CN113054880A - 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统 - Google Patents

一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统 Download PDF

Info

Publication number
CN113054880A
CN113054880A CN202110309550.1A CN202110309550A CN113054880A CN 113054880 A CN113054880 A CN 113054880A CN 202110309550 A CN202110309550 A CN 202110309550A CN 113054880 A CN113054880 A CN 113054880A
Authority
CN
China
Prior art keywords
side converter
control
dfig
grid
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110309550.1A
Other languages
English (en)
Inventor
李岚
候传羽
杨琦
杨旭
赵楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110309550.1A priority Critical patent/CN113054880A/zh
Publication of CN113054880A publication Critical patent/CN113054880A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/425Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明一种DFIG网侧变换器电流跟踪非线性控制方法及其控制系统,属于DFIG网侧变换器电流跟踪非线性控制技术领域;所要解决的技术问题为:提供一种DFIG网侧变换器电流跟踪非线性控制方法的改进;解决上述技术问题采用的技术方案为:对DFIG网侧变换器进行数学建模:将DFIG网侧变换器的非线性过程用状态方程表示,建立其数学模型;采用滑模控制器实现网侧变换器电压外环控制:选取合适的滑模面,建立符合李雅普诺夫稳定性的滑模控制器,实现电压外环控制;采用反馈线性化实现网侧变换器电流内环控制:在满足反馈线性化条件下,对DFIG网侧变换器数学模型进行反馈线性化解耦,实现电流跟踪控制,完成闭环控制过程;本发明应用于双馈风力发电机控制。

Description

一种DFIG网侧变换器电流跟踪非线性控制方法及其控制系统
技术领域
本发明一种DFIG网侧变换器电流跟踪非线性控制方法及其控制系统,属于双馈风力发电机网侧变换器电流跟踪非线性控制技术领域。
背景技术
随着近年来风能设施的进步,风能作为可再生能源,愈来愈具有经济竞争力和发展潜力。而目前主流的风电机组通常采用变速恒频机组,以双馈异步发电机组为主,其定子直接挂接电网,转子通过三相交—直—交变换器实现交流励磁,可以通过定子、转子双通道实现电功率的交换。转子励磁变换器常采用背靠背三相两电平电压型PWM变换器,两PWM变换器按照其所在位置可分别为网侧变换器和转子侧变换器。若电网发生不对称故障时,网侧将出现二倍频交流量,最终将会传递至转子侧,严重危害DFIG风电机组的机械系统安全,故在DFIG系统中,对网侧变换器的控制是如今研究的焦点问题。
目前网侧变换器的控制通常采用同步旋转坐标系下双环级联PI控制。在PI控制器下,网侧变换器的控制虽然容易实现,但动态性能不是很理想,其中电流电压很难进行快速跟踪,想要达到理想的控制效果非常困难。因此,本申请提出了一种DFIG网侧变换器电流跟踪非线性控制方法及其控制系统。
发明内容
本发明为了克服现有技术中存在的不足,所要解决的技术问题为:提供一种DFIG网侧变换器电流跟踪非线性控制方法的改进及其硬件结构的改进。
为了解决上述技术问题,本发明采用的技术方案为:一种DFIG网侧变换器电流跟踪非线性控制方法,包括如下步骤:
步骤一:对DFIG网侧变换器进行数学建模:将DFIG网侧变换器的非线性过程用状态方程表示,建立其数学模型;
步骤二:采用滑模控制器实现网侧变换器电压外环控制:选取合适的滑模面,建立符合李雅普诺夫稳定性的滑模控制器,实现电压外环控制;
步骤三:采用反馈线性化实现网侧变换器电流内环控制:在满足反馈线性化条件下,对 DFIG网侧变换器数学模型进行反馈线性化解耦,实现电流跟踪控制,完成闭环控制过程。
所述步骤一建立数学模型的具体步骤为:
步骤1.1:建立DFIG网侧变换器的三相静止abc数学模型,其表达式如下:
Figure RE-GDA0003036244280000021
上式中:ua、ub、uc为变压器输出电压,ura、urb、urc为网侧变流器交流侧电压,R为寄生电阻,L为滤波电抗器的电感,ia、ib、ic为网侧变流器输入电流,C为直流母线滤波电容,udc为直流母线电压,lload为网侧流向转子变流器的电流,Sa、Sb、Sc
为网侧变换器的开关函数;
步骤1.2:通过坐标变换将网侧变换器三相静止abc数学模型转换得到两相静止αβ坐标系下的数学模型,转换关系如下:
Figure RE-GDA0003036244280000022
所述步骤二采用滑模控制器实现网侧变换器电压外环控制的具体步骤为:
步骤2.1:选取滑模面函数:S=udc_ref-udc
上式中:udc_ref为参考电压;
步骤2.2:选择指数趋近律
Figure RE-GDA0003036244280000023
限定滑模控制趋近阶段的运动轨迹,上式中:k1、k2为滑模控制器参数,且k1>0,k2>0,ε为误差带,ε>0,
Figure RE-GDA0003036244280000031
为S的导数,sat(S)为饱和函数,所述饱和函数的计算公式如下:
Figure RE-GDA0003036244280000032
步骤2.3:当系统稳定时,系统的直流母线电压udc将无静差跟踪参考值udc_ref,此时,
Figure RE-GDA0003036244280000033
将上式代入滑模面函数得:
Figure RE-GDA0003036244280000034
根据直流母线电压与功率关系,可得内环有功功率与直流母线电压关系为:
Figure RE-GDA0003036244280000035
根据上述计算公式可得网侧变换器直流母线电压外环的控制方程为:
P=(C[k1S+k2sat(S)]+iload)udc
所述步骤三采用反馈线性化实现网侧变换器电流内环控制的具体步骤如下:
步骤3.1:根据两相静止αβ坐标系下的数学模型选取状态变量x=[x1 x2]T,控制输入变量u=[u1 u2]T,输出变量y1=h1(x)=x1、y2=h2(x)=x2,其中x1=iα,x2=iβ,u1 uα-u,u2 uβ-u,则根据DFIG网侧变换器非线性系统数学模型即两相静止αβ坐标系下的数学模型可得二输入二输出仿射非线性模型为:
Figure RE-GDA0003036244280000036
上式中:
Figure RE-GDA0003036244280000041
g(x)=[g1(x) g2(x)],
Figure RE-GDA0003036244280000042
u=[u1 u2]T
步骤3.2:所述二输入二输出仿射非线性模型的系统相对阶的计算:
当y1=iα=x1=h1(x),通过下式求得系统子相对阶γ1=1:
Figure RE-GDA0003036244280000043
当y2=iβ=x2=h2(x),通过下式求得系统子相对阶γ2=1:
Figure RE-GDA0003036244280000044
通过下式判断系统阶数B(x)为非奇异的:
Figure RE-GDA0003036244280000045
步骤3.3:根据步骤3.2计算系统相对阶γ=γ12=2,满足系统相对阶γ=n,n为系统阶数,且B(x)为非奇异时,确定反馈控制律为:
Figure RE-GDA0003036244280000051
上式中:A(x)·为系数矩阵,计算公式为:
Figure RE-GDA0003036244280000052
E(x)为x1、x2函数矩阵,计算公式为
Figure RE-GDA0003036244280000053
v1、v2为新的控制输入;
根据步骤3.3得出网侧变换器调制所需的合成期望电压为:
Figure RE-GDA0003036244280000054
一种DFIG网侧变换器电流跟踪非线性控制系统,至少包括交流配电网、网侧变换器、滤波电容、转子侧变换器,所述交流配电网的输出端通过导线与变压器的输入端相连,所述变压器的输出端通过导线与网侧变换器的交流侧相连,所述网侧变换器的直流侧通过导线与转子侧变换器相连;
所述网侧变换器的交流侧设置有电压检测模块,所述控制系统运行时,网侧变换器输出的直流电压通过滑模控制模块进行调节后,输入反馈线性化控制模块进行电流跟踪,最后通过SVPWM模块,控制网侧变换器实现功率因数控制。
所述滑模控制模块包括用于网侧变换器电压外环控制的滑模控制器;
所述反馈线性化控制模块包括用于网侧变换器的电流内环控制器。
本发明相对于现有技术具备的有益效果为:本发明提供的DFIG网侧变换器电流跟踪的非线性控制方法,无需电网电压定向,减少了旋转因子带来的耦合项的引入,避免出现与传统PI相同的复杂结构,实现了反馈线性化快速解耦;同时对电压外环采用含饱和函数的电压滑模控制,进一步提高动态性能,以实现网侧功率因数控制以及电压稳定。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明的网侧变换器结构框图;
图2为本发明的DFIG网侧、转子侧变换器联合控制原理图;
图3、图4为本发明非线性控制下的网侧参考电流和实际电流仿真结果示意图;
图5为采用传统双环级联PI控制与本发明的非线性控制下的网侧电流对比仿真示意图;
图6为本发明三相输入电压、网侧电流仿真示意图;
图7为采用传统双环级联PI控制下的直流母线电压仿真示意图;
图8为采用本发明的非线性控制下直流母线电压仿真示意图。
具体实施方式
如图1至图8所示,本发明提供的DFIG网侧变换器电流跟踪的非线性控制系统,至少包含交流配电网、网侧变换器、滤波电容、转子侧变换器。控制系统中变压器线路与交流配电网相连,网侧变换器交流侧与变压器相连,直流侧与转子侧变换器相连;线路包括电压检测模块、滑模控制模块、反馈线性化模块、SVPWM模块,控制系统运行时,网侧变换器输出直流电压,通过滑模控制模块进行调节后,输入反馈线性化控制模块进行电流跟踪,最后通过SVPWM模块,控制网侧变换器实现功率因数控制。
本发明提供的DFIG网侧变换器电流跟踪的非线性控制方法,其所述方法具体展开如下:首先,在如图1所示基础上,建立DFIG网侧变换器abc数学模型,如下:
Figure RE-GDA0003036244280000061
上式中:ua、ub、uc为变压器输出电压,ura、urb、urc为网侧变流器交流侧电压,R 为寄生电阻,L为滤波电抗器的电感,ia、ib、ic为网侧变流器输入电流,C为直流母线滤波电容,udc为直流母线电压,iload为网侧流向转子变流器的电流,Sa、Sb、Sc为网侧变换器的开关函数。
通过坐标变换将网侧变换器三相静止abc数学模型转换得到两相静止αβ坐标系下的数学模型,如下:
Figure RE-GDA0003036244280000071
本发明的DFIG网侧变换器电流跟踪的非线性控制方法,需要同时设计两类控制器,电压外环控制器和电流内环控制器。其中,网侧变换器电压外环控制器采用滑模控制器,具体设计如下:
1.选取滑模面函数:S=udc_ref-udc(3);
通过选择合适的指数趋近律来限定滑模控制趋近阶段的运动轨迹以保证系统趋近运动的动态品质。由于系统在滑模面可能出现高频抖动,本发明选用饱和函数sat(S)替换传统的sgn(S)来削弱其高频抖动,则指数趋近律为下式:
Figure RE-GDA0003036244280000072
Figure RE-GDA0003036244280000073
上式中:k1、k2为滑模控制器参数,且k1>0,k2>0,ε为误差带,ε>0,
Figure RE-GDA0003036244280000074
为S的导数。
当系统稳定时,系统的直流母线电压udc将无静差跟踪参考值udc_ref,所以有
Figure RE-GDA0003036244280000075
将式(6)代入式(3)可得:
Figure RE-GDA0003036244280000081
又由直流母线电压与功率关系,可得内环有功功率与直流母线电压关系为:
Figure RE-GDA0003036244280000082
结合式(4)、式(7)以及式(8),可得网侧变换器直流母线电压外环的控制方程为:
P=(C[k1S+k2sat(S)]+iload)udc(9)。
2.判断上述滑模控制是否满足李雅普诺夫稳定性:
定义李雅普诺夫函数:
Figure RE-GDA0003036244280000083
对式(10)求导,可得:
Figure RE-GDA0003036244280000084
当|S|>ε时,有sat(S)=sgn(S)(12);
将式(12)代入到式(11),可得:
Figure RE-GDA0003036244280000085
因为k1,k2>0,显然,式(13)中
Figure RE-GDA0003036244280000086
当|S|≤ε时,有
Figure RE-GDA0003036244280000087
将式(14)代入到式(11),可得:
Figure RE-GDA0003036244280000088
显然,式(15)中
Figure RE-GDA0003036244280000089
则S在空间内,都有
Figure RE-GDA00030362442800000810
由李雅普诺夫第二法可知系统是渐近稳定的。
3.根据两相静止αβ坐标系下的数学模型,选取状态变量x=[x1 x2]T,控制输入变量u=[u1 u2]T,输出变量y1=h1(x)=x1、y2=h2(x)=x2,其中 x1=iα,x2=iβ,u1=uα-u,u2 uβ-u,则根据DFIG网侧变换器非线性系统数学模型即两相静止αβ坐标系下的数学模型可得二输入二输出仿射非线性模型为:
Figure RE-GDA0003036244280000091
上式中:
Figure RE-GDA0003036244280000092
g(x)=[g1(x) g2(x)],
Figure RE-GDA0003036244280000093
u=[u1 u2]T
4.上述二输入二输出仿射非线性模型的系统相对阶:
对于y1=iα=x1=h1(x),根据式(16)可得:
Figure RE-GDA0003036244280000094
同理,对于y2=iβ=x2=h2(x),可得:
Figure RE-GDA0003036244280000101
通过下式判断系统阶数B(x)为非奇异的:
Figure RE-GDA0003036244280000102
由式(17)和(18)初步判断γ1=1,γ2=1;通过式(19)可知为非奇异,则由此判定系统式(16)的相对阶γ=γ12=2,即γ=n,其中n为系统的阶数。
5.满足上述系统相对阶下确定反馈控制律:
由于
Figure RE-GDA0003036244280000103
根据式(16)可得:
Figure RE-GDA0003036244280000104
Figure RE-GDA0003036244280000105
Figure RE-GDA0003036244280000106
由式(22)可得FL(反馈线性化)控制律:
Figure RE-GDA0003036244280000111
上式中,A(x)·为系数矩阵,计算公式为:
Figure RE-GDA0003036244280000112
E(x)为x1、x2函数矩阵,计算公式为
Figure RE-GDA0003036244280000113
v1、v2为新的控制输入;
通过FL控制律式(23),可得输出与新的输入关系为:
Figure RE-GDA0003036244280000114
为了实现跟踪控制,新的输入由下式确定:
Figure RE-GDA0003036244280000115
上式中:
y1_ref=iα_ref,y2_ref=iβ_ref,e1=iα_ref-iα,e2=iβ_ref-iβ
其误差动态方程为:
Figure RE-GDA0003036244280000116
通过确定式(26)的极点在复平面的左半平面,可计算出ka、kβ,并取得对期望输出的渐近跟踪;
把式(25)代入式(23)可得:
Figure RE-GDA0003036244280000117
又因为u1=uα-u,u2=uβ-u,则网侧变换器调制所需的合成期望电压为;
Figure RE-GDA0003036244280000121
本发明的网侧变换器控制框图如图2所示。
下面结合仿真对本发明的应用效果作详细的描述。本发明实例基于MATLAB/simulink 仿真平台搭建,建立网侧变换器仿真模型,其参数满足上述要求,变压器输出线电压 190V/50Hz;交流侧滤波电感10mH;电阻5Ω;直流侧初始电压为0,参考电压220V;直流侧电容470μF;负载为RSC;ipm开关频率为10KHz。
图3和图4为本发明所涉及非线性控制下的网侧参考电流和实际电流,实际电流能够较好地跟踪参考电流;图5上半图为传统双环级联PI控制下的iα、iβ波形,下半图为本发明所涉及非线性控制下的iα、iβ波形,图中对比可知,传统控制方式下的iα、iβ具有很明显的超调,而在本发明所实施控制方式下的动态过程过渡非常平滑;图6为本发明所涉及非线性控制下的三相输入电压和网侧电流波形,图中三相输入电压和网侧电流同相位,实现了单位功率因数控制;图7和图8分别为本发明所涉及传统控制下的直流母线电压udc和非线性控制下的直流母线电压udc,通过两图对比可知,传统控制下的udc在0.05s前具有很大的超调,在0.13s才趋于稳定,而本发明实施的非线性控制下的udc并没有超调,且在 0.025s就达到稳态,具有很好的快速性。
本发明涉及双馈风力发电机控制领域,具体指一种DFIG网侧变换器电流跟踪非线性控制方法。本发明解决了经典控制对于结构复杂、强耦合的非线性系统的内部变化难以做出迅速响应的技术问题,通过建立DFIG网侧变换器数学模型,将滑模控制理论应用于电压外环控制器,无需电网电压定向,电流内环采用反馈线性化控制,并对电路参数做出相应设计,避免出现与传统PI相同的复杂结构,实现了直流母线电压快速恒定以及电流跟踪控制的目的。
关于本发明具体结构需要说明的是,本发明采用的各部件模块相互之间的连接关系是确定的、可实现的,除实施例中特殊说明的以外,其特定的连接关系可以带来相应的技术效果,并基于不依赖相应软件程序执行的前提下,解决本发明提出的技术问题,本发明中出现的部件、模块、具体元器件的型号、连接方式除具体说明的以外,均属于本领域技术人员在申请日前可以获取到的已公开专利、已公开的期刊论文、或公知常识等现有技术,无需赘述,使得本案提供的技术方案是清楚、完整、可实现的,并能根据该技术手段重现或获得相应的实体产品。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (6)

1.一种DFIG网侧变换器电流跟踪非线性控制方法,其特征在于:包括如下步骤:
步骤一:对DFIG网侧变换器进行数学建模:将DFIG网侧变换器的非线性过程用状态方程表示,建立其数学模型;
步骤二:采用滑模控制器实现网侧变换器电压外环控制:选取合适的滑模面,建立符合李雅普诺夫稳定性的滑模控制器,实现电压外环控制;
步骤三:采用反馈线性化实现网侧变换器电流内环控制:在满足反馈线性化条件下,对DFIG网侧变换器数学模型进行反馈线性化解耦,实现电流跟踪控制,完成闭环控制过程。
2.根据权利要求1所述的一种DFIG网侧变换器电流跟踪非线性控制方法,其特征在于:所述步骤一建立数学模型的具体步骤为:
步骤1.1:建立DFIG网侧变换器的三相静止abc数学模型,其表达式如下:
Figure RE-FDA0003036244270000011
上式中:ua、ub、uc为变压器输出电压,ura、urb、urc为网侧变流器交流侧电压,R为寄生电阻,L为滤波电抗器的电感,ia、ib、ic为网侧变流器输入电流,C为直流母线滤波电容,udc为直流母线电压,iload为网侧流向转子变流器的电流,Sa、Sb、Sc为网侧变换器的开关函数;
步骤1.2:通过坐标变换将网侧变换器三相静止abc数学模型转换得到两相静止αβ坐标系下的数学模型,转换关系如下:
Figure RE-FDA0003036244270000021
3.根据权利要求1所述的一种DFIG网侧变换器电流跟踪非线性控制方法,其特征在于:所述步骤二采用滑模控制器实现网侧变换器电压外环控制的具体步骤为:
步骤2.1:选取滑模面函数:S=udc_ref-udc
上式中:udc_ref为参考电压;
步骤2.2:选择指数趋近律
Figure RE-FDA0003036244270000022
限定滑模控制趋近阶段的运动轨迹,上式中:k1、k2为滑模控制器参数,且k1>0,k2>0,ε为误差带,ε>0,
Figure RE-FDA0003036244270000023
为S的导数,sat(S)为饱和函数,所述饱和函数的计算公式如下:
Figure RE-FDA0003036244270000024
步骤2.3:当系统稳定时,系统的直流母线电压udc将无静差跟踪参考值udc_ref,此时,
Figure RE-FDA0003036244270000025
将上式代入滑模面函数得:
Figure RE-FDA0003036244270000026
根据直流母线电压与功率关系,可得内环有功功率与直流母线电压关系为:
Figure RE-FDA0003036244270000027
根据上述计算公式可得网侧变换器直流母线电压外环的控制方程为:
P=(C[k1S+k2sat(S)]+iload)udc
4.根据权利要求1所述的一种DFIG网侧变换器电流跟踪非线性控制方法,其特征在于:所述步骤三采用反馈线性化实现网侧变换器电流内环控制的具体步骤如下:
步骤3.1:根据两相静止αβ坐标系下的数学模型选取状态变量x=[x1 x2]T,控制输入变量u=[u1 u2]T,输出变量y1=h1(x)=x1、y2=h2(x)=x2,其中x1=iα,x2=iβ,u1=uα-u,u2=uβ-u,则根据DFIG网侧变换器非线性系统数学模型即两相静止αβ坐标系下的数学模型可得二输入二输出仿射非线性模型为:
Figure RE-FDA0003036244270000031
上式中:
Figure RE-FDA0003036244270000032
g(x)=[g1(x) g2(x)],
Figure RE-FDA0003036244270000033
u=[u1 u2]T
步骤3.2:所述二输入二输出仿射非线性模型的系统相对阶的计算:
当y1=iα=x1=h1(x),通过下式求得系统子相对阶γ1=1:
Figure RE-FDA0003036244270000034
当y2=iβ=x2=h2(x),通过下式求得系统子相对阶γ2=1:
Figure RE-FDA0003036244270000041
通过下式判断系统阶数B(x)为非奇异的:
Figure RE-FDA0003036244270000042
步骤3.3:根据步骤3.2计算系统相对阶γ=γ12=2,满足系统相对阶γ=n,n为系统阶数,且B(x)为非奇异时,确定反馈控制律为:
Figure RE-FDA0003036244270000043
上式中:A(x)为系数矩阵,计算公式为:
Figure RE-FDA0003036244270000044
E(x)为x1、x2函数矩阵,计算公式为
Figure RE-FDA0003036244270000045
v1、v2为新的控制输入;
根据步骤3.3得出网侧变换器调制所需的合成期望电压为:
Figure RE-FDA0003036244270000046
5.一种DFIG网侧变换器电流跟踪非线性控制系统,至少包括交流配电网、网侧变换器、滤波电容、转子侧变换器,其特征在于:所述交流配电网的输出端通过导线与变压器的输入端相连,所述变压器的输出端通过导线与网侧变换器的交流侧相连,所述网侧变换器的直流侧通过导线与转子侧变换器相连;
所述网侧变换器的交流侧设置有电压检测模块,所述控制系统运行时,网侧变换器输出的直流电压通过滑模控制模块进行调节后,输入反馈线性化控制模块进行电流跟踪,最后通过SVPWM模块,控制网侧变换器实现功率因数控制。
6.根据权利要求5所述的一种DFIG网侧变换器电流跟踪非线性控制系统,其特征在于:
所述滑模控制模块包括用于网侧变换器电压外环控制的滑模控制器;
所述反馈线性化控制模块包括用于网侧变换器的电流内环控制器。
CN202110309550.1A 2021-03-23 2021-03-23 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统 Pending CN113054880A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110309550.1A CN113054880A (zh) 2021-03-23 2021-03-23 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110309550.1A CN113054880A (zh) 2021-03-23 2021-03-23 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统

Publications (1)

Publication Number Publication Date
CN113054880A true CN113054880A (zh) 2021-06-29

Family

ID=76514733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110309550.1A Pending CN113054880A (zh) 2021-03-23 2021-03-23 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统

Country Status (1)

Country Link
CN (1) CN113054880A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247946A (zh) * 2023-05-11 2023-06-09 四川大学 一种低谐波高鲁棒性的交流电子负载滑模控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230257A (zh) * 2016-08-12 2016-12-14 南京理工大学 一种双向直流变换器反馈线性化反步滑模控制方法
CN109038659A (zh) * 2018-07-26 2018-12-18 湖南工业大学 基于状态反馈线性化的dfig网侧变换器低电压穿越控制方法
CN112448409A (zh) * 2019-08-29 2021-03-05 天津科技大学 一种基于分数阶滑模控制的无刷双馈电机低压穿越技术

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230257A (zh) * 2016-08-12 2016-12-14 南京理工大学 一种双向直流变换器反馈线性化反步滑模控制方法
CN109038659A (zh) * 2018-07-26 2018-12-18 湖南工业大学 基于状态反馈线性化的dfig网侧变换器低电压穿越控制方法
CN112448409A (zh) * 2019-08-29 2021-03-05 天津科技大学 一种基于分数阶滑模控制的无刷双馈电机低压穿越技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯传羽: "DFIG网侧变换器反馈线性化与滑模控制", 《南方电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247946A (zh) * 2023-05-11 2023-06-09 四川大学 一种低谐波高鲁棒性的交流电子负载滑模控制方法及装置
CN116247946B (zh) * 2023-05-11 2023-07-07 四川大学 一种低谐波高鲁棒性的交流电子负载滑模控制方法及装置

Similar Documents

Publication Publication Date Title
Zhong et al. Grid-friendly wind power systems based on the synchronverter technology
CN107528491B (zh) 一种级联h桥多电平变换器及其控制方法
Gao et al. An improved direct power control for doubly fed induction generator
WO2018153222A1 (zh) 一种基于内模控制的微电网并离网平滑切换控制方法
CN109830970B (zh) 双馈风电机组换流器控制模型电磁暂态仿真初始化方法
CN101951178A (zh) 一种用于链式功率调节装置三相直流侧电压的平衡方法
CN110086196B (zh) 一种弱电网下单相级联h桥并网逆变器控制方法
CN110912208B (zh) 一种基于改进下垂控制器的柔性直流输电变流器控制方法
CN111416382B (zh) 一种两级式三相级联光伏并网逆变器的控制方法
CN110460056B (zh) 串联补偿环节与交直流母线接口变换器的协调控制方法
CN113054880A (zh) 一种dfig网侧变换器电流跟踪非线性控制方法及其控制系统
Guo et al. Decoupled control of active and reactive power for a grid-connected doubly-fed induction generator
CN113241748A (zh) 电力电子变流器接入弱电网暂态过电压抑制方法及系统
CN111049201A (zh) 一种交直流电网混合式大功率接口变流器协调控制方法
Yin et al. A predictive DC voltage control scheme for back-to-back converters based on energy balance modeling
CN115085292A (zh) 一种考虑调速和励磁动态的虚拟同步发电机控制方法
CN115589027A (zh) 构网型模块化多电平换流器电流内环解耦控制方法及装置
CN115579966A (zh) 一种基于混合同步的构网型双馈风电机组控制方法
Saad et al. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator
CN114825481A (zh) 一种风电微网系统和控制方法
Li et al. Optimal capacity configuration of VSM-controlled grid-connected inverters in a multi-inverter system based on hybrid-mode control under weak grids
CN114865711A (zh) 一种新能源并网逆变器双模式切换控制方法及系统
CN113852116A (zh) 一种新能源并网系统的稳态控制量计算方法
de Oliveira et al. A stationary stator reference frame control of DFIG under unbalanced voltage conditions
Abedi et al. Specialized predictive SVPWM current control of back-to-back converters for wind power generation systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210629