CN113058436B - 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用 - Google Patents

一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用 Download PDF

Info

Publication number
CN113058436B
CN113058436B CN202110274617.2A CN202110274617A CN113058436B CN 113058436 B CN113058436 B CN 113058436B CN 202110274617 A CN202110274617 A CN 202110274617A CN 113058436 B CN113058436 B CN 113058436B
Authority
CN
China
Prior art keywords
zif
graphene
solution
composite material
material film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110274617.2A
Other languages
English (en)
Other versions
CN113058436A (zh
Inventor
李原婷
李学剑
杨圆圆
王露露
张蒙蒙
吴舟雅
孔玥
丛海山
唐佳斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202110274617.2A priority Critical patent/CN113058436B/zh
Publication of CN113058436A publication Critical patent/CN113058436A/zh
Application granted granted Critical
Publication of CN113058436B publication Critical patent/CN113058436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯基Ag@ZIF‑67复合材料膜及其制备方法和应用,该方法包括以下步骤:(1)将MOF材料加入到溶剂中,均匀搅拌后,加入银源并搅拌得到溶液A;(2)将还原剂加入到溶液A中并均匀搅拌得到溶液B;(3)将溶液B固液分离并洗涤干燥得到Ag@ZIF‑67;(4)将Ag@ZIF‑67加入到氧化石墨烯溶液中均匀搅拌,真空抽滤后,得到石墨烯基Ag@ZIF‑67复合材料膜,该复合材料膜应用于废水处理。与现有技术相比,本发明具有方法简单,成本低廉,反应条件温和,且操作简单、原料绿色、来源广泛,应用广泛,机械结构强,且可以重复利用等优点。

Description

一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用
技术领域
本发明涉及纳米材料制备及化学分析领域技术领域,具体涉及一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用。
背景技术
水污染是一个重大的环境问题,危及全球数百万人的生活,由于人口增长和全球工业化的增长,越来越多的污染物被释放到水资源中。因此迫切的需要一套简单高效的污染物检测分离策略。
其中,膜技术因其高分离性能,易于操作和放大规模而被认为是最可靠的处理方法;而石墨烯在分离科学中的应用的研究如雨后春笋般涌现,因为其密集的蜂窝状晶格结构具有出色的阻隔性能,石墨烯层之间的间隙或其表面的缺陷可构建纳米级通道,以有效筛分盐离子和其他污染物;由于其拥有大量的吸附位点,优异的机械强度,光催化性能和高表面积,因此是处理水体污染物的良好候选者。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种成本低廉,工艺简单,条件温和的石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用。
本发明的目的可以通过以下技术方案来实现:
发明人了解到,金属有机骨架(MOF)是通过将含金属的点与有机配体连接而制成的结晶多孔材料。与MOF相关的研究由于MOF基材料的可调结构和功能,大表面积和超高孔隙率,是化学和材料领域近年来发展迅速的领域之一,由于其具有固有的优势,例如金属活性位点丰富,孔隙率高,结构多样且化学成分可调。基于这些独特的功能,在此将MOF引入石墨烯基膜,同时提高了石墨烯基膜的水通量,并且通过引入的MOF材料与贵金属纳米颗粒协同完成对于水体污染物的富集,分离与分析检测,具体方案如下:
一种石墨烯基Ag@ZIF-67复合材料膜的制备方法,该方法包括以下步骤:
(1)将MOF材料加入到溶剂中,均匀搅拌后,加入银源并搅拌得到溶液A;
(2)将还原剂加入到溶液A中并均匀搅拌得到溶液B;
(3)将溶液B固液分离并洗涤干燥得到Ag@ZIF-67;
(4)将Ag@ZIF-67加入到氧化石墨烯溶液中均匀搅拌,真空抽滤后,得到石墨烯基Ag@ZIF-67复合材料膜。
进一步地,所述的溶剂为乙醇,所述的MOF材料包括ZIF-67或ZIF-8,所述的银源为AgNO3
进一步地,所述的MOF材料、银源与溶剂的用量之比为700mg:(1-6)mg:(11-15)mL。优选700mg:3.33mg:(11-15)mL。
进一步地,步骤(2)中,包括以下条件中的任意一项或多项:
(2-1)将硼氢化钠缓慢加入到步骤1中的溶液A中;
(2-2)硼氢化钠与银源摩尔质量比为10:1。
进一步地,步骤(3)中,包括以下条件中的任意一项或多项:
(3-1)固液分离采用离心分离的方式,离心分离时的转速采用先高速短时间,再低速长时间的方法;
(3-2)洗涤采用乙醇洗涤;
(3-3)干燥采用60℃下真空烘干。
进一步地,所述高速的转速为8000-10000rpm,时间为5-7min,所述低速的转速为3500-5000rpm,时间为12-15min。
进一步地,所述的Ag@ZIF-67与氧化石墨烯的质量比为1:(1-5)。优选1:3。
一种如上所述的方法制备的石墨烯基Ag@ZIF-67复合材料膜。所得膜的有效直径为4cm左右。
进一步地,所述的Ag@ZIF-67呈现为正十二面体结构,Ag原子存在于ZIF-67结构内部,并且在复合材料膜上均匀分布。
一种如上所述的石墨烯基Ag@ZIF-67复合材料膜的应用,该复合材料膜应用于废水处理。
石墨烯因为其密集的蜂窝状晶格结构具有出色的阻隔性能,石墨烯层之间的间隙或其表面的缺陷可构建纳米级通道,以有效筛分盐离子和其他污染物,石墨烯近年来在分离科学中的应用的研究非常热门,由于其原子厚度,化学惰性和高机械强度,石墨烯已被证明是探索分子富集膜的高效平台。石墨烯由以sp2键结合的芳族结构排列的单层碳原子组成。π轨道的离域电子云占据了石墨烯片中芳环的空隙,从而通过π-π堆积相互作用有效富集了分子。基于这种效果,石墨烯已被广泛用作各种分子的富集材料,因此是处理水体污染物的良好候选者。
金属有机骨架(MOF)是通过将含金属的点与有机配体连接而制成的结晶多孔材料。与MOF相关的研究由于MOF基材料的可调结构和功能,大表面积和超高孔隙率,是化学和材料领域近年来发展迅速的领域之一,具有固有的优势,例如金属活性位点丰富,孔隙率高,结构多样且化学成分可调。
本发明通过简单的搅拌,离心过滤,真空抽滤的手段,合成了一种石墨烯基Ag@ZIF-67复合材料膜,将石墨烯本身固有的性能,通过引入,MOF材料与贵金属纳米颗粒协同,提高了石墨烯基膜的水通量,并且完成对于水体污染物的富集,分离与分析检测。该方法反应条件温和,成本低廉,且制备过程简单,为水体污染物富集,分离与分析方面应用奠定基础。
与现有技术相比,本发明具有以下优点:
(1)本发明通过将石墨烯与MOF材料和贵金属纳米颗粒结合,将其制备成,集水体污染物的富集分离与检测的多功能纳米材料膜;
(2)本发明制备方法简单,成本低廉,反应条件温和,且操作简单、原料绿色、来源广泛的优点使其具有批量生产的潜力;
(3)本发明应用广泛,可应用于膜分离污染物,表面增强拉曼散射分析,光催化降解污染物的领域;
(4)本发明所制备的石墨烯基Ag@ZIF-67复合材料膜机械结构强,且可以重复利用。
附图说明
图1为实施例1中制备的石墨烯基Ag@ZIF-67复合材料膜实物图;
图2为实施例1中制备的石墨烯基Ag@ZIF-67复合材料膜表面扫描电镜图;
图3为实施例1中制备的石墨烯基Ag@ZIF-67复合材料膜EDS Mapping图;
图4为实施例1中制备的石墨烯基Ag@ZIF-67复合材料膜截面扫描电镜图;
图5为实施例1中制备的石墨烯基Ag@ZIF-67的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种石墨烯基Ag@ZIF-67复合材料膜的制备方法,包括以下步骤:
(1)将MOF材料加入到乙醇中,均匀搅拌后,加入银源并搅拌得到溶液A;其中,银源为AgNO3,MOF材料为ZIF-67或ZIF-8;MOF材料与乙醇用量之比为7g:(110-150)mL;银源与乙醇用量之比为(1.11-5.55)mg:(11-15)mL;
(2)将硼氢化钠缓慢加入到溶液A中;,并均匀搅拌得到溶液B;硼氢化钠与银源摩尔质量比为10:1;
(3)将溶液B固液分离并洗涤干燥得到Ag@ZIF-67;其中,固液分离采用离心分离的方式,离心分离时的转速采用先高速短时间,再低速长时间的方法;高速的转速为8000-10000rpm,时间为5-7min,低速的转速为3500-5000rpm,时间为12-15min;洗涤采用乙醇洗涤;干燥采用60℃下真空烘干
(4)将Ag@ZIF-67加入到氧化石墨烯溶液中室温均匀搅拌后,采用真空抽滤的方式,得到所述的石墨烯基Ag@ZIF-67复合材料膜。其中,Ag@ZIF-67与氧化石墨烯质量比为1:(1-5);真空抽滤所得膜的有效直径为4cm左右,Ag@ZIF-67呈现为正十二面体结构,参考图5,Ag存在于ZIF-67结构内部,并且在所制备膜上均匀分布。
水通量测试:
采用真空抽滤装置进行水通量测试。
污染物的去除率:
将富集了5ml 10-5M待测污染物罗丹明6G溶液后的膜置于紫外线下进行1小时光催化降解,使用紫外可见分光光度计记录去除率。
韧性测试:
将之备好的样品进行超过30次的90°弯折后仍具有原始形貌和结构,未发生断裂。
实施例1
一种石墨烯基Ag@ZIF-67复合材料膜的制备,包括以下步骤:
(1)将700mg的ZIF-67加入到13ml乙醇中均匀搅拌;然后将3.33mg的硝酸银加入其中,均匀搅拌5小时;
(2)将6.81mg的硼氢化钠缓慢加入到溶液中,搅拌均匀;
(3)将溶液中的固液分离,采用离心的方式,分别在高转速下离心5min在低转速下离心15min,并将产物置于60℃的真空干燥箱中烘干12小时所得Ag@ZIF-67;
(4)将所得Ag@ZIF-67以1:3的质量比加入到氧化石墨烯水溶液中,搅拌5小时。
(5)将Ag@ZIF-67与氧化石墨烯复合材料置于真空抽滤装置上制备出石墨烯基Ag@ZIF-67复合材料膜如图1-4所示;图3可以看出各元素在氧化石墨烯片层之间均匀分布,图4截面图可以看出膜的厚度以及空穴用以富集污染物分子。图5为SEM下Ag@ZIF-67呈现的正十二面体结构,Ag纳米颗粒包裹在ZIF-67内部。
水通量测试中,相较于纯石墨烯基膜的65.32L·m-2·h-1·MPa-1的水通量,本实施例中的石墨烯基Ag@ZIF-67复合材料膜达到218L·m-2·h-1·MPa-1,且污染物分子被富集在膜表面和片层之间。
实施例2
与实施例1不同之处在于,硝酸银加入量为1.11mg;硼氢化钠加入量为2.27mg。
实施例3
与实施例1不同之处在于,硝酸银加入量为2.22mg;硼氢化钠加入量为4.54mg。
实施例4
与实施例1不同之处在于,硝酸银加入量为4.44mg;硼氢化钠加入量为9.08mg。
实施例5
与实施例1不同之处在于,硝酸银加入量为5.55mg;硼氢化钠加入量为11.35mg。
实施例6
与实施例1不同之处在于,Ag@ZIF-67与氧化石墨烯质量比为1:1。
实施例7
与实施例1不同之处在于,Ag@ZIF-67与氧化石墨烯质量比为1:2。
实施例8
与实施例1不同之处在于,Ag@ZIF-67与氧化石墨烯质量比为1:4。
实施例9
与实施例1不同之处在于,Ag@ZIF-67与氧化石墨烯质量比为1:5。
实施例10
与实施例1不同之处在于,MOF材料ZIF-67为ZIF-8。
各个实施例的水通量与韧性见下表
实施例 水通量(L·m<sup>-2</sup>·h<sup>-1</sup>·MPa<sup>-1</sup>) 复合材料膜韧性
实施例1 218 >30次弯折
实施例2 218 >30次弯折
实施例3 218 >30次弯折
实施例4 218 >30次弯折
实施例5 218 >30次弯折
实施例6 378 >12次弯折
实施例7 279 >20次弯折
实施例8 162 >37次弯折
实施例9 104 >45次弯折
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (1)

1.一种石墨烯基Ag@ZIF-67复合材料膜的制备方法,包括以下步骤:
(1)将700 mg的ZIF-67加入到13 ml乙醇中均匀搅拌;然后将3.33 mg的硝酸银加入其中,均匀搅拌5小时;
(2)将6.81 mg的硼氢化钠缓慢加入到溶液中,搅拌均匀;
(3)将溶液固液分离,采用离心的方式,分别在高转速下离心5 min 在低转速下离心15min,并将产物置于60℃的真空干燥箱中烘干12小时得到Ag@ZIF-67;所述高转 速的转速为8000-10000 rpm,所述低转 速的转速为3500-5000 rpm,
(4)将所得Ag@ZIF-67加入到氧化石墨烯水溶液中,搅拌5小时;其中,Ag@ZIF-67与氧化石墨烯的质量比为1: 3;
(5)将Ag@ZIF-67与氧化石墨烯复合材料置于真空抽滤装置上制备出石墨烯基Ag@ZIF-67复合材料膜;
各元素在氧化石墨烯片层之间均匀分布,Ag@ZIF-67呈现正十二面体结构,Ag纳米颗粒包裹在ZIF-67内部;
水通量测试中,石墨烯基Ag@ZIF-67复合材料膜达到218 L·m-2·h-1·MPa-1,且污染物分子被富集在膜表面和片层之间。
CN202110274617.2A 2021-03-15 2021-03-15 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用 Active CN113058436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110274617.2A CN113058436B (zh) 2021-03-15 2021-03-15 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110274617.2A CN113058436B (zh) 2021-03-15 2021-03-15 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113058436A CN113058436A (zh) 2021-07-02
CN113058436B true CN113058436B (zh) 2023-02-10

Family

ID=76560603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110274617.2A Active CN113058436B (zh) 2021-03-15 2021-03-15 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113058436B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797510B (zh) * 2022-04-14 2024-03-26 河海大学 一种自清洁多维材料复合高分子自支撑膜制备方法及应用
CN115109268B (zh) * 2022-08-01 2023-05-23 安徽科技学院 一种高效降解土霉素光催化材料的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492638A (zh) * 2017-01-17 2017-03-15 哈尔滨工业大学 一种纳米银有机框架超滤膜的制备方法及利用其净水的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806770A (zh) * 2017-11-21 2019-05-28 泉州师范学院 一种mof负载银抗菌阻垢超滤膜的制备方法及其应用
KR102185206B1 (ko) * 2019-09-03 2020-12-02 영남대학교 산학협력단 자가 세척 기능화된 수처리용 고분자 분리막
CN110931731B (zh) * 2019-11-08 2020-10-23 上海应用技术大学 二维碳化物晶体基硫化锑负极材料及其制备方法和应用
CN111389235B (zh) * 2020-04-20 2021-03-30 武汉理工大学 多孔金属有机框架掺杂的氧化石墨烯基复合材料及其快速制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492638A (zh) * 2017-01-17 2017-03-15 哈尔滨工业大学 一种纳米银有机框架超滤膜的制备方法及利用其净水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes;Mehdi Pejman;《ACS Publications》;20201217;36287-36300 *

Also Published As

Publication number Publication date
CN113058436A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN113058436B (zh) 一种石墨烯基Ag@ZIF-67复合材料膜及其制备方法和应用
Janwery et al. Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water
Shakeri et al. Fe3O4-based melamine-rich covalent organic polymer for simultaneous removal of auramine O and rhodamine B
KR102041519B1 (ko) 박테리아 및 중금속의 동시 제거를 위한 나노복합물 고분자-탄소 기반 나노재료 필터
Ran et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes
Ghaffar et al. Biochar composite membrane for high performance pollutant management: fabrication, structural characteristics and synergistic mechanisms
Subrahmanya et al. An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA
KR101926973B1 (ko) 독성물질의 제거를 위한 금속유기얼개/섬유 복합소재 및 그 제조방법
Wu et al. Fabrication and evaluation of GO/TiO2-based molecularly imprinted nanocomposite membranes by developing a reformative filtering strategy: Application to selective adsorption and separation membrane
Wang et al. Fabrication of polyimide membrane incorporated with functional graphene oxide for CO2 separation: the effects of GO surface modification on membrane performance
CN109589917B (zh) 基于双层中空氧化锌/碳材料的固相微萃取纤维及其制备方法
CN111647184B (zh) 一种去除环境水中三氯生的共价有机骨架薄膜材料及其制备方法和应用
CN110354696B (zh) 一种柔性高通量氧化石墨烯/二氧化硅复合膜及其制备方法
Xiong et al. Dye adsorption on zinc oxide nanoparticulates atomic‐layer‐deposited on polytetrafluoroethylene membranes
Wang et al. Delignified wood filter functionalized with metal-organic frameworks for high-efficiency air filtration
US9919264B2 (en) Enhanced graphene oxide membranes and methods for making same
CN105621389A (zh) 支撑型复合碳分子筛膜
Lin et al. A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration
CN112705173A (zh) 一种功能化uio-66-nh2复合膜及其制备方法和在吸附镓中的应用
Satilmis et al. Electrospinning of ultrafine poly (1-trimethylsilyl-1-propyne)[ptmsp] fibers: highly porous fibrous membranes for volatile organic compound removal
Wang et al. De novo fabrication of large-area and self-standing covalent organic framework films for efficient separation
Jia et al. Metal–organic framework membranes: Advances, fabrication, and applications
CN106606931B (zh) 高稳定性海水淡化膜及其制法和应用
Li et al. Nanofiltration membranes fabricated through ultra-thin α-Co (OH) 2 nanosheets with high chlorine resistance and long-term stability for efficient dye removal
Maqbool et al. Development of ZnO-GO-NiO membrane for removal of lead and cadmium heavy metal ions from wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant