CN113065992A - 一种超高层建筑楼梯电梯协同应急疏散方法 - Google Patents

一种超高层建筑楼梯电梯协同应急疏散方法 Download PDF

Info

Publication number
CN113065992A
CN113065992A CN202110173516.6A CN202110173516A CN113065992A CN 113065992 A CN113065992 A CN 113065992A CN 202110173516 A CN202110173516 A CN 202110173516A CN 113065992 A CN113065992 A CN 113065992A
Authority
CN
China
Prior art keywords
evacuation
emergency
floor
iteration
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110173516.6A
Other languages
English (en)
Other versions
CN113065992B (zh
Inventor
刘轩
王新祥
马烨红
朱靖哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Provincial Academy of Building Research Group Co Ltd
Original Assignee
Guangdong Provincial Academy of Building Research Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Provincial Academy of Building Research Group Co Ltd filed Critical Guangdong Provincial Academy of Building Research Group Co Ltd
Priority to CN202110173516.6A priority Critical patent/CN113065992B/zh
Publication of CN113065992A publication Critical patent/CN113065992A/zh
Application granted granted Critical
Publication of CN113065992B publication Critical patent/CN113065992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Educational Administration (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Emergency Lowering Means (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

本发明公开了一种超高层建筑楼梯电梯协同应急疏散方法,先通过步骤A采集超高层建筑的人群分布情况,其次通过步骤B分析出最优楼梯疏散人员分配比例,再通过步骤C分析出优化临界楼层,然后通过步骤D以所述优化临界楼层为出发点,迭代计算出最优临界楼层,最后通过步骤E引导超高层建筑内的全部人员按照楼梯电梯协同疏散模式进行疏散,以在超高层建筑应急疏散时,协同利用应急楼梯与应急电梯作为疏散通道,并合理分配使用各座应急楼梯和各部应急电梯进行疏散的人员数量,使各座应急楼梯和各部应急电梯达到最高的利用率,实现了超高层建筑内全部人员的最高疏散效率、最少总体疏散时间。

Description

一种超高层建筑楼梯电梯协同应急疏散方法
技术领域
本发明涉及超高层建筑的应急疏散方法,具体的说是一种超高层建筑楼梯电梯协同应急疏散方法。
背景技术
因为垂直疏散距离长且疏散方式单一,超高层建筑(高度大于100m的建筑)应急疏散问题受到了广泛的关注。其中,将电梯用于超高层建筑火灾情况下的人员疏散,是目前公认的有效提高人群疏散效率的途径。一些地标性超高层建筑,包括迪拜塔、上海中心大厦、中国尊、广州塔等,已经设置了辅助疏散电梯。因此,将电梯与楼梯配合使用已经成为优化超高层建筑疏散过程的方式,而电梯与楼梯配合使用方案的合理性决定了是否能实现最高的疏散效率。当前制定优化方案的主要方法是:假设多种电梯与楼梯分配使用策略,并依次进行公式计算(根据疏散公式计算疏散时间)或模拟计算(采用模拟仿真的方式计算疏散时间),根据计算结果选取最优策略。然而,超高层应急疏散过程存在大量不确定性,需要根据实时人群分布与疏散通道状态,即时生成最优的电梯与楼梯分配方案,以实现对超高层建筑应急疏散过程智能优化管理。而且,由于长距离垂直疏散对体能要求较高,超高层建筑内的电梯需要优先辅助高区人群与运动障碍人群疏散。
发明内容
本发明所要解决的技术问题是:提供一种超高层建筑楼梯电梯协同应急疏散方法,以解决目前超高层建筑应急疏散难以做到高效的问题。
解决上述技术问题,本发明所采用的技术方案如下:
一种超高层建筑楼梯电梯协同应急疏散方法,用于超高层建筑的应急疏散,所述超高层建筑高度大于100m,具有M个楼层、ms座应急楼梯和me部应急电梯,所述应急楼梯和应急电梯均能够通往第1楼层,所述楼层、应急楼梯和应急电梯的编号依次记为if、is和ie,则:if=1,2,...,M,is=1,2,...,ms,ie=1,2,...,me;其中,各座所述应急楼梯和各部所述应急电梯所连接的楼层数量可以有所不同,例如:参见图1,应急楼梯ST1由第1楼层CR1连接至第M-3楼层CRM-3,应急楼梯ST2和应急楼梯ST3均由第1楼层CR1连接至第M楼层CRM,应急电梯EL1由第1楼层CR1连接至第M-2楼层CRM-2,应急电梯EL2由第1楼层CR1连接至第M楼层CRM
其特征在于,包括:
步骤A、在需要进行应急疏散时,通过传感系统采集超高层建筑的人群分布情况,也即:所述超高层建筑中每一楼层的人数;其中,第if楼层的人数记为Nif;所述传感系统采用现有的人员识别系统,可以是视频识别、门禁统计等方式。
步骤B、依据所述超高层建筑的楼梯疏散时间模型和所述人群分布情况,分析出:最优楼梯疏散人员分配比例,该最优楼梯疏散人员分配比例即为每一楼层分配到每一座应急楼梯进行疏散的人员比例的最优值;使得:所述超高层建筑内的全部人员均通过应急楼梯完成疏散的时间,在人员按照所述最优楼梯疏散人员分配比例进行疏散的情况下为最短,记为最短楼梯疏散时间;
其中,根据疏散基本规律,楼梯疏散时间与楼梯的选择人数、楼梯宽度、建筑高度、通行效率、运动速度等参数相关,因此,所述楼梯疏散时间模型可采用现有的仿真或公式计算方式实现。
步骤C、依据所述超高层建筑的电梯疏散时间模型和所述人群分布情况,分析出:所述超高层建筑的优化临界楼层;使得所述优化临界楼层及以上楼层中的全部人员通过应急电梯完成疏散的时间,与所述最短楼梯疏散时间一致;
其中,根据疏散基本规律,电梯疏散时间与电梯的选择人数、电梯荷载、电梯运行速度等参数相关,因此,所述电梯疏散时间模型可采用现有的仿真或公式计算方式实现。
步骤D、依据所述楼梯疏散时间模型和电梯疏散时间模型,并以所述优化临界楼层为出发点,迭代计算出:所述超高层建筑的最优临界楼层;使得:所述超高层建筑内的全部人员完成疏散的时间,在人员按照楼梯电梯协同疏散模式进行疏散的情况下为最短,记为最短整体疏散时间;
其中,所述楼梯电梯协同疏散模式为:
将所述最优临界楼层及以上楼层均设置为电梯疏散楼层,控制所述应急电梯运行在所述第1楼层与其中一层电梯疏散楼层之间进行人员疏散,且所述应急电梯在每一层电梯疏散楼层均仅停靠一次;并且,在任意一部应急电梯停靠在任意一层电梯疏散楼层时,引导与该部应急电梯的荷载人数相当的人员进入应急电梯中进行疏散;
对于所述电梯疏散楼层中除了被引导进入应急电梯之外的剩余人员,引导该剩余人员按照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
对于除所述电梯疏散楼层外的其余楼层,引导该其余楼层中的全部人员按照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
步骤E、按照所述楼梯电梯协同疏散模式,引导所述超高层建筑内的全部人员进行疏散。
从而,本发明能够在超高层建筑应急疏散时,协同利用应急楼梯与应急电梯作为疏散通道,并合理分配使用各座应急楼梯和各部应急电梯进行疏散的人员数量,使各座应急楼梯和各部应急电梯达到最高的利用率,实现了超高层建筑内全部人员的最高疏散效率、最少总体疏散时间;
并且,本发明先通过步骤C分析出优化临界楼层,然后通过步骤D以所述优化临界楼层为出发点,迭代计算出最优临界楼层,能够大大减少计算出适于楼梯电梯协同疏散模式的最优临界楼层所需的计算量,以实现快速给出楼梯电梯协同疏散模式的具体参数,即:所述最优临界楼层以及每一座应急楼梯在每一楼层具体的疏散人员分配人数,缩短了执行步骤E进行疏散前的等待时间。
优选的:所述楼梯电梯协同疏散模式中,所述应急电梯的运行方式还包括:在各层所述电梯疏散楼层中,控制所述应急电梯从其中的最高楼层开始向下逐层停靠。例如:当电梯疏散楼层包括第M楼层CRM、第M-1楼层CRM-1、第M-2楼层CRM-2、第M-3楼层CRM-3、第M-4楼层和第4楼层时,所述应急电梯的运行方式为:第M楼层CRM→第1楼层CR1→第M-1楼层CRM-1→第1楼层CR1→第M-2楼层CRM-2→第1楼层CR1→第M-3楼层CRM-3→第1楼层CR1→第M-4楼层→第1楼层CR1→第4楼层→第1楼层CR1。从而,能够在保证超高层建筑整体的高疏散效率的同时,保障位于超高层建筑中较高楼层的人员能够优先使用应急电梯进行疏散。
优选的:所述楼梯电梯协同疏散模式中,还将位于所述最优临界楼层之下的若干预设楼层设置为所述电梯疏散楼层,以在保证超高层建筑整体的高疏散效率的同时,保障最优临界楼层之下的低区楼层的运动障碍人员能够使用应急电梯进行疏散。
优选的:所述预设楼层为:所述最优临界楼层之下每间隔预定层数设置一层电梯疏散楼层,或者,所述最优临界楼层之下的避难层设置为电梯疏散楼层。
优选的:所述楼梯电梯协同疏散模式中,通过每一楼层中的工作人员进行人工引导和/或通过安装在每一楼层中的智能疏散引导装置进行引导,实现引导人员通过应急电梯或应急楼梯进行疏散。其中,所述智能疏散引导装置采用现有的人员引导系统,可以是广播等声音引导、显示屏等文字引导方式。
作为本发明的优选实施方式:所述步骤B的分析方式通过迭代计算实现,包括:
步骤B1、依据本次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000041
和所述人群分布情况,通过公式
Figure BDA0002939584310000042
计算出本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000043
其中,
Figure BDA0002939584310000044
表示第if楼层分配到is号应急楼梯进行疏散的人员比例,
Figure BDA0002939584310000045
表示第if楼层分配到is号应急楼梯进行疏散的人员数量;
并且,在首次迭代时,所述本次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000046
设置为初始楼梯疏散人员分配比例
Figure BDA0002939584310000047
Wis为is号应急楼梯的宽度,Wif为与第if楼层连接的全部应急楼梯的宽度之和;如果某一楼层与某一座应急楼梯不相连接,则该楼层分配到该座应急楼梯进行疏散的人员比例为零。
步骤B2、将所述本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000048
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次迭代的疏散时间
Figure BDA00029395843100000413
其中的最大值和最小值分别记为:本次迭代的最大疏散时间
Figure BDA0002939584310000049
和本次迭代的最小疏散时间
Figure BDA00029395843100000410
且将
Figure BDA00029395843100000411
所对应的应急楼梯的编号记为is_min,其中,tis表示is号应急楼梯在本次迭代的疏散时间;
步骤B3、对于is_min号应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure BDA00029395843100000412
按照预设幅度调高,对于除is_min号之外的其余应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000051
按照预设幅度调低;
步骤B4、重复步骤B1至步骤B3以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure BDA0002939584310000052
相较于上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000053
不再减小,也即:上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000054
为历次迭代计算出的最大疏散时间
Figure BDA0002939584310000055
中的最小者,则:上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000056
为所述最短楼梯疏散时间,上一次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000057
为所述最优楼梯疏散人员分配比例。
优选的:所述步骤B3中,将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000058
按照预设幅度调高的计算方式为:
Figure BDA0002939584310000059
Figure BDA00029395843100000510
将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure BDA00029395843100000511
按照预设幅度调低的计算方式为:
Figure BDA00029395843100000512
其中,
Figure BDA00029395843100000513
表示本次迭代的楼梯疏散人员分配比例,
Figure BDA00029395843100000514
表示下一次迭代的楼梯疏散人员分配比例。
作为本发明的优选实施方式:所述步骤C的分析方式通过迭代计算实现,包括:
步骤C1、设定:本次迭代的临界楼层及以上楼层中的全部人员均通过应急电梯进行疏散;对于本次迭代的临界楼层及以上楼层,其电梯疏散人员分配比例
Figure BDA00029395843100000515
其中,
Figure BDA00029395843100000516
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,nie为ie号应急电梯的荷载人数,nif为与第if楼层连接的全部应急电梯的荷载人数之和;对于本次迭代的临界楼层之下的楼层,其电梯疏散人员分配比例
Figure BDA00029395843100000517
并且,在首次迭代时,所述本次迭代的临界楼层设置为所述超高层建筑的最高楼层即第M楼层CRM
步骤C2、依据本次迭代的电梯疏散人员分配比例
Figure BDA00029395843100000518
和所述人群分布情况,通过公式
Figure BDA00029395843100000519
计算出本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA00029395843100000520
其中,
Figure BDA00029395843100000521
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,
Figure BDA00029395843100000522
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤C3、将所述本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000061
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次迭代的疏散时间
Figure BDA00029395843100000612
其中的最大值记为:本次迭代的最大疏散时间
Figure BDA0002939584310000062
其中,tie表示ie号应急电梯在本次迭代的疏散时间;
步骤C4、如果本次迭代的最大疏散时间
Figure BDA0002939584310000063
小于步骤B所述最短楼梯疏散时间,则将本次迭代的临界楼层下移一层作为下一次迭代的临界楼层;
步骤C5、重复步骤C1至步骤C4以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure BDA0002939584310000064
与步骤B所述最短楼梯疏散时间一致,则:将当前迭代的临界楼层作为所述优化临界楼层。
作为本发明的优选实施方式:所述步骤D的迭代计算方式包括:
步骤D1、设定:将本次协同疏散迭代的临界楼层作为所述楼梯电梯协同疏散模式中的最优临界楼层,假定所述超高层建筑内的全部人员在该设定条件下按照所述楼梯电梯协同疏散模式进行疏散;
并且,以所述优化临界楼层为出发点进行迭代,也即:在首次协同疏散迭代时,所述本次协同疏散迭代的临界楼层设置为所述优化临界楼层;
步骤D2、依据本次协同疏散迭代的临界楼层、所述楼梯电梯协同疏散模式和所述人群分布情况,计算出本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000065
以及每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000066
其中,
Figure BDA0002939584310000067
表示第if楼层分配到is号应急楼梯进行疏散的人员数量,
Figure BDA0002939584310000068
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤D3、将所述本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000069
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次协同疏散迭代的疏散时间
Figure BDA00029395843100000610
其中的最大值记为:本次协同疏散迭代的最大楼梯疏散时间
Figure BDA00029395843100000611
其中,tis表示is号应急楼梯在本次协同疏散迭代的疏散时间;
将所述本次协同疏散迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000071
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次协同疏散迭代的疏散时间
Figure BDA0002939584310000072
其中的最大值记为:本次协同疏散迭代的最大电梯疏散时间
Figure BDA0002939584310000073
其中,tie表示ie号应急电梯在本次协同疏散迭代的疏散时间;
并且,将本次协同疏散迭代的最大楼梯疏散时间和本次协同疏散迭代的最大电梯疏散时间中的较大者,记为:本次协同疏散迭代的整体疏散时间
Figure BDA0002939584310000074
步骤D4、如果本次协同疏散迭代的最大电梯疏散时间大于本次协同疏散迭代的最大楼梯疏散时间,则将本次协同疏散迭代的临界楼层上移一层作为下一次协同疏散迭代的临界楼层,否则,将本次协同疏散迭代的临界楼层下移一层作为下一次协同疏散迭代的临界楼层;
步骤D5、重复步骤D1至步骤D4以进行多次协同疏散迭代,直至当前协同疏散迭代计算出的整体疏散时间ttotal相较于上一次协同疏散迭代计算出的整体疏散时间ttotal不再减小,也即:上一次协同疏散迭代计算出的整体疏散时间ttota为历次协同疏散迭代计算出的整体疏散时间ttotal中的最小者,则:上一次协同疏散迭代计算出的整体疏散时间ttotal为所述最短整体疏散时间,上一次协同疏散迭代的临界楼层为所述最优临界楼层。
作为本发明的优选实施方式:所述楼梯疏散时间模型采用以下公式:
Figure BDA0002939584310000075
该公式表示:tis为if在2,3,...M中取值时,
Figure BDA0002939584310000076
的最大值;
式中,tis表示is号应急楼梯的疏散时间,
Figure BDA0002939584310000077
表示第i楼层分配到is号应急楼梯进行疏散的人员数量,i的取值在if至M之间,if的取值在2至M之间;Wis为is号应急楼梯的宽度;Cis为is号应急楼梯的通行效率,也即is号应急楼梯在每秒每米宽度通过的人数,Cis可以根据经验预设、也可以事先对is号应急楼梯进行实验测量获得;hif为第if楼层的高度;vh为疏散人员在应急楼梯上的平均疏散速度的竖向分量,也即应急楼梯的高度除以疏散人员在该应急楼梯的疏散时间得到的估算速度,vh可以根据经验预设、也可以事先对应急楼梯进行实验测量获得;
所述电梯疏散时间模型采用以下公式:
Figure BDA0002939584310000081
式中,tie表示ie号应急电梯的疏散时间;
Figure BDA0002939584310000082
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;nie为ie号应急电梯的荷载人数;vie为ie号应急电梯的平均运行速度;
Figure BDA0002939584310000083
Figure BDA0002939584310000084
分别为疏散人员进和出ie号应急电梯的时间;
Figure BDA0002939584310000085
为ie号应急电梯进行一次开关门的时间。另外,
Figure BDA0002939584310000086
表示对
Figure BDA0002939584310000087
进行向上取整,例如:当
Figure BDA0002939584310000088
nie=2时,
Figure BDA0002939584310000089
与现有技术相比,本发明具有以下有益效果:
第一,本发明先通过步骤A采集超高层建筑的人群分布情况,其次通过步骤B分析出最优楼梯疏散人员分配比例,再通过步骤C分析出优化临界楼层,然后通过步骤D以所述优化临界楼层为出发点,迭代计算出最优临界楼层,最后通过步骤E引导超高层建筑内的全部人员按照楼梯电梯协同疏散模式进行疏散,以在超高层建筑应急疏散时,协同利用应急楼梯与应急电梯作为疏散通道,并合理分配使用各座应急楼梯和各部应急电梯进行疏散的人员数量,使各座应急楼梯和各部应急电梯达到最高的利用率,实现了超高层建筑内全部人员的最高疏散效率、最少总体疏散时间;
并且,本发明先通过步骤C分析出优化临界楼层,然后通过步骤D以所述优化临界楼层为出发点,迭代计算出最优临界楼层,能够大大减少计算出适于楼梯电梯协同疏散模式的最优临界楼层所需的计算量,以实现快速给出楼梯电梯协同疏散模式的具体参数,即:所述最优临界楼层以及每一座应急楼梯在每一楼层具体的疏散人员分配人数,缩短了执行步骤E进行疏散前的等待时间。
第二,本发明通过控制应急电梯从电梯疏散楼层中的最高楼层开始向下逐层停靠,能够在保证超高层建筑整体的高疏散效率的同时,保障位于超高层建筑中较高楼层的人员能够优先使用应急电梯进行疏散。
第三,本发明通过将最优临界楼层之下的若干预设楼层设置为所述电梯疏散楼层,能够在保证超高层建筑整体的高疏散效率的同时,保障最优临界楼层之下的低区楼层的运动障碍人员能够使用应急电梯进行疏散。
附图说明
下面结合附图和具体实施例对本发明作进一步的详细说明:
图1为应用本发明的超高层建筑的结构示意图示例;
图中,CR1、CR2、CRif、CRM-3、CRM-2、CRM-1、CRM依次表示超高层建筑的第1楼层、第2楼层、第if楼层、第M-3楼层、第M-2楼层、第M-1楼层、第M楼层。
具体实施方式
下面结合实施例及其附图对本发明进行详细说明,以帮助本领域的技术人员更好的理解本发明的发明构思,但本发明权利要求的保护范围不限于下述实施例,对本领域的技术人员来说,在不脱离本发明之发明构思的前提下,没有做出创造性劳动所获得的所有其他实施例,都属于本发明的保护范围。
实施例一
如图1所示,本发明公开的是一种超高层建筑楼梯电梯协同应急疏散方法,用于超高层建筑的应急疏散,所述超高层建筑高度大于100m,具有M个楼层、ms座应急楼梯和me部应急电梯,所述应急楼梯和应急电梯均能够通往第1楼层,所述楼层、应急楼梯和应急电梯的编号依次记为if、is和ie,则:if=1,2,...,M,is=1,2,...,ms,ie=1,2,...,me;其中,各座所述应急楼梯和各部所述应急电梯所连接的楼层数量可以有所不同,例如:参见图1,应急楼梯ST1由第1楼层CR1连接至第M-3楼层CRM-3,应急楼梯ST2和应急楼梯ST3均由第1楼层CR1连接至第M楼层CRM,应急电梯EL1由第1楼层CR1连接至第M-2楼层CRM-2,应急电梯EL2由第1楼层CR1连接至第M楼层CRM
其特征在于,包括:
步骤A、在需要进行应急疏散时,通过传感系统采集超高层建筑的人群分布情况,也即:所述超高层建筑中每一楼层的人数;其中,第if楼层的人数记为Nif;所述传感系统采用现有的人员识别系统,可以是视频识别、门禁统计等方式。
步骤B、依据所述超高层建筑的楼梯疏散时间模型和所述人群分布情况,分析出:最优楼梯疏散人员分配比例,该最优楼梯疏散人员分配比例即为每一楼层分配到每一座应急楼梯进行疏散的人员比例的最优值;使得:所述超高层建筑内的全部人员均通过应急楼梯完成疏散的时间,在人员按照所述最优楼梯疏散人员分配比例进行疏散的情况下为最短,记为最短楼梯疏散时间;
其中,根据疏散基本规律,楼梯疏散时间与楼梯的选择人数、楼梯宽度、建筑高度、通行效率、运动速度等参数相关,因此,所述楼梯疏散时间模型可采用现有的仿真或公式计算方式实现。
步骤C、依据所述超高层建筑的电梯疏散时间模型和所述人群分布情况,分析出:所述超高层建筑的优化临界楼层CR_F0;使得所述优化临界楼层CR_F0及以上楼层中的全部人员通过应急电梯完成疏散的时间,与所述最短楼梯疏散时间一致;
其中,根据疏散基本规律,电梯疏散时间与电梯的选择人数、电梯荷载、电梯运行速度等参数相关,因此,所述电梯疏散时间模型可采用现有的仿真或公式计算方式实现。
步骤D、依据所述楼梯疏散时间模型和电梯疏散时间模型,并以所述优化临界楼层CR_F0为出发点,迭代计算出:所述超高层建筑的最优临界楼层CR_F;使得:所述超高层建筑内的全部人员完成疏散的时间,在人员按照楼梯电梯协同疏散模式进行疏散的情况下为最短,记为最短整体疏散时间;
其中,所述楼梯电梯协同疏散模式为:
将所述最优临界楼层CR_F及以上楼层均设置为电梯疏散楼层CR_EL,控制所述应急电梯运行在所述第1楼层与其中一层电梯疏散楼层CR_EL之间进行人员疏散,且所述应急电梯在每一层电梯疏散楼层CR_EL均仅停靠一次;并且,在任意一部应急电梯停靠在任意一层电梯疏散楼层CR_EL时,引导与该部应急电梯的荷载人数相当的人员进入应急电梯中进行疏散;
对于所述电梯疏散楼层CR_EL中除了被引导进入应急电梯之外的剩余人员,引导该剩余人员按照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
对于除所述电梯疏散楼层CR_EL外的其余楼层,引导该其余楼层中的全部人员按照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
步骤E、按照所述楼梯电梯协同疏散模式,引导所述超高层建筑内的全部人员进行疏散。
从而,本发明能够在超高层建筑应急疏散时,协同利用应急楼梯与应急电梯作为疏散通道,并合理分配使用各座应急楼梯和各部应急电梯进行疏散的人员数量,使各座应急楼梯和各部应急电梯达到最高的利用率,实现了超高层建筑内全部人员的最高疏散效率、最少总体疏散时间;
并且,本发明先通过步骤C分析出优化临界楼层CR_F0,然后通过步骤D以所述优化临界楼层CR_F0为出发点,迭代计算出最优临界楼层CR_F,能够大大减少计算出适于楼梯电梯协同疏散模式的最优临界楼层CR_F所需的计算量,以实现快速给出楼梯电梯协同疏散模式的具体参数,即:所述最优临界楼层CR_F以及每一座应急楼梯在每一楼层具体的疏散人员分配人数,缩短了执行步骤E进行疏散前的等待时间。
以上为本实施例一的基本实施方式,可以在该基本实施方式的基础上做进一步的优化、改进和限定:
优选的:所述楼梯电梯协同疏散模式中,所述应急电梯的运行方式还包括:在各层所述电梯疏散楼层CR_EL中,控制所述应急电梯从其中的最高楼层开始向下逐层停靠。例如:当电梯疏散楼层CR_EL包括第M楼层CRM、第M-1楼层CRM-1、第M-2楼层CRM-2、第M-3楼层CRM-3、第M-4楼层和第4楼层时,所述应急电梯的运行方式为:第M楼层CRM→第1楼层CR1→第M-1楼层CRM-1→第1楼层CR1→第M-2楼层CRM-2→第1楼层CR1→第M-3楼层CRM-3→第1楼层CR1→第M-4楼层→第1楼层CR1→第4楼层→第1楼层CR1。从而,能够在保证超高层建筑整体的高疏散效率的同时,保障位于超高层建筑中较高楼层的人员能够优先使用应急电梯进行疏散。
优选的:所述楼梯电梯协同疏散模式中,还将位于所述最优临界楼层CR_F之下的若干预设楼层设置为所述电梯疏散楼层CR_EL,以在保证超高层建筑整体的高疏散效率的同时,保障最优临界楼层CR_F之下的低区楼层的运动障碍人员能够使用应急电梯进行疏散。
优选的:所述预设楼层为:所述最优临界楼层CR_F之下每间隔预定层数设置一层电梯疏散楼层CR_EL,或者,所述最优临界楼层CR_F之下的避难层设置为电梯疏散楼层CR_EL。
优选的:所述楼梯电梯协同疏散模式中,通过每一楼层中的工作人员进行人工引导和/或通过安装在每一楼层中的智能疏散引导装置进行引导,实现引导人员通过应急电梯或应急楼梯进行疏散。其中,所述智能疏散引导装置采用现有的人员引导系统,可以是广播等声音引导、显示屏等文字引导方式。
实施例二
在上述实施例一的基础上,本实施例二还采用了以下优选的实施方式:
所述步骤B的分析方式通过迭代计算实现,包括:
步骤B1、依据本次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000121
和所述人群分布情况,通过公式
Figure BDA0002939584310000122
计算出本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000123
其中,
Figure BDA0002939584310000124
表示第if楼层分配到is号应急楼梯进行疏散的人员比例,
Figure BDA0002939584310000125
表示第if楼层分配到is号应急楼梯进行疏散的人员数量;
并且,在首次迭代时,所述本次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000126
设置为初始楼梯疏散人员分配比例
Figure BDA0002939584310000127
Wis为is号应急楼梯的宽度,Wif为与第if楼层连接的全部应急楼梯的宽度之和;如果某一楼层与某一座应急楼梯不相连接,则该楼层分配到该座应急楼梯进行疏散的人员比例为零。
步骤B2、将所述本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000128
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次迭代的疏散时间
Figure BDA0002939584310000129
其中的最大值和最小值分别记为:本次迭代的最大疏散时间
Figure BDA00029395843100001210
和本次迭代的最小疏散时间
Figure BDA00029395843100001211
且将
Figure BDA00029395843100001212
所对应的应急楼梯的编号记为is_min,其中,tis表示is号应急楼梯在本次迭代的疏散时间;
步骤B3、对于is_min号应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure BDA00029395843100001213
按照预设幅度调高,对于除is_min号之外的其余应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure BDA00029395843100001214
按照预设幅度调低;
步骤B4、重复步骤B1至步骤B3以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure BDA0002939584310000131
相较于上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000132
不再减小,也即:上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000133
为历次迭代计算出的最大疏散时间
Figure BDA0002939584310000134
中的最小者,则:上一次迭代计算出的最大疏散时间
Figure BDA0002939584310000135
为所述最短楼梯疏散时间,上一次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000136
为所述最优楼梯疏散人员分配比例。
以上为本实施例二的基本实施方式,可以在该基本实施方式的基础上做进一步的优化、改进和限定:
优选的:所述步骤B3中,将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure BDA0002939584310000137
按照预设幅度调高的计算方式为:
Figure BDA0002939584310000138
Figure BDA0002939584310000139
将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure BDA00029395843100001310
按照预设幅度调低的计算方式为:
Figure BDA00029395843100001311
其中,
Figure BDA00029395843100001312
表示本次迭代的楼梯疏散人员分配比例,
Figure BDA00029395843100001313
表示下一次迭代的楼梯疏散人员分配比例。
实施例三
在上述实施例一或实施例二的基础上,本实施例三还采用了以下优选的实施方式:
所述步骤C的分析方式通过迭代计算实现,包括:
步骤C1、设定:本次迭代的临界楼层及以上楼层中的全部人员均通过应急电梯进行疏散;对于本次迭代的临界楼层及以上楼层,其电梯疏散人员分配比例
Figure BDA00029395843100001314
其中,
Figure BDA00029395843100001315
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,nie为ie号应急电梯的荷载人数,nif为与第if楼层连接的全部应急电梯的荷载人数之和;对于本次迭代的临界楼层之下的楼层,其电梯疏散人员分配比例
Figure BDA00029395843100001316
并且,在首次迭代时,所述本次迭代的临界楼层设置为所述超高层建筑的最高楼层即第M楼层CRM
步骤C2、依据本次迭代的电梯疏散人员分配比例
Figure BDA00029395843100001317
和所述人群分布情况,通过公式
Figure BDA00029395843100001318
计算出本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000141
其中,
Figure BDA0002939584310000142
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,
Figure BDA0002939584310000143
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤C3、将所述本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000144
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次迭代的疏散时间
Figure BDA0002939584310000145
其中的最大值记为:本次迭代的最大疏散时间
Figure BDA0002939584310000146
其中,tie表示ie号应急电梯在本次迭代的疏散时间;
步骤C4、如果本次迭代的最大疏散时间
Figure BDA0002939584310000147
小于步骤B所述最短楼梯疏散时间,则将本次迭代的临界楼层下移一层作为下一次迭代的临界楼层;
步骤C5、重复步骤C1至步骤C4以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure BDA0002939584310000148
与步骤B所述最短楼梯疏散时间一致,则:将当前迭代的临界楼层作为所述优化临界楼层CR_F0。
实施例四
在上述实施例一至实施例三中任意一个实施例的基础上,本实施例四还采用了以下优选的实施方式:
所述步骤D的迭代计算方式包括:
步骤D1、设定:将本次协同疏散迭代的临界楼层作为所述楼梯电梯协同疏散模式中的最优临界楼层CR_F,假定所述超高层建筑内的全部人员在该设定条件下按照所述楼梯电梯协同疏散模式进行疏散;
并且,以所述优化临界楼层CR_F0为出发点进行迭代,也即:在首次协同疏散迭代时,所述本次协同疏散迭代的临界楼层设置为所述优化临界楼层CR_F0;
步骤D2、依据本次协同疏散迭代的临界楼层、所述楼梯电梯协同疏散模式和所述人群分布情况,计算出本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000149
以及每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA00029395843100001410
其中,
Figure BDA00029395843100001411
表示第if楼层分配到is号应急楼梯进行疏散的人员数量,
Figure BDA00029395843100001412
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤D3、将所述本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure BDA0002939584310000151
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次协同疏散迭代的疏散时间
Figure BDA0002939584310000152
其中的最大值记为:本次协同疏散迭代的最大楼梯疏散时间
Figure BDA0002939584310000153
其中,tis表示is号应急楼梯在本次协同疏散迭代的疏散时间;
将所述本次协同疏散迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure BDA0002939584310000154
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次协同疏散迭代的疏散时间
Figure BDA0002939584310000155
其中的最大值记为:本次协同疏散迭代的最大电梯疏散时间
Figure BDA0002939584310000156
其中,tie表示ie号应急电梯在本次协同疏散迭代的疏散时间;
并且,将本次协同疏散迭代的最大楼梯疏散时间和本次协同疏散迭代的最大电梯疏散时间中的较大者,记为:本次协同疏散迭代的整体疏散时间
Figure BDA0002939584310000157
步骤D4、如果本次协同疏散迭代的最大电梯疏散时间大于本次协同疏散迭代的最大楼梯疏散时间,则将本次协同疏散迭代的临界楼层上移一层作为下一次协同疏散迭代的临界楼层,否则,将本次协同疏散迭代的临界楼层下移一层作为下一次协同疏散迭代的临界楼层;
步骤D5、重复步骤D1至步骤D4以进行多次协同疏散迭代,直至当前协同疏散迭代计算出的整体疏散时间ttotal相较于上一次协同疏散迭代计算出的整体疏散时间ttotal不再减小,也即:上一次协同疏散迭代计算出的整体疏散时间ttota为历次协同疏散迭代计算出的整体疏散时间ttotal中的最小者,则:上一次协同疏散迭代计算出的整体疏散时间ttotal为所述最短整体疏散时间,上一次协同疏散迭代的临界楼层为所述最优临界楼层CR_F。
实施例五
在上述实施例一至实施例四中任意一个实施例的基础上,本实施例五还采用了以下优选的实施方式:
所述楼梯疏散时间模型采用以下公式:
Figure BDA0002939584310000161
该公式表示:tis为if在2,3,...M中取值时,
Figure BDA0002939584310000162
的最大值;
式中,tis表示is号应急楼梯的疏散时间,
Figure BDA0002939584310000163
表示第i楼层分配到is号应急楼梯进行疏散的人员数量,i的取值在if至M之间,if的取值在2至M之间;Wis为is号应急楼梯的宽度;Cis为is号应急楼梯的通行效率,也即is号应急楼梯在每秒每米宽度通过的人数,Cis可以根据经验预设、也可以事先对is号应急楼梯进行实验测量获得;hif为第if楼层的高度;vh为疏散人员在应急楼梯上的平均疏散速度的竖向分量,也即应急楼梯的高度除以疏散人员在该应急楼梯的疏散时间得到的估算速度,vh可以根据经验预设、也可以事先对应急楼梯进行实验测量获得;
所述电梯疏散时间模型采用以下公式:
Figure BDA0002939584310000164
式中,tie表示ie号应急电梯的疏散时间;
Figure BDA0002939584310000165
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;nie为ie号应急电梯的荷载人数;vie为ie号应急电梯的平均运行速度;
Figure BDA0002939584310000166
Figure BDA0002939584310000167
分别为疏散人员进和出ie号应急电梯的时间;
Figure BDA0002939584310000168
为ie号应急电梯进行一次开关门的时间。另外,
Figure BDA0002939584310000169
表示对
Figure BDA00029395843100001610
进行向上取整,例如:当
Figure BDA00029395843100001611
nie=2时,
Figure BDA00029395843100001612
本发明不局限于上述具体实施方式,根据上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的等效修改、替换或变更,均落在本发明的保护范围之中。

Claims (10)

1.一种超高层建筑楼梯电梯协同应急疏散方法,用于超高层建筑的应急疏散,所述超高层建筑具有M个楼层、ms座应急楼梯和me部应急电梯,所述应急楼梯和应急电梯均能够通往第1楼层,所述楼层、应急楼梯和应急电梯的编号依次记为if、is和ie;
其特征在于,包括:
步骤A、在需要进行应急疏散时,通过传感系统采集超高层建筑的人群分布情况,也即:所述超高层建筑中每一楼层的人数;其中,第if楼层的人数记为Nif
步骤B、依据所述超高层建筑的楼梯疏散时间模型和所述人群分布情况,分析出:最优楼梯疏散人员分配比例,该最优楼梯疏散人员分配比例即为每一楼层分配到每一座应急楼梯进行疏散的人员比例的最优值;使得:所述超高层建筑内的全部人员均通过应急楼梯完成疏散的时间,在人员按照所述最优楼梯疏散人员分配比例进行疏散的情况下为最短,记为最短楼梯疏散时间;
步骤C、依据所述超高层建筑的电梯疏散时间模型和所述人群分布情况,分析出:所述超高层建筑的优化临界楼层(CR_F0);使得所述优化临界楼层(CR_F0)及以上楼层中的全部人员通过应急电梯完成疏散的时间,与所述最短楼梯疏散时间一致;
步骤D、依据所述楼梯疏散时间模型和电梯疏散时间模型,并以所述优化临界楼层(CR_F0)为出发点,迭代计算出:所述超高层建筑的最优临界楼层(CR_F);使得:所述超高层建筑内的全部人员完成疏散的时间,在人员按照楼梯电梯协同疏散模式进行疏散的情况下为最短,记为最短整体疏散时间;
其中,所述楼梯电梯协同疏散模式为:
将所述最优临界楼层(CR_F)及以上楼层均设置为电梯疏散楼层(CR_EL),控制所述应急电梯运行在所述第1楼层与其中一层电梯疏散楼层(CR_EL)之间进行人员疏散,且所述应急电梯在每一层电梯疏散楼层(CR_EL)均仅停靠一次;并且,在任意一部应急电梯停靠在任意一层电梯疏散楼层(CR_EL)时,引导与该部应急电梯的荷载人数相当的人员进入应急电梯中进行疏散;
对于所述电梯疏散楼层(CR_EL)中除了被引导进入应急电梯之外的剩余人员,引导该剩余人员接照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
对于除所述电梯疏散楼层(CR_EL)外的其余楼层,引导该其余楼层中的全部人员按照所述最优楼梯疏散人员分配比例通过应急楼梯进行疏散;
步骤E、接照所述楼梯电梯协同疏散模式,引导所述超高层建筑内的全部人员进行疏散。
2.根据权利要求1所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述楼梯电梯协同疏散模式中,所述应急电梯的运行方式还包括:在各层所述电梯疏散楼层(CR_EL)中,控制所述应急电梯从其中的最高楼层开始向下逐层停靠。
3.根据权利要求1所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述楼梯电梯协同疏散模式中,还将位于所述最优临界楼层(CR_F)之下的若干预设楼层设置为所述电梯疏散楼层(CR_EL)。
4.根据权利要求3所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述预设楼层为:所述最优临界楼层(CR_F)之下每间隔预定层数设置一层电梯疏散楼层(CR_EL),或者,所述最优临界楼层(CR_F)之下的避难层设置为电梯疏散楼层(CR_EL)。
5.根据权利要求1所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述楼梯电梯协同疏散模式中,通过每一楼层中的工作人员进行人工引导和/或通过安装在每一楼层中的智能疏散引导装置进行引导,实现引导人员通过应急电梯或应急楼梯进行疏散。
6.根据权利要求1至5任意一项所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述步骤B的分析方式通过迭代计算实现,包括:
步骤B1、依据本次迭代的楼梯疏散人员分配比例
Figure FDA0002939584300000021
和所述人群分布情况,通过公式
Figure FDA0002939584300000022
计算出本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure FDA0002939584300000023
其中,
Figure FDA0002939584300000024
表示第if楼层分配到is号应急楼梯进行疏散的人员比例,
Figure FDA0002939584300000025
表示第if楼层分配到is号应急楼梯进行疏散的人员数量;
并且,在首次迭代时,所述本次迭代的楼梯疏散人员分配比例
Figure FDA0002939584300000026
设置为初始楼梯疏散人员分配比例
Figure FDA0002939584300000027
Wis为is号应急楼梯的宽度,Wif为与第if楼层连接的全部应急楼梯的宽度之和;
步骤B2、将所述本次迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure FDA0002939584300000031
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次迭代的疏散时间
Figure FDA0002939584300000032
其中的最大值和最小值分别记为:本次迭代的最大疏散时间
Figure FDA0002939584300000033
和本次迭代的最小疏散时间
Figure FDA0002939584300000034
且将
Figure FDA0002939584300000035
所对应的应急楼梯的编号记为is-min,其中,tis表示is号应急楼梯在本次迭代的疏散时间;
步骤B3、对于is_min号应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure FDA0002939584300000036
按照预设幅度调高,对于除is_min号之外的其余应急楼梯,将其在下一次迭代的楼梯疏散人员分配比例
Figure FDA0002939584300000037
按照预设幅度调低;
步骤B4、重复步骤B1至步骤B3以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure FDA0002939584300000038
相较于上一次迭代计算出的最大疏散时间
Figure FDA0002939584300000039
不再减小,则:上一次迭代计算出的最大疏散时间
Figure FDA00029395843000000310
为所述最短楼梯疏散时间,上一次迭代的楼梯疏散人员分配比例
Figure FDA00029395843000000311
为所述最优楼梯疏散人员分配比例。
7.根据权利要求6所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述步骤B3中,将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure FDA00029395843000000312
按照预设幅度调高的计算方式为:
Figure FDA00029395843000000313
将is号应急楼梯在下一次迭代的楼梯疏散人员分配比例
Figure FDA00029395843000000314
按照预设幅度调低的计算方式为:
Figure FDA00029395843000000315
其中,
Figure FDA00029395843000000316
表示本次迭代的楼梯疏散人员分配比例,
Figure FDA00029395843000000317
表示下一次迭代的楼梯疏散人员分配比例。
8.根据权利要求1至5任意一项所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述步骤C的分析方式通过迭代计算实现,包括:
步骤C1、设定:本次迭代的临界楼层及以上楼层中的全部人员均通过应急电梯进行疏散;对于本次迭代的临界楼层及以上楼层,其电梯疏散人员分配比例
Figure FDA00029395843000000318
其中,
Figure FDA00029395843000000319
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,nie为ie号应急电梯的荷载人数,nif为与第if楼层连接的全部应急电梯的荷载人数之和;对于本次迭代的临界楼层之下的楼层,其电梯疏散人员分配比例
Figure FDA00029395843000000411
并且,在首次迭代时,所述本次迭代的临界楼层设置为所述超高层建筑的最高楼层;
步骤C2、依据本次迭代的电梯疏散人员分配比例
Figure FDA0002939584300000041
和所述人群分布情况,通过公式
Figure FDA0002939584300000042
计算出本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure FDA0002939584300000043
其中,
Figure FDA0002939584300000044
表示第if楼层分配到ie号应急电梯进行疏散的人员比例,
Figure FDA0002939584300000045
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤C3、将所述本次迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure FDA0002939584300000046
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次迭代的疏散时间
Figure FDA0002939584300000047
其中的最大值记为:本次迭代的最大疏散时间
Figure FDA0002939584300000048
其中,tie表示ie号应急电梯在本次迭代的疏散时间;
步骤C4、如果本次迭代的最大疏散时间
Figure FDA0002939584300000049
小于步骤B所述最短楼梯疏散时间,则将本次迭代的临界楼层下移一层作为下一次迭代的临界楼层;
步骤C5、重复步骤C1至步骤C4以进行多次迭代,直至当前迭代计算出的最大疏散时间
Figure FDA00029395843000000410
与步骤B所述最短楼梯疏散时间一致,则:将当前迭代的临界楼层作为所述优化临界楼层(CR_F0)。
9.根据权利要求1至5任意一项所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述步骤D的迭代计算方式包括:
步骤D1、设定:将本次协同疏散迭代的临界楼层作为所述楼梯电梯协同疏散模式中的最优临界楼层(CR_F),假定所述超高层建筑内的全部人员在该设定条件下按照所述楼梯电梯协同疏散模式进行疏散;
并且,以所述优化临界楼层(CR_F0)为出发点进行迭代,也即:在首次协同疏散迭代时,所述本次协同疏散迭代的临界楼层设置为所述优化临界楼层(CR_F0);
步骤D2、依据本次协同疏散迭代的临界楼层、所述楼梯电梯协同疏散模式和所述人群分布情况,计算出本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure FDA0002939584300000051
以及每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure FDA0002939584300000052
其中,
Figure FDA0002939584300000053
表示第if楼层分配到is号应急楼梯进行疏散的人员数量,
Figure FDA0002939584300000054
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;
步骤D3、将所述本次协同疏散迭代中每一楼层分配到每一座应急楼梯进行疏散的人员数量
Figure FDA0002939584300000055
代入所述楼梯疏散时间模型,计算得到每一座所述应急楼梯在本次协同疏散迭代的疏散时间
Figure FDA0002939584300000056
其中的最大值记为:本次协同疏散迭代的最大楼梯疏散时间
Figure FDA0002939584300000057
其中,tis表示is号应急楼梯在本次协同疏散迭代的疏散时间;
将所述本次协同疏散迭代中每一楼层分配到每一部应急电梯进行疏散的人员数量
Figure FDA0002939584300000058
代入所述电梯疏散时间模型,计算得到每一部所述应急电梯在本次协同疏散迭代的疏散时间
Figure FDA0002939584300000059
其中的最大值记为:本次协同疏散迭代的最大电梯疏散时间
Figure FDA00029395843000000510
其中,tie表示ie号应急电梯在本次协同疏散迭代的疏散时间;
并且,将本次协同疏散迭代的最大楼梯疏散时间和本次协同疏散迭代的最大电梯疏散时间中的较大者,记为:本次协同疏散迭代的整体疏散时间
Figure FDA00029395843000000511
步骤D4、如果本次协同疏散迭代的最大电梯疏散时间大于本次协同疏散迭代的最大楼梯疏散时间,则将本次协同疏散迭代的临界楼层上移一层作为下一次协同疏散迭代的临界楼层,否则,将本次协同疏散迭代的临界楼层下移一层作为下一次协同疏散迭代的临界楼层;
步骤D5、重复步骤D1至步骤D4以进行多次协同疏散迭代,直至当前协同疏散迭代计算出的整体疏散时间ttotal相较于上一次协同疏散迭代计算出的整体疏散时间ttotal不再减小,则:上一次协同疏散迭代计算出的整体疏散时间ttotal为所述最短整体疏散时间,上一次协同疏散迭代的临界楼层为所述最优临界楼层(CR_F)。
10.根据权利要求1至5任意一项所述的超高层建筑楼梯电梯协同应急疏散方法,其特征在于:所述楼梯疏散时间模型采用以下公式:
Figure FDA0002939584300000061
式中,tis表示is号应急楼梯的疏散时间,
Figure FDA0002939584300000062
表示第i楼层分配到is号应急楼梯进行疏散的人员数量,i的取值在if至M之间,if的取值在2至M之间;Wis为is号应急楼梯的宽度;Cis为is号应急楼梯的通行效率;hif为第if楼层的高度;vh为疏散人员在应急楼梯上的平均疏散速度的竖向分量;
所述电梯疏散时间模型采用以下公式:
Figure FDA0002939584300000063
式中,tie表示ie号应急电梯的疏散时间;
Figure FDA0002939584300000064
表示第if楼层分配到ie号应急电梯进行疏散的人员数量;nie为ie号应急电梯的荷载人数;vie为ie号应急电梯的平均运行速度;
Figure FDA0002939584300000065
Figure FDA0002939584300000066
分别为疏散人员进和出ie号应急电梯的时间;
Figure FDA0002939584300000067
为ie号应急电梯进行一次开关门的时间。
CN202110173516.6A 2021-02-09 2021-02-09 一种超高层建筑楼梯电梯协同应急疏散方法 Active CN113065992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110173516.6A CN113065992B (zh) 2021-02-09 2021-02-09 一种超高层建筑楼梯电梯协同应急疏散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110173516.6A CN113065992B (zh) 2021-02-09 2021-02-09 一种超高层建筑楼梯电梯协同应急疏散方法

Publications (2)

Publication Number Publication Date
CN113065992A true CN113065992A (zh) 2021-07-02
CN113065992B CN113065992B (zh) 2023-03-31

Family

ID=76559303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110173516.6A Active CN113065992B (zh) 2021-02-09 2021-02-09 一种超高层建筑楼梯电梯协同应急疏散方法

Country Status (1)

Country Link
CN (1) CN113065992B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116573A (ja) * 2010-11-29 2012-06-21 Elevator Kenkyusho:Kk 避難用エレベータシステム
CN107835779A (zh) * 2015-07-09 2018-03-23 三菱电机株式会社 电梯控制装置以及灾害发生时的电梯避难运转方法
JP2019094215A (ja) * 2017-11-22 2019-06-20 コリア インスティテュート オブ シビル エンジニアリング アンド ビルディング テクノロジーKorea Institute Of Civil Engineering And Building Technology 居住者避難エレベータを使用する避難戦略支援システムおよびその方法
CN110309976A (zh) * 2019-07-02 2019-10-08 上海市建筑科学研究院(集团)有限公司 超高层建筑楼梯电梯协同疏散优化策略即时生成算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116573A (ja) * 2010-11-29 2012-06-21 Elevator Kenkyusho:Kk 避難用エレベータシステム
CN107835779A (zh) * 2015-07-09 2018-03-23 三菱电机株式会社 电梯控制装置以及灾害发生时的电梯避难运转方法
JP2019094215A (ja) * 2017-11-22 2019-06-20 コリア インスティテュート オブ シビル エンジニアリング アンド ビルディング テクノロジーKorea Institute Of Civil Engineering And Building Technology 居住者避難エレベータを使用する避難戦略支援システムおよびその方法
CN110309976A (zh) * 2019-07-02 2019-10-08 上海市建筑科学研究院(集团)有限公司 超高层建筑楼梯电梯协同疏散优化策略即时生成算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAODONG LIU: "Simulation Study on Collaborative", 《ADVANCEMENTS IN SMART CITY AND INTELLIGENT BUILDING》 *
董肖肖: "高层建筑楼梯电梯协同人员疏散的实时动态疏导策略研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN113065992B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US8276715B2 (en) Method and apparatus for assigning elevator hall calls based on time metrics
Al-Sharif The effect of multiple entrances on the elevator round trip time under up-peak traffic
US8800723B2 (en) Elevator system having floors locked from receiving service
CN109132750B (zh) 一种车位联动电梯自动停靠方法及系统
CN110414832B (zh) 一种地铁运营中的客流控制方法和装置
CN110309976B (zh) 超高层建筑楼梯电梯协同疏散优化策略即时生成方法
Siikonen et al. Efficient evacuation methods in tall buildings
CN113065992B (zh) 一种超高层建筑楼梯电梯协同应急疏散方法
Huang et al. Performance of occupant evacuation in a super high-rise building up to 583 m
JP2012106849A (ja) エレベータの設置計画装置及び方法
CN112685907A (zh) 一种高层办公楼公共交通空间的行人仿真方法
JP2007314263A (ja) 避難状況シミュレーション装置
US10071879B2 (en) Method for controlling an elevator system
CN111008421B (zh) 改造既有地铁车站实现台台楼梯换乘的设计方法及系统
CN113186975A (zh) 一种地下三层地铁站
Wu et al. The numerical analysis of mass evacuation in Taipei 101 with control volume model
RU104202U1 (ru) Станционный комплекс метрополитена мелкого заложения
CN114742309B (zh) 一种用于楼宇内人员撤离最佳路径选择系统的方法
CN217949870U (zh) 带有救援通道的平层入户电梯楼房结构
CN218774193U (zh) 一种机场逃生通道结构
Pan et al. Elevator traffic flow model based on dynamic passenger distribution
CN114418170A (zh) 一种楼宇内人员撤离的最佳路径选择方法
CN212562624U (zh) 一种旧楼加装电梯楼梯改造平层入户结构
CN214246729U (zh) 一种在原有建筑外侧加装电梯的结构
CN212866683U (zh) 一种平台入户的楼梯结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant