内部结构并分布大量气泡,以至于水凝胶微珠能够稳定漂浮于水体表面。
图3为本实施例中BOC-CA水凝胶微珠干燥后的X射线衍射图,可以看出BOC-CA凝胶样品与BOC粉体的衍射峰均与JCPDS卡片(NO.06-0249)的特征峰相吻合,无其它杂质峰出现,BOC粉体的衍射峰强度高于凝胶样品,说明其结晶较好。
图4展示了2wt%BOC-CA水凝胶微珠在紫外光下降解RhB效果图,可看出本实施例得到的BOC-CA水凝胶微珠对RhB有着较好的紫外光响应,暗反应45min后的吸附率为18.6%,光照75min后对罗丹明B的降解率达100%。
图5为本实施例中BOC-CA水凝胶微珠在紫外光下循环降解RhB效果图,可看出BOC-CA水凝胶微珠在紫外光照下表现出良好的光催化性能和循环效果,并且随着循环次数的增加,降解效果呈现越来越好的趋势,首次降解完全耗时75min,第七次循环仅用22min,时间缩短近3.5倍。
实施例2
(1)制备Ca-BOC-SA混合胶体。将1g的CaCO3和0.06g BiOCl粉末溶于去离子水中,超声分散后搅拌配制Ca-BOC混合悬浊液,再将0.4g的SA粉末加入到Ca-BOC混合悬浊液中,磁力搅拌1h至完全溶解,配制成Ca-BOC-SA混合胶体。
(2)制备氯化钙与冰乙酸混合溶液。称取1g CaCl2于100mL烧杯中,加入5mL去离子水,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制体积比为9∶1的氯化钙与冰乙酸混合溶液。
(3)制备BOC-CA水凝胶,将Ca-BOC-SA混合胶体用直径约为5cm的滴管自液面约25cm的高度滴入氯化钙与冰乙酸混合溶液中,反应2h后用去离子水浸泡48h,期间每8h换水一次,过滤后即可得到0.3wt%BOC-CA水凝胶微珠。
图4展示了0.3wt%BOC-CA水凝胶微珠在紫外光下降解RhB效果图,可看出BOC-CA水凝胶微珠对RhB有着较好的紫外光响应,暗反应45min后的吸附率达10.2%,光照75min后对罗丹明B的降解率达83.2%,光照120min后对罗丹明B的降解率达100%,BOC粉体的含量减少较多,导致光催化效率降低,降解不完全。
图6为本实施例中BOC-CA水凝胶微珠在紫外光下降解RhB的颜色变化闭环图,可看出该方案制备的BOC-CA水凝胶微珠在紫外光照射下对RhB染料有降解作用且降解结束颜色变黑,静置一段时间后颜色能够变回初始状态,说明具有光致变色特点。
实施例3
(1)制备Ca-BOC-SA混合胶体。将1g的CaCO3和0.2g BiOCl粉末溶于去离子水中,超声分散后搅拌配制Ca-BOC混合悬浊液,再将0.4g的SA粉末加入到Ca-BOC混合悬浊液中,磁力搅拌1h至完全溶解,配制成Ca-BOC-SA混合胶体。
(2)制备氯化钙与冰乙酸混合溶液。称取1g CaCl2于100mL烧杯中,加入5mL去离子水,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制体积比为9∶1的氯化钙与冰乙酸混合溶液。
(3)制备BOC-CA水凝胶,将Ca-BOC-SA混合胶体用直径约为5cm的滴管自液面约25cm的高度滴入氯化钙与冰乙酸混合溶液中,反应2h后用去离子水浸泡48h,期间每8h换水一次,过滤后即可得到1wt%BOC-CA水凝胶微珠。
图4展示了1wt%BOC-CA水凝胶微珠在紫外光下降解RhB效果图,,可看出BOC-CA水凝胶微珠对RhB有着较好的紫外光响应,暗反应45min后的吸附率达11.8%,光照75min后对罗丹明B的降解率达93%,光照90min后对罗丹明B的降解率达100%,BOC粉体含量降低,导致光催化效率降低,降解不完全。
实施例4
(1)制备Ca-BOC-SA混合胶体。将1g的CaCO3和0.6g BiOCl粉末溶于去离子水中,超声分散后搅拌配制Ca-BOC混合悬浊液,再将0.4g的SA粉末加入到Ca-BOC混合悬浊液中,磁力搅拌1h至完全溶解,配制成Ca-BOC-SA混合胶体。
(2)制备氯化钙与冰乙酸混合溶液。称取1g CaCl2于100mL烧杯中,加入5mL去离子水,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制体积比为9∶1的氯化钙与冰乙酸混合溶液。
(3)制备BOC-CA水凝胶,将Ca-BOC-SA混合胶体用直径约为5cm的滴管自液面约25cm的高度滴入氯化钙与冰乙酸混合溶液中,反应2h后用去离子水浸泡48h,期间每8h换水一次,过滤后即可得到3wt%BOC-CA水凝胶微珠。
图4展示了3wt%BOC-CA水凝胶微珠在紫外光下降解RhB效果图,,可看出BOC-CA水凝胶微珠对RhB有着较好的紫外光响应,暗反应45min后的吸附率达14.5%,光照75min后对罗丹明B的降解率达100%,BOC粉体负载量过高,吸附性略微减弱,虽能够降解完全但效果不及实施例1。
尽管上面对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (3)

1.一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠的制备方法,其特征在于,该方法包括如下步骤:
步骤一:将一定量CaCO3和一定量BiOCl粉末溶于一定量去离子水中,超声分散后搅拌配制混合悬浊液,再将一定量海藻酸钠粉末加入到混合悬浊液中,磁力搅拌1h至完全溶解,配制成海藻酸钠、CaCO3和BiOCl混合胶体;
步骤二:称取1gCaCl2溶于5mL去离子水中,玻璃棒搅拌至完全溶解,再加入45mL冰乙酸,配制冰乙酸和去离子水体积比为9∶1的混合溶液;
步骤三:将海藻酸钠、CaCO3和BiOCl混合胶体用滴管自液面一定高度滴入氯化钙与冰乙酸混合溶液中,反应结束后用去离子水浸泡老化48h,期间每8h换水一次,过滤后即可得到氯氧铋/海藻酸钙水凝胶微珠。
2.根据权利要求1中所述的一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠的制备方法,其特征在于,所述步骤一至三具体为先将0.2g-1g CaCO3和0.06g-0.6g BiOCl粉末溶于去离子水,再加入0.2g-0.6g的海藻酸钠粉末制成混合胶体, 再将混合胶体以自液面约25cm的高度滴入体积比为1∶9的氯化钙溶液与冰乙酸混合溶液中,再经老化、过滤即可。
3.根据权利要求1中所述的一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠的制备方法,其特征在于,所述氯氧铋/海藻酸钙水凝胶微珠的直径为6-7mm,球形度达到98.3%,平均含水率为95.2%。
CN202110387146.6A 2021-04-12 2021-04-12 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法 Active CN113101973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110387146.6A CN113101973B (zh) 2021-04-12 2021-04-12 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110387146.6A CN113101973B (zh) 2021-04-12 2021-04-12 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法

Publications (2)

Publication Number Publication Date
CN113101973A CN113101973A (zh) 2021-07-13
CN113101973B true CN113101973B (zh) 2022-09-09

Family

ID=76715503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110387146.6A Active CN113101973B (zh) 2021-04-12 2021-04-12 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法

Country Status (1)

Country Link
CN (1) CN113101973B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683720A1 (fr) * 1991-11-15 1993-05-21 Jouvance Daniel Composition a usage cosmetique comportant des grains d'une substance gelefiee.
CN105854906A (zh) * 2016-04-27 2016-08-17 中国矿业大学(北京) BiOCl-TiO2/硅藻土光催化剂及其制备方法
CN106492714A (zh) * 2016-10-28 2017-03-15 华中科技大学 海藻酸钙包裹型纳米铁微球的制备与应用
CN109481727A (zh) * 2018-09-30 2019-03-19 佛山市华健科创科技有限公司 一种光催化抗菌水凝胶敷料及其制备方法
CN110813326A (zh) * 2019-12-06 2020-02-21 西北师范大学 一种C掺杂BiOBr微球光催化剂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852904B2 (en) * 2009-05-22 2014-10-07 Sanyo Foods Co., Ltd. Protein complex having activity catalyzing asymmetric oxidation reaction and process for producing the same
US10759681B2 (en) * 2018-06-28 2020-09-01 Board Of Trustees Of The University Of Arkansas Water purification compositions and the method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683720A1 (fr) * 1991-11-15 1993-05-21 Jouvance Daniel Composition a usage cosmetique comportant des grains d'une substance gelefiee.
CN105854906A (zh) * 2016-04-27 2016-08-17 中国矿业大学(北京) BiOCl-TiO2/硅藻土光催化剂及其制备方法
CN106492714A (zh) * 2016-10-28 2017-03-15 华中科技大学 海藻酸钙包裹型纳米铁微球的制备与应用
CN109481727A (zh) * 2018-09-30 2019-03-19 佛山市华健科创科技有限公司 一种光催化抗菌水凝胶敷料及其制备方法
CN110813326A (zh) * 2019-12-06 2020-02-21 西北师范大学 一种C掺杂BiOBr微球光催化剂的制备方法

Also Published As

Publication number Publication date
CN113101973A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109174023B (zh) 一种纳米纤维素交联石墨烯/壳聚糖气凝胶及其制备方法、应用
CN111068632A (zh) 一种铅离子复合吸附剂及其制备方法
CN114632501B (zh) 一种凹凸棒石基吸附剂的制备方法及其在染料/重金属离子废水处理中的应用
Desmet et al. Highly efficient, long life, reusable and robust photosynthetic hybrid core–shell beads for the sustainable production of high value compounds
CN113101973B (zh) 一种高活性光致变色氯氧铋/海藻酸钙光催化水凝胶微珠及其制备方法
CN106145177B (zh) 一种小粒径二氧化铈纳米晶的制备方法
CN113522363A (zh) 水凝胶中金属离子改性mof微/纳结构的制备方法及应用
CN107008337B (zh) 一种非化学计量比铋酸铜纳米材料及其制备方法和应用
CN111068778B (zh) 一种光催化剂复合材料及其制作方法
CN107098374B (zh) 均匀分散的块状形貌碳酸铈晶体及其制备方法
CN115636937B (zh) 一种疏水型、粒径可控有机硅树脂微球及其制备方法
CN111185245A (zh) 一种氧化石墨烯负载钒酸铋纳米复合材料及其制备方法
CN1176961C (zh) 一种敏感性有序多孔聚合物凝胶
CN116139832A (zh) 一种沸石固定化水凝珠的制备及应用
CN108246276B (zh) 一种毫米级金属氧化物球的制备方法
CN111617747B (zh) 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用
CN110358033B (zh) 一种单分散两性离子交换热固性树脂微球及其制备方法
CN114870905B (zh) 一种原位制备二氧化钛/纤维素纳米复合微球的方法
CN111437885A (zh) 一种多孔磁性掺杂量子点生物复合光催化剂的制备方法
CN113307278A (zh) 一种高清洁力高粘度磨擦型二氧化硅及其制备方法
CN117160421A (zh) 一种天然高分子磁性凝胶微球的制备方法和应用
CN116273176B (zh) 一种温敏型ZnS@PNxDy纳米笼催化剂、制备方法及应用
CN109174078B (zh) 一种可见光响应的蓝蓟头花型钒酸铈催化剂的制备及其应用
CN112354530B (zh) 一种具有抗盐性的两性吸附材料及其制备方法和应用
CN110813346B (zh) Pizza结构的纳米片氮化碳复合pH敏水凝胶、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant