CN113058045B - 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法 - Google Patents

一种用于肿瘤成像的磁性核壳纳米材料及其制备方法 Download PDF

Info

Publication number
CN113058045B
CN113058045B CN202110308622.0A CN202110308622A CN113058045B CN 113058045 B CN113058045 B CN 113058045B CN 202110308622 A CN202110308622 A CN 202110308622A CN 113058045 B CN113058045 B CN 113058045B
Authority
CN
China
Prior art keywords
magnetic core
shell
magnetic
nano material
tumor imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110308622.0A
Other languages
English (en)
Other versions
CN113058045A (zh
Inventor
王夺
肖泽宇
罗良平
史长征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202110308622.0A priority Critical patent/CN113058045B/zh
Publication of CN113058045A publication Critical patent/CN113058045A/zh
Application granted granted Critical
Publication of CN113058045B publication Critical patent/CN113058045B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种用于肿瘤成像的磁性核壳纳米材料及其制备方法,本发明的磁性核壳纳米材料粒径为1‑5nm,其中磁核是由纳米氧化铁和纳米四氧化三铁按质量比为3:5‑10混合而成,所述磁核的质量分数为50‑70%;其中磁壳是由丙烯酸甲酯与丙烯酸羟乙酯引发聚合而成。利用其作为磁共振检测用造影剂,能够显著降低其使用量,同时成像效果显著。

Description

一种用于肿瘤成像的磁性核壳纳米材料及其制备方法
技术领域
本发明涉及磁性核壳纳米材料技术领域,尤其涉及一种用于肿瘤成像的磁性核壳纳米材料及其制备方法。
背景技术
影像学技术是癌症研究和临床诊断必不可少的工具。过去几十年中出现了大量新的影像学技术并获得了广泛应用。传统的影像学技术只能让临床医师看到体内肿瘤的位置和形貌,今后的影像学技术还将获知肿瘤内分子、细胞和生物过程,从而为肿瘤诊断提供全方位信息。
磁共振(MR)成像因具有空间分辨率高、软硬组织成像好、无创性观测等优点,在医疗诊断特别是分子影像研究方面发挥着重要作用。随着纳米技术和MR分子影像的发展与结合,以超顺磁性氧化铁(SPIO)纳米晶体构建的MR纳米探针得到了极大的关注。
在中国专利CN201310045055.X中公开了一种纳米核壳结构的超顺磁微球。该微球粒径可控、形态稳定、生物相容性好、MRI成像效果好的特点。虽然壳层可以降低磁核的腐蚀或氧化程度,但是顺磁性纳米磁核的含量较低,使得该类造影剂的使用量大,检测成本高昂。
发明内容
有鉴于此,本发明提供了一种结构新颖且用于肿瘤成像的磁性核壳纳米材料,该磁性核壳纳米材料中磁核的含量高达50-70wt%,降低了其在磁共振检测中使用量,同时成像效果显著。
本发明磁性核壳纳米材料的粒径为1-5nm,其中磁核是由纳米氧化铁和纳米四氧化三铁按质量比为3:5-10混合而成,所述磁核的质量分数为50-70%;
所述磁性核壳纳米材料的磁壳是由丙烯酸甲酯与丙烯酸羟乙酯引发聚合而成。
优选地,所述丙烯酸甲酯与丙烯酸羟乙酯的摩尔比为1:1-3。
本发明还提供了用于肿瘤成像的磁性核壳纳米材料的制备方法,包括以下步骤:
S1、将纳米氧化铁和纳米四氧化三铁混合后浸渍于表面活性剂中,室温浸泡10-40h,浸泡结束后取出干燥后备用;
S2、将丙烯酸甲酯与丙烯酸羟乙酯溶解在有机溶剂中,加入交联剂混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于去离子水中,并倒入磁壳溶液中,然后加入引发剂和促进剂,在温度为0-10℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
优选地,所述表面活性剂为吐温80。
优选地,所述有机溶剂为乙醇或丙酮。
优选地,所述交联剂为BPO。
优选地,所述引发剂为过硫酸铵。
优选地,所述促进剂为N,N'-二乙基苯胺。
与现有技术相比,本发明具有以下有益效果:本发明提供了一种纳米粒径为1-5nm的磁性核壳纳米材料,其磁核的含量高达50-70wt%。利用其作为磁共振检测用造影剂,能够显著降低其使用量,同时成像效果显著。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和20g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.15mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为0℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
实施例2
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和20g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.15mol丙烯酸羟乙酯溶解在100mL丙酮中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5g N,N'-二乙基苯胺,在温度为10℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
实施例3
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和25g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡20h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.1mol丙烯酸羟乙酯溶解在100mL丙酮中,加入1.5gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
实施例4
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和25g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡30h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.3mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
实施例5
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和25g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡40h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.15mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.8gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
对比例1
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.15mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的纳米氧化铁溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
对比例2
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将20g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯与0.15mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0gBPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的纳米四氧化三铁溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
对比例3
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和20g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.1mol丙烯酸甲酯溶解在100mL乙醇中,加入2.0g BPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5gN,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
对比例4
一种用于肿瘤成像的磁性核壳纳米材料的制备方法,步骤如下:
S1、将10g纳米氧化铁和20g纳米四氧化三铁混合后浸渍于浓度为10wt%的吐温80水溶液中,室温浸泡12h,浸泡结束后取出干燥后备用;
S2、将0.15mol丙烯酸羟乙酯溶解在100mL乙醇中,加入2.0g BPO混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于100mL去离子水中,并倒入磁壳溶液中,然后加入1.0g过硫酸铵和0.5g N,N'-二乙基苯胺,在温度为5℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
对实施例1-5以及对比例1-4制备的磁性核壳纳米材料检测,分别检测磁核含量、材料粒径以及饱和磁化量,如表1所示。
表1
Figure BDA0002988634400000051
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述磁性核壳纳米材料的粒径为1-5nm,所述磁性核壳纳米材料的磁核是由纳米氧化铁和纳米四氧化三铁按质量比为3:5-10混合而成,所述磁核的质量分数为50-70%;
所述磁性核壳纳米材料的磁壳是由丙烯酸甲酯与丙烯酸羟乙酯引发聚合而成;
所述用于肿瘤成像的磁性核壳纳米材料的制备方法,包括以下步骤:
S1、将纳米氧化铁和纳米四氧化三铁混合后浸渍于表面活性剂中,室温浸泡10-40h,浸泡结束后取出干燥后备用;
S2、将丙烯酸甲酯与丙烯酸羟乙酯溶解在有机溶剂中,加入交联剂混合均匀,得到磁壳溶液;
S3、将步骤S1干燥后的混合物溶解于去离子水中,并倒入磁壳溶液中,然后加入引发剂和促进剂,在温度为0-10℃引发聚合,过滤、洗涤、干燥后得到所述磁性核壳纳米材料。
2.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述丙烯酸甲酯与丙烯酸羟乙酯的摩尔比为1:1-3。
3.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述表面活性剂为吐温80。
4.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述有机溶剂为乙醇或丙酮。
5.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述交联剂为BPO。
6.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述引发剂为过硫酸铵。
7.根据权利要求1所述用于肿瘤成像的磁性核壳纳米材料,其特征在于,所述促进剂为N,N'-二乙基苯胺。
CN202110308622.0A 2021-03-23 2021-03-23 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法 Expired - Fee Related CN113058045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110308622.0A CN113058045B (zh) 2021-03-23 2021-03-23 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110308622.0A CN113058045B (zh) 2021-03-23 2021-03-23 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113058045A CN113058045A (zh) 2021-07-02
CN113058045B true CN113058045B (zh) 2022-11-18

Family

ID=76563401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110308622.0A Expired - Fee Related CN113058045B (zh) 2021-03-23 2021-03-23 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113058045B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667413A (zh) * 2004-03-09 2005-09-14 中国科学院过程工程研究所 一种免疫磁性微球及其制备方法和用途
CN101121111A (zh) * 2007-05-29 2008-02-13 北京联合大学生物化学工程学院 包覆法磁性聚合物微球的生产方法
CN103012815A (zh) * 2012-12-07 2013-04-03 南开大学 一种窄分散高磁性壳聚糖亚微粒子的制备方法
CN105435753A (zh) * 2014-08-29 2016-03-30 四川大学 一种介孔磁性高分子复合球及其制备方法与应用
CN107175086A (zh) * 2017-06-26 2017-09-19 浙江大学宁波理工学院 离子印迹磁性富集材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157323A (en) * 1976-06-09 1979-06-05 California Institute Of Technology Metal containing polymeric functional microspheres
US8715739B2 (en) * 2005-10-24 2014-05-06 Purdue Research Foundation Polymer coated microparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667413A (zh) * 2004-03-09 2005-09-14 中国科学院过程工程研究所 一种免疫磁性微球及其制备方法和用途
CN101121111A (zh) * 2007-05-29 2008-02-13 北京联合大学生物化学工程学院 包覆法磁性聚合物微球的生产方法
CN103012815A (zh) * 2012-12-07 2013-04-03 南开大学 一种窄分散高磁性壳聚糖亚微粒子的制备方法
CN105435753A (zh) * 2014-08-29 2016-03-30 四川大学 一种介孔磁性高分子复合球及其制备方法与应用
CN107175086A (zh) * 2017-06-26 2017-09-19 浙江大学宁波理工学院 离子印迹磁性富集材料的制备方法

Also Published As

Publication number Publication date
CN113058045A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN102659191B (zh) 一种控制四氧化三铁形貌与性能的方法
Ahmad et al. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging
EP2981293B1 (en) Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity
Liao et al. One-pot synthesis of gadolinium (III) doped carbon dots for fluorescence/magnetic resonance bimodal imaging
CN104258425A (zh) 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
CN111821473A (zh) 一种协同增强肝特异性的复合铁氧体纳米颗粒及其制备方法及其应用
Wang et al. Gd and Eu co-doped nanoscale metal–organic framework as a T1–T2 dual-modal contrast agent for magnetic resonance imaging
Liang et al. Ultrasmall gadolinium hydrated carbonate nanoparticle: an advanced T 1 MRI contrast agent with large longitudinal relaxivity
CN102657881B (zh) 一种Fe3O4纳米磁共振造影剂材料的制备方法
CN104740654A (zh) 磁性纳米颗粒磁共振造影剂和增强磁性纳米颗粒弛豫率的方法
Zhang et al. Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging
Liu et al. Renal-clearable zwitterionic conjugated hollow ultrasmall Fe 3 O 4 nanoparticles for T 1-weighted MR imaging in vivo
CN113058045B (zh) 一种用于肿瘤成像的磁性核壳纳米材料及其制备方法
CN102380109B (zh) 一种两亲性多糖包裹超顺磁纳米粒子构建的磁共振造影剂及其制备方法
Li et al. Synthesis of Pt@ Fe 2 O 3 nanorods as MRI probes for in vivo application
CN112494666B (zh) 一种t1-t2双激活磁共振成像造影剂及其制备方法和应用
Zhang et al. Preparation and MRI performances of core-shell structural PEG salicylic acid-gadolinium composite nanoparticles
KR101042399B1 (ko) 다기능성 산화철 나노입자 및 이를 이용한 진단 조영제
CN110639030A (zh) 基于MOF-808构筑Gd基磁共振造影剂纳米材料及其制备方法和应用
CN102895678B (zh) 基于齐墩果酸的肝靶向磁共振成像造影剂及其制备方法
CN101708866B (zh) 一种超顺磁性水溶性铁酸锰纳米粒子的制备方法
CN104445439A (zh) 一种核壳结构的氧化铜-四氧化三铁复合磁性材料的制备方法
CN101518656B (zh) 一种两亲超顺磁性磁共振造影剂
CN115043998B (zh) 利用糖基或苯基烯丙基单体通过光聚合反应制备磁性聚合物的方法及其制备的聚合物和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221118