CN113097567A - 一种高能量密度软包电池的制造方法 - Google Patents

一种高能量密度软包电池的制造方法 Download PDF

Info

Publication number
CN113097567A
CN113097567A CN202110333180.5A CN202110333180A CN113097567A CN 113097567 A CN113097567 A CN 113097567A CN 202110333180 A CN202110333180 A CN 202110333180A CN 113097567 A CN113097567 A CN 113097567A
Authority
CN
China
Prior art keywords
soft package
package battery
battery
electrolyte
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110333180.5A
Other languages
English (en)
Other versions
CN113097567B (zh
Inventor
唐杰雄
李阳春
李吉蓉
郭正湘
陈三朝
雷文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Gaoyuan Battery Co ltd
Original Assignee
Hunan Gaoyuan Battery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Gaoyuan Battery Co ltd filed Critical Hunan Gaoyuan Battery Co ltd
Priority to CN202110333180.5A priority Critical patent/CN113097567B/zh
Publication of CN113097567A publication Critical patent/CN113097567A/zh
Application granted granted Critical
Publication of CN113097567B publication Critical patent/CN113097567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种高能量密度软包电池的制造方法,包括以下步骤:步骤1:将锂电池卷芯底部包裹铝箔辅助电极,所述电池卷芯与铝箔辅助电极之间用隔离膜隔离绝缘,组装后得到软包电池;步骤2:向步骤1得到的软包电池中注入电解液1,封口后利用铝箔辅助电极进行预充电;步骤3:预充电完成后取出铝箔辅助电极,并去除游离的电解液1,注入电解液2,经后处理得到高能量密度软包电池。本发明在锂离子电池卷芯底部预设铝箔辅助电极,通过铝箔辅助电极与含添加剂的电解液1的协同作用,在小电流预充电过程中,实现对锂离子电池负极的预嵌锂,解决或改善锂离子电池首次充放电效率低的问题,从而提高锂离子电池容量和能量密度。

Description

一种高能量密度软包电池的制造方法
技术领域
本发明涉及高能量密度软包电池技术领域,特别涉及一种高能量密度软包电池的制造方法。
背景技术
锂离子电池作为一种绿色环保电池,具有工作电压高、比能量高和循环寿命长等优点,近年来得到了迅速发展,在智能手机、笔记本电脑、数码电子产品等消费类电子电器与电动交通工具中的应用越来越广泛。
随着移动设备向小型化和多功能化方向发展,对锂离子电池的能量密度及使用寿命提出了更高的要求。同样由于各种便携式电子设备和电动汽车的快速发展和广泛应用,对于能量高、循环寿命长的锂离子电池的需求十分迫切。
目前商业锂离子电池的主要负极材料石墨,由于理论容量低(372mAh/g),限制了锂离子电池能量的进一步提高。纳米硅、氧化硅(SiOx)与碳材料复合而成的硅基负极材料具有显著高于石墨材料的可逆嵌锂容量,但是,由于其首次不可逆容量大,使得正极材料的的克容量低于以石墨作负极时的克容量。事实上,即便是以石墨材料作负极,锂离子电池中正极的克容量也低于其相对金属锂作负极时的克容量。如何弥补锂离子电池首次充电过程中部分从正极脱出的锂不能回嵌导致正极克容量不能充分发挥,从而影响锂离子电池容量的问题,对于进一步提高锂离子电池的能量密度具有重要意义。
发明内容
本发明提供了一种高能量密度软包电池的制造方法,通过预设铝箔辅助电极,利用铝箔辅助电极进行小电流预充电,实现对锂离子电池负极的预嵌锂,解决或改善锂离子电池首次充放电效率低,从而影响锂离子电池容量和能量密度的问题。
为了达到上述目的,本发明提供了一种高能量密度软包电池的制造方法,包括以下步骤:
步骤1:将锂电池卷芯底部包裹铝箔辅助电极,所述电池卷芯与铝箔辅助电极之间用隔离膜隔离绝缘,组装后得到软包电池;
步骤2:向步骤1得到的软包电池中注入电解液1,封口后利用铝箔辅助电极进行预充电;
步骤3:预充电完成后取出铝箔辅助电极,并去除游离的电解液1,注入电解液2,经后处理得到高能量密度软包电池。
优选地,所述锂电池卷芯包括正极片、负极片和隔膜,所述正极片的正极耳和负极片的负极耳位于软包电池的顶端,所述铝箔辅助电极末端焊接有铝塑复合极耳,所述铝塑复合极耳从软包电池的气袋底端角部引出。
优选地,所述电解液1为含8-11%LiPF6和添加剂的有机溶液,所述添加剂为LiB(SO3)C6H3(O)(COO)OC6H5、Li[B(C6H4O2)2]、Li[B(C10H6O2)2]、Li[B(OH4C6C6H4O2)]中的至少一种。
优选地,所述添加剂的质量百分含量为1-6%。
优选地,所述添加剂还包括0.1-1%的Li2CO3
优选地,所述电解液1的注液量与电池设计容量之间的比值为2-4g/Ah。
优选地,所述预充电具体过程为:将铝箔辅助电极和电池的负极分别与外电源的正、负极连接,在未加压状态下,以0.01-0.02C电流充电至4.3V,然后恒压充电5-10h,接着以0.005-0.01C恒流充电至4.55V。
优选地,所述电解液2为含12-15%LiPF6的有机溶液,电解液2的注液量为0.5-1.0g/Ah。
优选地,所述电解2中还含有2-3%的FEC。
优选地,所述后处理具体为:首先,将注入电解液2后的软包电池进行二次封口并保留部分气袋,静置6-48h;然后进行活化,最后,刺穿电池气袋,通过抽真空去除软包电池中多余的电解液,将电池气袋靠近锂电池卷芯位置的铝塑膜通过热压熔接,然后切去多余的铝塑膜。
优选地,所述活化具体为:在加热加压状态下,以0.2-0.7C电流充电到3.85-4.05V,然后恒压充电0.25-1h。
本发明的上述方案有如下的有益效果:
本发明通过组装在锂离子电池卷芯底部的铝箔辅助电极,通过辅助电极与含添加剂的电解液1的协同作用,在小电流预充电过程中,实现添加剂及电解液在辅助电极上氧化,相应地锂离子在负极还原,实现锂离子电池负极的预锂化,补偿锂离子电池首次充电过程的不可逆容量损失。
本发明结合卷绕结构软包电池的特点,采用铝箔作为辅助电极,铝箔辅助电极置于卷芯底部位置,满足小电流充电时辅助电极与负极之间的电荷传递通道需求。同时,铝箔辅助电极表面用隔离膜与电池卷芯中的正负极片绝缘,其连接的复合极耳从软包电池的气袋底端角部引出,在预锂化完成后,便于从角部切开气袋,将铝箔辅助电极及隔离膜一起取出,不增加最终电池中的质量与体积,有利于提高电池的能量密度。
本发明通过在电解液1中加入两种添加剂,LiB(SO3)C6H3(O)(COO)OC6H5、Li[B(C6H4O2)2]、Li[B(C10H6O2)2]、Li[B(OH4C6C6H4O2)]添加剂的氧化分解电压较低,在预锂化过程中可以分解完全,Li2CO3添加剂分解电压较高,可以作为前一类添加剂分解完的指示剂,同时还可以根据材料体系和电池设计需要来控制Li2CO3添加剂的分解程度。
附图说明
图1为本发明的高能量密度软包电池原位预锂化结构示意图。
【附图标记说明】
1-正极耳;2-负极耳;3-锂电池卷芯;4-铝塑膜;5-封印;6-注液口;7-气袋;8-铝塑复合极耳;9-铝箔辅助电极。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1
如图1所示,一种高能量密度软包电池原位预锂化结构,包括由铝塑膜4和锂电池卷芯3组成的软包电池,锂电池卷芯3底部包裹有铝箔辅助电极9,锂电池卷芯3和铝箔辅助电极9之间用隔离膜隔离。
锂电池卷芯3包括正极片、负极片和隔膜(图中未标出),正极片的正极耳1和负极片的负极耳2位于软包电池的顶端,铝箔辅助电极9末端焊接有铝塑复合极耳8,铝塑复合极耳8从软包电池的气袋7底端角部引出。
气袋7的一侧上方设有注液口6,注液口6以外的铝塑膜两侧和顶端边缘为铝塑膜热压熔合后的密封封印5。
实施例2
一种高能量密度软包电池的制造方法,过程如下:
以钴酸锂为正极活性物质,按传统工艺制备得到正极片;纳米硅/碳复合材料为负极活性物质,按传统工艺制备得到负极片;将正极片、负极片、隔膜经卷绕得到卷芯,其中正极耳、负极耳位于卷芯顶部,在卷芯底部包裹一层铝箔作为辅助电极,铝箔辅助电极两个表面均包覆有隔离膜与电池卷芯绝缘,将卷芯和辅助电极放入铝塑膜中,铝箔辅助电极上连接有铝塑复合极耳从软包电池的气袋的底端角部引出,在图1所示的封印位置加压加热,实现铝塑膜与铝塑膜,铝塑膜与正极耳、负极耳、铝塑复合极耳的热熔接。
软包电池经干燥脱除水分,按4g/Ah注电解液1,电解液1为含6%Li[B(C6H4O2)2,0.5%的Li2CO3,9%LiPF6的EC/DMC/EMC溶液,采用热压熔接的方式将注液口的铝塑膜熔合与密封。
封口后的电池静置30min,将铝箔辅助电极和电池的负极分别与外电源的正、负极连接,在未加压状态进行预充电,以0.01C电流充电至4.3V,然后恒压充电5h,接着以0.005C恒流充电至4.55V。切去含辅助电极上铝塑复合极耳位置的部分铝塑膜,抽出铝箔辅助电极及包裹辅助电极的隔离膜,通过抽真空去除游离的电解液,按1g/Ah补电解液2,电解液2为含15%LiPF6,3%FEC的EC/DMC/EMC溶液,然后将前述切开的铝塑膜热压熔接,实现二次封口并保留部分气袋。
软包电池二次封口后,静置12h,在65℃、0.8MPa的加热加压状态下以0.5C电流充电至3.95V,恒压充电0.25h进行活化,然后刺破气袋,抽真空去除活化阶段产生的气体与多余的电解液,将气袋与卷芯之间、靠近卷芯一侧的铝塑膜热压熔接,实现三次封口,切去气袋,然后进行充放电分选,得到高能量密度锂离子电池。
制作的电池型号为964156PL(厚度9.6mm,宽度41mm,长度56mm),所得电池在2.75-4.40V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为3900mAh,钴酸锂的平均克容量为178mAh/g,0.5C充放电循环500次后的容量保持率为86.2%。
作为对比,采用普通技术(不含辅助电极)技术制备的同型号在2.75-4.40V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为3680mAh,钴酸锂的平均克容量为166mAh/g,0.5C充放电循环500次后的容量保持率为62.5%。
实施例3
一种高能量密度软包电池的制造方法,过程如下:
以钴酸锂为正极活性物质,按传统工艺制备得到正极片;氧化硅/碳复合材料为负极活性物质,按传统工艺制备得到负极片;将正极片、负极片、隔膜经卷绕得到卷芯,其中正极耳、负极耳位于卷芯顶部,在卷芯底部包裹一层铝箔作为辅助电极,铝箔辅助电极两个表面均包覆有隔离膜与电池卷芯绝缘,将卷芯和辅助电极放入铝塑膜中,铝箔辅助电极上连接有铝塑复合极耳从软包电池的气袋的底端角部引出,在图1所示的封印位置加压加热,实现铝塑膜与铝塑膜,铝塑膜与正极耳、负极耳、铝塑复合极耳的热熔接。
注电解液1、封口:软包电池经干燥脱除水分,按3.5g/Ah注电解液1,电解液1为含5%LiB(SO3)C6H3(O)(COO)OC6H5和Li[B(C10H6O2)2],0.1%的Li2CO3,11%LiPF6的EC/DEC/EMC溶液,采用热压熔接的方式将注液口的铝塑膜熔合与密封。
封口后的电池静置30min,将铝箔辅助电极和电池的负极分别与外电源的正、负极连接,在未加压状态进行预充电,以0.015C电流充电至4.3V,然后恒压充电8h,接着以0.007C恒流充电至4.55V。切去含辅助电极上铝塑复合极耳位置的部分铝塑膜,抽出铝箔辅助电极及包裹铝箔辅助电极的隔离膜,通过抽真空去除游离的电解液,按0.9g/Ah补电解液2,电解液2为含13%LiPF6,2%FEC的EC/DEC/EMC溶液,然后将前述切开铝塑膜热压熔接,实现二次封口并保留部分气袋。
软包电池二次封口后,静置48h,在60℃、0.8MPa的加热加压状态下以0.2C电流充电至3.85V,恒压充电1h进行活化,然后抽真空去除活化阶段产生的气体与多余的电解液,将气袋与卷芯之间、靠近卷芯一侧的铝塑膜热压熔接,实现三次封口,切去气袋,然后进行充放电分选,得到高能量密度锂离子电池。
制作的电池型号为502040PL(厚度5.0mm,宽度20mm,长度40mm),所得电池在2.75-4.35V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为550mAh,钴酸锂的平均克容量为169mAh/g,0.5C充放电循环500次后的容量保持率为88.5%。
作为对比,采用普通技术(不含辅助电极)技术制备的同型号在2.75-4.35V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为500mAh,钴酸锂的平均克容量为158mAh/g,0.5C充放电循环500次后的容量保持率为65.1%。
实施例4
一种高能量密度软包电池的制造方法,过程如下:
以钴酸锂为正极活性物质,按传统工艺制备得到正极片;石墨材料为负极活性物质,按传统工艺制备得到负极片;将正极片、负极片、隔膜经卷绕得到卷芯,其中正极耳、负极耳位于卷芯顶部,在卷芯底部包裹一层铝箔作为辅助电极,铝箔辅助电极两个表面均包覆有隔离膜与电池卷芯绝缘,将卷芯和铝箔辅助电极放入铝塑膜中,铝箔辅助电极上连接有铝塑复合极耳从软包电池的气袋的底端角部引出,在图1所示的封印位置加压加热,实现铝塑膜与铝塑膜,铝塑膜与正极耳、负极耳、铝塑复合极耳的热熔接。
软包电池经干燥脱除水分,按2g/Ah注电解液1,电解液1为含1%Li[B(OH4C6C6H4O2)],1%的Li2CO3,8%LiPF6的EC/DEC溶液,采用热压熔接的方式将注液口的铝塑膜熔合与密封。
封口后的电池静置30min,将铝箔辅助电极和电池的负极分别与外电源的正、负极连接,在未加压状态进行预充电,以0.02C电流充电至4.3V,然后恒压充电10h,接着以0.001C恒流充电至4.55V。切去含辅助电极极耳位置的部分铝塑膜,抽出铝箔辅助电极及包裹辅助电极的隔离膜,通过抽真空去除游离的电解液,按0.5g/Ah补电解液2,电解液2为含15%LiPF6的EC/DEC溶液,然后将前述切开铝塑膜热压熔接,实现二次封口并保留部分气袋。
软包电池二次封口后,静置6h,在80℃、0.8MPa的加热加压状态下以0.7C电流充电至4.05V,恒压充电0.25h进行活化,然后抽真空去除活化阶段产生的气体与多余的电解液,将气袋与卷芯之间、靠近卷芯一侧的铝塑膜热压熔接,实现三次封口,切去气袋,然后进行充放电分选,得到高能量密度锂离子电池。
制作的电池型号为402030PL(厚度4.0mm,宽度20mm,长度30mm),所得电池在2.75-4.35V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为295mAh,钴酸锂的平均克容量为170mAh/g,0.5C充放电循环500次后的容量保持率为89.7%。
作为对比,采用普通技术(不含辅助电极)技术制备的同型号在2.75-4.35V以0.5CmA恒流/恒压充电、恒流放电,室温下放电平均容量为280mAh,钴酸锂的平均克容量为162mAh/g,0.5C充放电循环500次后的容量保持率为85.2%。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高能量密度软包电池的制造方法,其特征在于,包括以下步骤:
步骤1:将锂电池卷芯底部包裹铝箔辅助电极,所述电池卷芯与铝箔辅助电极之间用隔离膜隔离绝缘,组装后得到软包电池;
步骤2:向步骤1得到的软包电池中注入电解液1,封口后利用铝箔辅助电极进行预充电;
步骤3:预充电完成后取出铝箔辅助电极,并去除游离的电解液1,注入电解液2,经后处理得到高能量密度软包电池。
2.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述锂电池卷芯包括正极片、负极片和隔膜,所述正极片的正极耳和负极片的负极耳位于软包电池的顶端,所述铝箔辅助电极末端焊接有铝塑复合极耳,所述铝塑复合极耳从软包电池的气袋底端角部引出。
3.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述电解液1为含8-11%LiPF6和添加剂的有机溶液,所述添加剂为LiB(SO3)C6H3(O)(COO)OC6H5、Li[B(C6H4O2)2]、Li[B(C10H6O2)2]、Li[B(OH4C6C6H4O2)]中的至少一种;所述添加剂的质量百分含量为1-6%。
4.根据权利要求3所述的高能量密度软包电池的制造方法,其特征在于,所述添加剂还包括0.1-1%的Li2CO3
5.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述电解液1的注液量与电池设计容量之间的比值为2-4g/Ah。
6.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述预充电具体过程为:将铝箔辅助电极和电池负极分别与外电源的正、负极连接,在未加压状态下,以0.01-0.02C电流充电至4.3V,然后恒压充电5-10h,接着以0.005-0.01C恒流充电至4.55V。
7.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述电解液2为含12-15%LiPF6的有机溶液,电解液2的注液量为0.5-1.0g/Ah。
8.根据权利要求7所述的高能量密度软包电池的制造方法,其特征在于,所述电解2中还含有2-3%的FEC。
9.根据权利要求1所述的高能量密度软包电池的制造方法,其特征在于,所述后处理具体为:首先,将注入电解液2后的软包电池进行二次封口并保留部分气袋,静置6-48h;然后进行活化,最后,刺穿电池气袋,通过抽真空去除软包电池中多余的电解液,将电池气袋靠近锂电池卷芯位置的铝塑膜通过热压熔接,然后切去多余的铝塑膜。
10.根据权利要求9所述的高能量密度软包电池的制造方法,其特征在于,所述活化具体为:在加热加压状态下,以0.2-0.7C电流充电到3.85-4.05V,然后恒压充电0.25-1h。
CN202110333180.5A 2021-03-29 2021-03-29 一种高能量密度软包电池的制造方法 Active CN113097567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110333180.5A CN113097567B (zh) 2021-03-29 2021-03-29 一种高能量密度软包电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110333180.5A CN113097567B (zh) 2021-03-29 2021-03-29 一种高能量密度软包电池的制造方法

Publications (2)

Publication Number Publication Date
CN113097567A true CN113097567A (zh) 2021-07-09
CN113097567B CN113097567B (zh) 2022-04-12

Family

ID=76670444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110333180.5A Active CN113097567B (zh) 2021-03-29 2021-03-29 一种高能量密度软包电池的制造方法

Country Status (1)

Country Link
CN (1) CN113097567B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221681A (ja) * 2011-04-07 2012-11-12 Nec Corp リチウム二次電池及びその製造方法
CN104681311A (zh) * 2014-12-12 2015-06-03 宁波南车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法
CN108630980A (zh) * 2018-05-09 2018-10-09 合肥国轩高科动力能源有限公司 一种锂离子三电极软包电池及其测试方法
CN108878974A (zh) * 2017-05-16 2018-11-23 中信国安盟固利动力科技有限公司 一种锂离子电池补锂电解液及补锂方法
CN109686923A (zh) * 2018-12-17 2019-04-26 深圳先进技术研究院 预嵌锂负极的制备方法及制备得到的预嵌锂负极、储能器件、储能系统及用电设备
CN110224182A (zh) * 2019-05-20 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池预锂化的方法
CN209912974U (zh) * 2019-06-24 2020-01-07 郑州鼎能实业有限公司 一种超薄金属外壳锂离子电池
CN211350697U (zh) * 2020-01-13 2020-08-25 荣盛盟固利新能源科技有限公司 一种软包装锂电池
CN111599988A (zh) * 2020-06-24 2020-08-28 天能帅福得能源股份有限公司 一种补锂负极片、锂离子电池及其制备方法
CN111969179A (zh) * 2020-07-31 2020-11-20 中国科学院宁波材料技术与工程研究所 预锂化方法、高能量密度锂离子电池及其制备方法
CN112133957A (zh) * 2019-06-24 2020-12-25 武汉兰钧新能源科技有限公司 一种超薄金属外壳锂离子电池及其制备方法
WO2021045542A1 (ko) * 2019-09-06 2021-03-11 주식회사 엘지화학 전극의 전리튬화 방법 및 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221681A (ja) * 2011-04-07 2012-11-12 Nec Corp リチウム二次電池及びその製造方法
CN104681311A (zh) * 2014-12-12 2015-06-03 宁波南车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法
CN108878974A (zh) * 2017-05-16 2018-11-23 中信国安盟固利动力科技有限公司 一种锂离子电池补锂电解液及补锂方法
CN108630980A (zh) * 2018-05-09 2018-10-09 合肥国轩高科动力能源有限公司 一种锂离子三电极软包电池及其测试方法
CN109686923A (zh) * 2018-12-17 2019-04-26 深圳先进技术研究院 预嵌锂负极的制备方法及制备得到的预嵌锂负极、储能器件、储能系统及用电设备
CN110224182A (zh) * 2019-05-20 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池预锂化的方法
CN209912974U (zh) * 2019-06-24 2020-01-07 郑州鼎能实业有限公司 一种超薄金属外壳锂离子电池
CN112133957A (zh) * 2019-06-24 2020-12-25 武汉兰钧新能源科技有限公司 一种超薄金属外壳锂离子电池及其制备方法
WO2021045542A1 (ko) * 2019-09-06 2021-03-11 주식회사 엘지화학 전극의 전리튬화 방법 및 장치
CN211350697U (zh) * 2020-01-13 2020-08-25 荣盛盟固利新能源科技有限公司 一种软包装锂电池
CN111599988A (zh) * 2020-06-24 2020-08-28 天能帅福得能源股份有限公司 一种补锂负极片、锂离子电池及其制备方法
CN111969179A (zh) * 2020-07-31 2020-11-20 中国科学院宁波材料技术与工程研究所 预锂化方法、高能量密度锂离子电池及其制备方法

Also Published As

Publication number Publication date
CN113097567B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN105355457B (zh) 锂离子电容器及其化成方法
CN113078366B (zh) 一种软包装锂离子电池原位补锂及电池制造方法
CN109786841B (zh) 一种锂离子电化学储能器件的制备方法
CN101183730A (zh) 一种磷酸铁锂铝壳8安时圆柱电池及其制作工艺
CN102629695A (zh) 一种高容量锂离子动力电池及其制备方法
CN103594735B (zh) 一种钛酸锂锂离子电池的制备方法
CN103779600A (zh) 一种钛酸锂电池及制造方法
CN103682454B (zh) 一种采用钛酸锂负极的锂离子电池制备方法
CN111370791B (zh) 一种锂硫电池化成方法及该化成方法制备的锂硫电池
CN104953181B (zh) 一种抑制以钛酸锂为负极的锂离子电池胀气的工艺
CN105489395A (zh) 锂离子超级电容器的生产方法及锂离子超级电容器
CN104733783A (zh) 一种锂离子电池的制备方法
CN101188310A (zh) 一种磷酸铁锂铝壳圆柱电池及其制作工艺
CN103367797A (zh) 可充电的纽扣式锂离子电池及其制造方法
CN113078364A (zh) 一种高能量密度铝壳锂离子电池的制造方法
CN102376984B (zh) 一种超薄型二次充电电池及其制造工艺
CN104733784A (zh) 锂离子电池的制备方法
CN109801796B (zh) 一种负极预嵌锂方法及电容器和制作方法
CN101183731A (zh) 一种磷酸铁锂铝壳10安时圆柱电池及其制作工艺
CN113097567B (zh) 一种高能量密度软包电池的制造方法
CN112103554A (zh) 一种三电极可修复锂离子电池
CN115632158B (zh) 二次电池及用电装置
CN113078367B (zh) 一种高能量密度软包装锂离子电池的制造方法
KR101833597B1 (ko) 리튬 이온 2차 전지의 제조 방법
CN217881614U (zh) 一种锂离子电池的可控补锂装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Manufacturing Method for High Energy Density Soft Pack Batteries

Effective date of registration: 20230414

Granted publication date: 20220412

Pledgee: Zhuzhou branch of China Post Savings Bank Co.,Ltd.

Pledgor: HUNAN GAOYUAN BATTERY Co.,Ltd.

Registration number: Y2023980038196