CN113092540B - 一种新型高灵敏微湿度传感器及其制备方法 - Google Patents
一种新型高灵敏微湿度传感器及其制备方法 Download PDFInfo
- Publication number
- CN113092540B CN113092540B CN202110312310.7A CN202110312310A CN113092540B CN 113092540 B CN113092540 B CN 113092540B CN 202110312310 A CN202110312310 A CN 202110312310A CN 113092540 B CN113092540 B CN 113092540B
- Authority
- CN
- China
- Prior art keywords
- pegda
- hydrogel
- micro
- humidity sensor
- femtosecond laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000000017 hydrogel Substances 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000002086 nanomaterial Substances 0.000 claims abstract description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 238000005516 engineering process Methods 0.000 claims abstract description 7
- 239000002120 nanofilm Substances 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 239000004332 silver Substances 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 239000002041 carbon nanotube Substances 0.000 claims description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 239000002238 carbon nanotube film Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 230000008602 contraction Effects 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 12
- 239000004642 Polyimide Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/126—Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/128—Microapparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种新型高灵敏微湿度传感器及其制备方法,属于湿度传感器技术领域,该器件由两层PEGDA/PI薄膜正对组装在一起构成;其中,所述PEGDA/PI薄膜是由PEGDA水凝胶粘附在PI衬底上,通过飞秒激光直写技术在PEGDA表面引入微纳结构制备得到,并在PEGDA上附加一层碳纳米薄膜,银浆滴涂在器件两侧用以连接电极。本发明采用水凝胶作为湿敏材料,制备出体积小、灵敏度高的传感器,微米级别大小的精密PEGDA/PI薄膜,利于传感器小型化和集成化。本发明提出的高灵敏微型湿度传感器结构精细,具有微结构的PEGDA水凝胶的吸失水的膨胀收缩能力与飞秒激光直写扫描间距呈现近似线性的关系,微纳结构的尺寸通过改变激光加工的参数来调控光交联程度,进而调控水凝胶的膨胀/收缩率。
Description
技术领域
本发明属于湿度传感器技术领域,具体涉及一种新型高灵敏微湿度传感器及其制备方法。
背景技术
湿度传感器在气象监测、工业生产、农业种植、航空航天和医疗等领域有着广泛的应用,是一类重要的传感器。湿度传感器按工作原理可分为水分子亲和力型和非水分子亲和力型两大类。其中水分子亲和力型湿度传感器的工作原理在于亲水性物质吸附水分子和脱附水分子过程中使得自身特性发生改变从而实现对湿度的测定。水分子亲和力型湿度传感器尺寸较小,测试电路结构简单,十分适合集成化。
水凝胶作为亲水型软材料具有生物相容性和良好的柔韧性,可应用于压力传感器、应变传感器和制动器等领域。此外,水凝胶具有优异的机械性能,能够承受较大的机械变形和扭曲,剧烈的机械变形也不会降低传感性能。因此水凝胶被认为是湿度传感器的理想选择。
传统制造工艺制备的器件体积较大,随着物联网的发展,单一变量、单一功能的传感器已无法满足需求。将多种传感器集成化、阵列化是解决办法之一。因此,需要将传感器进行微结构设计,缩小传感器单元的体积以适应和促进集成传感器的研制与实用。目前仍然亟需高灵敏、低功耗、微尺寸的高性能湿度传感器。
发明内容
为了克服现有技术中的传统制造工艺制备的器件体积较大、功能单一等缺陷,本发明提出了一种新型高灵敏微湿度传感器及其制备方法,本发明的微湿度传感器整体采用水凝胶加碳纳米管构成湿敏层,PI有机衬底作为固定层。利用飞秒激光双光子聚合在水凝胶表层加工出微米级别的细小结构,增加了器件与环境空气的接触面积,提高了湿度传感器的灵敏度和集成度。
本发明通过如下技术方案实现:
一种新型高灵敏微湿度传感器,该器件由两层PEGDA/PI薄膜正对组装在一起构成;其中,所述PEGDA/PI薄膜是由PEGDA水凝胶粘附在PI衬底上,通过飞秒激光直写技术在PEGDA表面引入微纳结构制备得到,并在PEGDA上附加一层碳纳米薄膜,银浆滴涂在器件两侧用以连接电极。
优选地,所述碳纳米薄膜的厚度范围为30-50nm。
一种新型高灵敏微湿度传感器的制备方法,具体步骤如下:
步骤一:PI(聚酰亚胺)薄层衬底通过酸碱处理,增大表面粗糙度,提高粘结力且不影响表观质量和内在力学性;在处理后的PI衬底上均匀涂覆一层PEGDA水凝胶。
步骤二:在Visual Studio软件中利用C#语言,生成由待加工结构的坐标点组成的TXT数据文档,数据描绘出所设计的三维结构,并利用飞秒激光直写系统通过双光子聚合的方式在PEGDA水凝胶上制备出所设计的结构;
步骤三:将乙醇和水以2:1的体积比混合制备显影液,再将上述结构完全浸入显影液,去除未被飞秒激光焦斑固化的地方,得到所需结构;
步骤四:在制备好的PEGDA上喷涂一层碳纳米管薄膜,之后放在加热平台上进行固化;
步骤五:将银浆滴涂在整体结构的一侧,用以连接电极;
步骤六:按上述步骤重复操作,得到两个同样的结构,正对组装在一起组成传感器。
优选地,步骤一中所述的PEGDA水凝胶的厚度为1-5μm。
优选地,步骤一中所述的酸碱处理具体是采用草酸溶液、NaOH溶液、脱盐水分别处理PI(聚酰亚胺)衬底。
优选地,步骤二中所述飞秒激光直写系统采用激光中心波长为800nm,激光脉宽为100fs,重复频率为80GHz,聚焦后激光焦斑直径为700nm,飞秒激光曝光功率为15mW,曝光时间为500μs。
优选地,步骤四中所述碳纳米管固化所用温度为80℃。且水凝胶不受温度影响。
与现有技术相比,本发明的优点如下:
1、本发明采用水凝胶作为湿敏材料,制备出体积小、灵敏度高的传感器。通过调节程序,可以制备出微米级别大小的精密PEGDA/PI薄膜,利于传感器小型化和集成化。
2、本发明采用飞秒激光双光子直写技术,同时配合编程软件控制扫描振镜的精密偏转,可实现在PEGDA上得到高精度、高设计度的任意三维复杂微纳结构。
3、本发明中微结构的引入增加了器件与环境空气的接触面积,有利于湿度传感器在水蒸气环境中对周围水分子的吸附和解吸,从而提高传感器灵敏度。
4、本发明提出的高灵敏微型湿度传感器结构精细,PEGDA水凝胶的结构的吸水(失水)的膨胀(收缩)能力与飞秒激光直写扫描间距呈现近似线性的关系,微纳结构的尺寸可以通过改变激光加工的参数来调控光交联程度,进而调控水凝胶的膨胀/收缩率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明的新型高灵敏微湿度传感器的结构示意图;
图2为本发明中微纳结构三维参数化图案飞秒激光加工的装置示意图;
图3为本发明中具有微结构的PEGDA水凝胶的三维示意图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述,以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
实施例1
本实施例提供了一种新型高灵敏微湿度传感器,如图1所示,该器件由两层PEGDA/PI薄膜正对组装在一起构成;其中,所述PEGDA/PI薄膜是由PEGDA水凝胶粘附在PI衬底上,通过飞秒激光直写技术在PEGDA表面引入微纳结构制备得到,并在PEGDA上附加一层碳纳米薄膜,银浆滴涂在器件两侧用以连接电极。所述碳纳米薄膜的厚度范围为30-50nm。
实施例2
便于对本实施例进行理解,首先对本发明实施例提出的一种新型高灵敏微湿度传感器的制备方法进行详细介绍。器件整体结构如图1所示,整体采用PEGDA作为湿敏材料将环境中的湿度转换成可用信号,首先采用计算机编程与飞秒激光双光子聚合直写技术相结合的方式对PEGDA水凝胶结构进行光固化,得到预先设计好的三维微纳结构,并附加一层碳纳米管。最终将以上结构重复制备并正对组装在一起并外接电极,制备出一种新型高灵敏微湿度传感器。
一种新型高灵敏微湿度传感器制备方法,具体步骤如下:
步骤1:用草酸溶液、NaOH、脱盐水来处理PI(聚酰亚胺)衬底,由于PI不耐强碱,与NaOH接触相当于对其表面进行蚀刻,从而增大了PI衬底表面的粗糙度,使其粘结力大幅提高,且不影响PI衬底的表观质量和内在力学性。酸碱处理后在PI衬底上通过匀胶机均匀涂覆一层PEGDA水凝胶。所述的PEGDA是一种对环境湿度具有快速、显著响应的聚合物材料,且PI和PEGDA都具有生物相容性,安全无毒。
步骤2:在Visual Studio软件中利用C#语言,生成由结构坐标点组成的TXT数据文档,数据描绘出所设计的三维结构,并利用飞秒激光直写系统通过双光子聚合的方式在PEGDA水凝胶上制备出所设计的结构。其中,飞秒激光直写系统如图2所示。
步骤3:在培养皿中将乙醇和水以2:1的体积比混合制备显影液,再将上述结构完全浸入显影液,去除未被飞秒激光焦斑固化的地方,得到所需结构(图3)。
步骤4:在制备好的PEGDA水凝胶上喷涂一层碳纳米管,然后放在加热平台上以80℃的温度进行固化。
步骤5:将银浆滴涂在整体结构的一侧,以用作电极。
步骤6:采用两层具有微纳结构的PEGDA水凝胶/PI正对组装成水凝胶微型灵敏湿度传感器。
在本实施例中,所述飞秒激光直写系统采用激光中心波长为800nm,脉宽为120fs,重复频率为80GHz。飞秒激光振荡器1产生的激光先经过焦距较短的透镜2、光闸3,以及一个焦距较长的透镜4,达到扩束效果后,经过高反镜5进入二维扫描振镜6,与后面的一维压电平台结合实现光束的三维移动。在扫描振镜之后,进入4f透镜系统,由两个焦距一样的平凸透镜7、8组成。最后经过高反镜9,以实现光束垂直向下,通过高数值孔径油镜10紧聚焦于一维压电平台11上的PEGDA中。通过编程软件控制扫描振镜精密偏转,实现对PEGDA水凝胶进行三维参数化图案飞秒激光加工。CCD相机也与电脑相连,对加工过程进行实时观察和调整。此系统加工精度为100nm左右。
在本实例中,所述的新型高灵敏微湿度传感器采用的原理如下:PEGDA水凝胶可以调节水分子的吸收或者释放,实现膨胀和收缩的调控。水凝胶吸水膨胀时上下两层碳纳米管受到挤压,接触面积变大进而导致传感器电阻变小。同理,水凝胶释放水分子时体积收缩,碳纳米管接触面积变小,电阻变大。除此之外,本发明引入飞秒激光双光子聚合直写技术,在水凝胶上制备出精细的微纳米结构,增大了碳纳米管的可接触面积,且微纳结构的尺寸可以通过改变激光加工的参数来调控光交联程度,进而调控水凝胶的膨胀/收缩率。
在本实例中,所述的新型高灵敏微湿度传感器中微结构的引入一方面增加了PEGDA与空气的接触面积,使其更有效得吸附和脱附水蒸气;另一方面,微结构还可以增加上下两层PEGDA/PI薄膜的接触面积,使器件灵敏度提升。此外,微结构的制备基于飞秒激光双光子聚合的方式,因此微结构的尺寸和形貌是可定制的。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (7)
1.一种新型高灵敏微湿度传感器,其特征在于,该器件由两层PEGDA/PI薄膜正对组装在一起构成;其中,所述PEGDA/PI薄膜是由PEGDA水凝胶粘附在PI衬底上,通过飞秒激光直写技术在PEGDA表面引入微纳结构制备得到,并在PEGDA上附加一层碳纳米薄膜,银浆滴涂在器件两侧用以连接电极。
2.如权利要求1所述的一种新型高灵敏微湿度传感器,其特征在于,所述碳纳米薄膜的厚度范围为30-50nm。
3.如权利要求1所述的一种新型高灵敏微湿度传感器的制备方法,其特征在于,具体步骤如下:
步骤一:PI薄层衬底通过酸碱处理,增大表面粗糙度,提高粘结力且不影响表观质量和内在力学性;在处理后的PI衬底上均匀涂覆一层PEGDA水凝胶;
步骤二:在Visual Studio软件中利用C#语言,生成由待加工结构的坐标点组成的TXT数据文档,数据描绘出所设计的三维结构,并利用飞秒激光直写系统通过双光子聚合的方式在PEGDA水凝胶上制备出所设计的结构;
步骤三:将乙醇和水以2:1的体积比混合制备显影液,再将上述结构完全浸入显影液,去除未被飞秒激光焦斑固化的地方,得到所需结构;
步骤四:在制备好的PEGDA上喷涂一层碳纳米管薄膜,之后放在加热平台上进行固化;
步骤五:将银浆滴涂在整体结构的一侧,用以连接电极;
步骤六:按上述步骤重复操作,得到两个同样的结构,正对组装在一起组成传感器。
4.如权利要求3所述的一种新型高灵敏微湿度传感器的制备方法,其特征在于,步骤一中所述的PEGDA水凝胶的厚度为1-5μm。
5.如权利要求3所述的一种新型高灵敏微湿度传感器的制备方法,其特征在于,步骤一中所述的酸碱处理具体是采用草酸溶液、NaOH溶液、脱盐水分别处理PI衬底。
6.如权利要求3所述的一种新型高灵敏微湿度传感器的制备方法,其特征在于,步骤二中所述飞秒激光直写系统采用激光中心波长为800nm,激光脉宽为100fs,重复频率为80GHz,聚焦后激光焦斑直径为700nm,飞秒激光曝光功率为15mW,曝光时间为500μs。
7.如权利要求3所述的一种新型高灵敏微湿度传感器的制备方法,其特征在于,步骤四中所述碳纳米管固化所用温度为80℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110312310.7A CN113092540B (zh) | 2021-03-24 | 2021-03-24 | 一种新型高灵敏微湿度传感器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110312310.7A CN113092540B (zh) | 2021-03-24 | 2021-03-24 | 一种新型高灵敏微湿度传感器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113092540A CN113092540A (zh) | 2021-07-09 |
CN113092540B true CN113092540B (zh) | 2022-07-15 |
Family
ID=76669370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110312310.7A Expired - Fee Related CN113092540B (zh) | 2021-03-24 | 2021-03-24 | 一种新型高灵敏微湿度传感器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113092540B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149245A (zh) * | 2012-09-27 | 2013-06-12 | 中国石油大学(华东) | 聚电解质-碳纳米管复合薄膜湿度传感器 |
KR20170039849A (ko) * | 2015-10-02 | 2017-04-12 | 한양대학교 산학협력단 | 습도 또는 용매에 의해 구동되는 섬유형 구동기, 이의 제조방법 및 이를 이용한 용도 |
CN108563101A (zh) * | 2018-05-24 | 2018-09-21 | 华中科技大学 | 一种光刻胶、微纳温湿敏感智能器件及其制备方法 |
CN209014173U (zh) * | 2018-11-23 | 2019-06-21 | 华东理工大学 | 可穿戴压力传感器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9931829B2 (en) * | 2014-10-29 | 2018-04-03 | Massachusetts Institute Of Technology | Methods and apparatus for hygromorphic shape control |
CN104569074A (zh) * | 2014-12-23 | 2015-04-29 | 桂林电子科技大学 | 一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法 |
CN109490380B (zh) * | 2018-12-27 | 2020-08-25 | 中山大学 | 湿度传感器及其应用、设备和湿度传感器的制备方法 |
US12104101B2 (en) * | 2019-05-10 | 2024-10-01 | President And Fellows Of Harvard College | Composite materials |
CN112300408B (zh) * | 2020-10-26 | 2022-10-04 | 广州大学 | 一种柔性高拉伸的温敏、湿敏水凝胶及其制备方法与应用 |
-
2021
- 2021-03-24 CN CN202110312310.7A patent/CN113092540B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149245A (zh) * | 2012-09-27 | 2013-06-12 | 中国石油大学(华东) | 聚电解质-碳纳米管复合薄膜湿度传感器 |
KR20170039849A (ko) * | 2015-10-02 | 2017-04-12 | 한양대학교 산학협력단 | 습도 또는 용매에 의해 구동되는 섬유형 구동기, 이의 제조방법 및 이를 이용한 용도 |
CN108563101A (zh) * | 2018-05-24 | 2018-09-21 | 华中科技大学 | 一种光刻胶、微纳温湿敏感智能器件及其制备方法 |
CN209014173U (zh) * | 2018-11-23 | 2019-06-21 | 华东理工大学 | 可穿戴压力传感器 |
Non-Patent Citations (2)
Title |
---|
Humidity-responsive actuation of programmable hydrogelmicrostructures based on 3D printing;Lv Chao et al.;《Sensors and Actuators B: Chemical》;20171215;第259卷;第737页左栏第二段,第2.1节,第2.3节 * |
聚酰亚胺薄膜的表面处理改性及其粘接性能研究;张磊;《化工管理》;20170531(第15期);第2.1节至第3节 * |
Also Published As
Publication number | Publication date |
---|---|
CN113092540A (zh) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tetik et al. | Additive manufacturing of 3D aerogels and porous scaffolds: a review | |
Lv et al. | Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing | |
Wang et al. | Fabrication of hierarchical micro/nano compound eyes | |
Chen et al. | Variable-focusing microlens with microfluidic chip | |
Tao et al. | Silk materials–a road to sustainable high technology | |
Lu et al. | Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing | |
CN114088254B (zh) | 灵敏度可调的高线性度柔性压力传感器及其制备方法 | |
Li et al. | Fabrication method for structured porous polydimethylsiloxane (PDMS) | |
US8323553B2 (en) | Method for manufacturing a substrate with surface structure by employing photothermal effect | |
US20110209749A1 (en) | Pattern transfer method and apparatus, flexible display panel, flexible solar cell, electronic book, thin film transistor, electromagnetic-shielding sheet, and flexible printed circuit board applying thereof | |
CN107930711B (zh) | 一种基于y切铌酸锂芯片的光触发微液滴定向输运方法 | |
CN113182691A (zh) | 一种利用飞秒激光刻蚀涂布机基材制备超疏水薄膜的方法 | |
Verma et al. | Recent trends of silicon elastomer-based nanocomposites and their sensing applications | |
CN114012272B (zh) | 一种硫系玻璃微透镜阵列的制备方法 | |
KR101761010B1 (ko) | 나노전사 프린팅 방법 및 이를 이용하여 제작되는 sers 기판, sers 바이얼 및 sers 패치 | |
Jin et al. | Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes | |
CN113092540B (zh) | 一种新型高灵敏微湿度传感器及其制备方法 | |
Li et al. | Superhydrophobic artificial compound eye with high transparency | |
Xu et al. | Large-area and rapid fabrication of a microlens array on a flexible substrate for an integral imaging 3D display | |
CN107639862B (zh) | 一种激光辐照调控pa2200材料3d打印件表面浸润性的方法 | |
CN116295970A (zh) | 一种用于传感器的多级微结构薄膜及可穿戴的柔性传感器 | |
Schweiger et al. | Two-photon-lithography substrate reflection and absorption compensation for additive manufacturing of metamaterials on MEMS | |
JP2010068755A (ja) | 細胞培養基板、その製造方法、細胞培養方法 | |
Jing et al. | Miniature bioinspired artificial compound eyes: microfabrication technologies, photodetection and applications | |
Tsukamoto et al. | A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220715 |
|
CF01 | Termination of patent right due to non-payment of annual fee |