CN113025975B - 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺 - Google Patents

一种面向复杂构件表面振动测量的无源mems传感器的制备工艺 Download PDF

Info

Publication number
CN113025975B
CN113025975B CN202110248396.1A CN202110248396A CN113025975B CN 113025975 B CN113025975 B CN 113025975B CN 202110248396 A CN202110248396 A CN 202110248396A CN 113025975 B CN113025975 B CN 113025975B
Authority
CN
China
Prior art keywords
capacitor
substrate
dielectric layer
layer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110248396.1A
Other languages
English (en)
Other versions
CN113025975A (zh
Inventor
李晨
熊继军
贾蔓谷
薛亚楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202110248396.1A priority Critical patent/CN113025975B/zh
Publication of CN113025975A publication Critical patent/CN113025975A/zh
Application granted granted Critical
Publication of CN113025975B publication Critical patent/CN113025975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种面向复杂构件表面振动测量的无源MEMS传感器,所述的传感器自上而下分为五层,分别是耐高温氧化铝薄膜封装层、电容上极板和矩形电感线圈层、氧化铝薄膜介质层、电容的下极板层和作为基底的聚酰亚胺层。所述聚酰亚胺基底上沉积有电容下极板,所述电容下极板上沉积氧化铝薄膜介质层,所述氧化铝薄膜介质层上沉积有电容上极板和电感线圈,且电容上极板位于电感线圈的中心处,电容上极板和电感线圈上沉积有耐高温氧化铝薄膜封装层,所述氧化铝薄膜介质层上设有用于实现电容下极板和电感线圈电连接的通孔。本发明选用聚酰亚胺柔性材料作基底,可以完全附着于异形构件表面,在大型装备工作中不易受振脱落,能够实现异形构件表面振动参数的动态精准测量。

Description

一种面向复杂构件表面振动测量的无源MEMS传感器的制备 工艺
技术领域
本发明涉及振动传感器领域,具体涉及一种面向复杂构件表面振动测量的无源MEMS传感器的制备工艺。
背景技术
随着我国科学技术的不断发展,在大型装备制造及运行过程中,对极端环境下(-50℃~300℃)特殊异性构件复杂表面振动参数实施动态监测能力的要求日益提高,现已成为其性能提升的关键技术“瓶颈”。由于传统的振动传感器以非柔性衬底为基底,无法与异构件表面紧密贴合,在工作状态下容易脱落,且有线的测试方法在极端环境下存在接点接触不良、测试结果失真等问题。因此,亟需发明一种全新的面向复杂构件表面振动测量的无源MEMS传感器以实现极端环境下复杂构件表面振动参数的动态精准测量。
发明内容
本发明提供了一种面向复杂构件表面振动测量的无源MEMS传感器,以实现对极端环境下(-50℃~300℃)特殊异性构件复杂表面振动参数的精准测量。
为实现上述目的,本发明采取的技术方案为:
一种面向复杂构件表面振动测量的无源MEMS传感器,所述的传感器自上而下分为五层,分别是耐高温氧化铝薄膜封装层、电容上极板和矩形电感线圈层、氧化铝薄膜介质层、电容的下极板层和作为基底的聚酰亚胺层;所述聚酰亚胺基底上沉积有电容下极板,所述电容下极板上沉积氧化铝薄膜介质层,所述氧化铝薄膜介质层上沉积有电容上极板和电感线圈,且电容上极板位于电感线圈的中心处,电容上极板和电感线圈上沉积有耐高温氧化铝薄膜封装层,所述氧化铝薄膜介质层上设有用于实现电容下极板和电感线圈电连接的通孔。
进一步地,所述电感线圈的形状为矩形螺旋状。
进一步地,一种面向复杂构件表面振动测量的无源MEMS传感器的厚度≤200μm。
进一步地,电容上下极板和矩形电感线圈的厚度均≤10μm,制备材料均为耐高温金属银。
进一步地,所述聚酰亚胺基底的厚度≤100μm。
进一步地,所述氧化铝薄膜介质层与耐高温氧化铝薄膜封装层的厚度均≤50μm。
本发明还提供了上述一种面向复杂构件表面振动测量的无源MEMS传感器的制备工艺,包括如下步骤:
S1、柔性基底预处理
将聚酰亚胺基底依次在丙酮、乙醇和去离子水中进行超声清洗,并对清洗后的聚酰亚胺基底进行烘干处理;
S2、电容下极板的制备
电容下极板制备的主要过程为洁净的聚酰亚胺基底表面经涂胶、曝光、显影将电容下极板图形显示出,利用直流溅射工艺制备电容下极板薄膜,具体的制备工艺为:
f.利用涂胶机在洁净的聚酰亚胺基底表面涂有一层均匀的光刻胶,并在100℃的烘干炉内烘干;
g.将制备好的电容下极板图形掩膜版置于涂有光刻胶一面的基底表面,利用曝光灯曝光3~5s,使掩模版的图形转移到基底表面;
h.对曝光后的基底进行后烘处理以消除光阻层侧壁的驻波效应;
i.将完成后烘处理后的基底置于显影液内浸泡5~10s,使基底表面图形完全显示出来;
j.将图形化基底与待溅射Ag靶材依次放入溅射室内的样品旋转台与靶源安装处,启动溅射电源与样品旋转台,在溅射室真空度低于2×10-4Pa,溅射功率为266.8W,溅射室工作气压为3Pa的条件下进行溅射加工,Ag靶材通过Ar+轰击出Ag粒子,沉积在聚酰亚胺表面形成金属银层,当金属银层的厚度达到10μm时,关闭电源,停止溅射;
f.利用丙酮清洗完成溅射的聚酰亚胺基底,去除基底剩余的光刻胶,同时利用去离子水清洗残留的丙酮溶液,空中静置干燥后,电容下极板制备完成;
S3、氧化铝薄膜介质层的制备
为了避免电容上极板与下极板直接接触,在电容下极板制备完成后,再其表面制备一层绝缘的氧化铝薄膜介质层,制备流程为以Al为靶材,O为反应气体,采用射频溅射工艺制备完成,具体的流程为:
a.在干净的电容下极板薄膜表面,利用涂胶、曝光、显影等工艺使光刻胶仅留在通孔处,以防绝缘的氧化铝将其填充而使电容下极板与电感线圈之间电气绝缘;
b.在真空度为3×10-3Pa,工作气压为0.5Pa的溅射室内,以Al为靶材,O为反应气体,在电容下极板表面采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层;
c.氧化铝薄膜介质层溅射完成后,利用丙酮、去离子水依次清洗基底表面,去除剩余光刻胶与残留的丙酮溶液,干燥后,氧化铝薄膜介质层制备完毕;
S4、电容上极板与电感线圈薄膜的制备
电容上极板与电感线圈薄膜的制备工艺与电容下极板的制备工艺一致,即在氧化铝薄膜介质层表面,以Ag为溅射靶材,Ar为溅射气体,采用直流溅射工艺制备10μm厚的金属Ag薄膜,并完成通孔内金属Ag的填充,实现电容下极板与电感线圈外端的电连接,并对溅射后的薄膜表面进行清洗,去除薄膜表面多余的光刻胶与残留有机溶液,清洗后,电容上极板与电感线圈薄膜制备完成;
S5、耐高温氧化铝薄膜封装层的制备
为了避免传感器的电容、电感与工作环境直接接触,在传感器的最上表面制备一层耐高温的氧化铝薄膜作封装层,具体制备工艺同氧化铝薄膜介质层,在电容上极板和LC导电连接层表面,以Al为靶材,O为反应气体,采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层,并对溅射后的薄膜介质层表面进行清洗,去除薄膜介质层表面多余的光刻胶与残留有机溶液,清洗后,耐高温氧化铝薄膜封装层制备完成。
本发明具有以下有益效果:
针对传统振动传感器在大型装备中的应用局限,本发明选用聚酰亚胺柔性材料作基底,可以完全附着于异形构件表面,在大型装备工作中不易受振脱落,能够实现异形构件表面振动参数的动态精准测量。
选用耐高温金属Ag作导电材料,耐高温陶瓷氧化铝作介质与封装材料,可以使传感器在高温环境下正常稳定地工作。
无线非接触地测量原理避免了传统高温振动传感器的引线使用,使传感器更适用于特殊环境,拓宽了传感器的应用范围。
在特殊环境下,本发明的无源耐高温振动传感器能够精准实现宽频带的振动参数测量。
附图说明
图1为本发明实施例一种面向复杂构件表面振动测量的无源MEMS传感器的制备工艺流程图。
图2为本发明实施例一种面向复杂构件表面振动测量的无源MEMS传感器的剖面图。
图3为本发明实施例一种面向复杂构件表面振动测量的无源MEMS传感器工作原理图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图1所示,本发明实施例提供了一种面向复杂构件表面振动测量的无源MEMS传感器,所述的传感器自上而下分为五层,分别是耐高温氧化铝薄膜封装层、电容上极板和矩形电感线圈层、氧化铝薄膜介质层、电容的下极板层和作为基底的聚酰亚胺层。所述聚酰亚胺基底1上沉积有电容下极板2,所述电容下极板2上沉积氧化铝薄膜介质层3,所述氧化铝薄膜介质层3上沉积有电容上极板5和电感线圈4,且电容上极板位于电感线圈的中心处,电容上极板5和电感线圈4上沉积有耐高温氧化铝薄膜封装层6;所述氧化铝薄膜介质层上设有用于实现电容下极板和电感线圈电连接的通孔7。其中,电容极板与电感线圈的制备材料为耐高温金属Ag,氧化铝薄膜介质层薄膜是为了使电容上下极板之间没有电气连接,耐高温氧化铝薄膜封装层薄膜是为了保护电感电容。
如图2所示,所述柔性聚酰亚胺基底的厚度为100μm,氧化铝薄膜介质层和耐高温氧化铝薄膜封装层的厚度均为50μm,所述电感线圈的形状为矩形螺旋状,矩形电感线圈和电容上下极板的厚度均为10μm,制备材料均为耐高温金属银;本发明一种面向复杂构件表面振动测量的无源MEMS传感器的测试原理图如图3所示,制备完成的振动传感器附着在大型装备异形构件表面,当其工作时,大型装备内部气流导致异构件发生微小振动,使大型装备异形构件与读取天线之间的距离发生变化,导致传感器的等效电感L变化,进而使传感器的谐振频率
Figure BDA0002964582390000051
发生变化,通过与读取天线之间的非接触耦合传输到置于低温环境下的后端处理模块,通过推导、求解后端处理模块内的数据,即可实现异构件表面振动参数(位移d、速度v及加速度a)的精准测量。
本发明实施例还提供了上述一种面向复杂构件表面振动测量的无源MEMS传感器的制备工艺,包括如下步骤:
S1、柔性基底预处理
将聚酰亚胺基底依次在丙酮、乙醇和去离子水中进行超声清洗,并对清洗后的聚酰亚胺基底进行烘干处理;
S2、电容下极板的制备
电容下极板制备的主要过程为洁净的聚酰亚胺基底表面经涂胶、曝光、显影将电容下极板图形显示出,利用直流溅射工艺制备电容下极板薄膜,具体的制备工艺为:
a.利用涂胶机在洁净的聚酰亚胺基底表面涂有一层均匀的光刻胶,并在100℃的烘干炉内烘干;
b.将制备好的电容下极板图形掩膜版置于涂有光刻胶一面的基底表面,利用曝光灯曝光3~5s,使掩模版的图形转移到基底表面;
c.对曝光后的基底进行后烘处理以消除光阻层侧壁的驻波效应;
d.将完成后烘处理后的基底置于显影液内浸泡5~10s,使基底表面图形完全显示出来;
e.将图形化基底与待溅射Ag靶材放入溅射室内的样品旋转台与靶源安装处,启动溅射电源与样品旋转台,在溅射室真空度低于2×10-4Pa,溅射功率为266.8W,溅射室工作气压为3Pa的条件下进行溅射加工,Ag靶材通过Ar+轰击出Ag粒子,沉积在聚酰亚胺表面形成金属银层,当金属银层的厚度达到10μm时,关闭电源,停止溅射;
f.利用丙酮清洗完成溅射后的聚酰亚胺基底,去除基底剩余的光刻胶,同时利用去离子水清洗残留的丙酮溶液,空中静置干燥,电容下极板制备完成;
S3、氧化铝薄膜介质层的制备
为了避免电容上极板与下极板直接接触,在电容下极板制备完成后,再其表面制备一层绝缘的氧化铝薄膜介质层,制备流程为以Al为靶材,O2为反应气体,采用射频溅射工艺制备完成,具体的流程为:
a.在干净的电容下极板薄膜表面,利用涂胶、曝光、显影等工艺使光刻胶仅留在通孔处,以防绝缘的氧化铝将其填充而使电容下极板与电感线圈之间电气绝缘;
b.在真空度为3×10-3Pa,工作气压为0.5Pa的溅射室内,以Al为靶材,O2为反应气体,在电容下极板表面采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层;
c.氧化铝薄膜介质层溅射完成后,利用丙酮、去离子水依次清洗基底表面,去除通孔处的光刻胶与残留的丙酮溶液,干燥后,氧化铝薄膜介质层制备完毕;
S4、电容上极板与电感线圈薄膜的制备
电容上极板与电感线圈薄膜的制备工艺与电容下极板的制备工艺一致,即在氧化铝薄膜介质层表面,以Ag为溅射靶材,Ar为溅射气体,采用直流溅射工艺制备10μm厚的金属Ag薄膜,并完成通孔内金属Ag的填充,实现电容下极板与电感线圈外端的电连接,并对溅射后的薄膜表面进行清洗,去除薄膜表面多余的光刻胶与残留有机溶液,清洗后,电容上极板与电感线圈薄膜制备完成;
S5、耐高温氧化铝薄膜封装层的制备
为了避免传感器的电容、电感与工作环境直接接触,在传感器的最上表面制备一层耐高温的氧化铝薄膜作封装层。具体制备工艺同氧化铝薄膜介质层,在电容上极板和LC导电连接层表面,以Al为靶材,O2为反应气体,采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层,并对溅射后的薄膜介质层表面进行清洗,去除薄膜介质层表面多余的光刻胶与残留有机溶液,清洗后,耐高温氧化铝薄膜封装层制备完成。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (1)

1.一种面向复杂构件表面振动测量的无源MEMS传感器的制备工艺,包括如下步骤:
S1、 柔性基底预处理
将聚酰亚胺基底依次在丙酮、乙醇和去离子水中进行超声清洗,并对清洗后的聚酰亚胺基底进行烘干处理;
S2、 电容下极板的制备
电容下极板制备的主要过程为洁净的聚酰亚胺基底表面经涂胶、曝光、显影将电容下极板图形显示出,利用直流溅射工艺制备电容下极板薄膜,具体的制备工艺为:
a. 利用涂胶机在洁净的聚酰亚胺基底表面涂有一层均匀的光刻胶,并在100℃的烘干炉内烘干;
b. 将制备好的电容下极板图形掩膜版置于涂有光刻胶一面的基底表面,利用曝光灯曝光3~5s,使掩模版的图形转移到基底表面;
c. 对曝光后的基底进行后烘处理以消除光阻层侧壁的驻波效应;
d. 将完成后烘处理后的基底置于显影液内浸泡5~10s,使基底表面图形完全显示出来;
e. 将图形化基底与待溅射Ag靶材依次放入溅射室内的样品旋转台与靶源安装处,启动溅射电源与样品旋转台,在溅射室真空度低于2X10-4Pa,溅射功率为266.8W,溅射室工作气压为3Pa的条件下进行溅射加工,Ag靶材通过Ar+轰击出Ag粒子,沉积在聚酰亚胺表面形成金属银层,当金属银层的厚度达到10μm时,关闭电源,停止溅射;
f. 利用丙酮清洗完成溅射的聚酰亚胺基底,去除基底剩余的光刻胶,同时利用去离子水清洗残留的丙酮溶液,空中静置干燥后,电容下极板制备完成;
S3、 氧化铝薄膜介质层的制备
为了避免电容上极板与下极板直接接触,在电容下极板制备完成后,再其表面制备一层绝缘的氧化铝薄膜介质层,制备流程为以Al为靶材,O2为反应气体,采用射频溅射工艺制备完成,具体的流程为:
a. 在干净的电容下极板薄膜表面,利用涂胶、曝光和显影工艺使光刻胶仅留在通孔处,以防绝缘的氧化铝将其填充而使电容下极板与电感线圈之间电气绝缘;
b. 在真空度为3X10-3Pa,工作气压为0.5Pa的溅射室内,以Al为靶材,O2为反应气体,在电容下极板表面采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层;
c. 氧化铝薄膜介质层溅射完成后,利用丙酮、去离子水依次清洗基底表面,去除剩余光刻胶与残留的丙酮溶液,干燥后,氧化铝薄膜介质层制备完毕;
S4、 电容上极板与电感线圈薄膜的制备
电容上极板与电感线圈薄膜的制备工艺与电容下极板的制备工艺一致,即在氧化铝薄膜介质层表面,以Ag为溅射靶材,Ar为溅射气体,采用直流溅射工艺制备10μm厚的金属Ag薄膜,并完成通孔内金属Ag的填充,实现电容下极板与电感线圈外端的电连接,并对溅射后的薄膜表面进行清洗,去除薄膜表面多余的光刻胶与残留有机溶液,清洗后,电容上极板与电感线圈薄膜制备完成;
S5、 耐高温氧化铝薄膜封装层的制备
为了避免传感器的电容、电感与工作环境直接接触,在传感器的最上表面制备一层耐高温的氧化铝薄膜作封装层,具体制备工艺同氧化铝薄膜介质层,在电容上极板和LC导电连接层表面,以Al为靶材,O2为反应气体,采用射频溅射工艺制备厚度为50μm的氧化铝薄膜介质层,并对溅射后的薄膜介质层表面进行清洗,去除薄膜介质层表面多余的光刻胶与残留有机溶液,清洗后,耐高温氧化铝薄膜封装层制备完成。
CN202110248396.1A 2019-06-28 2019-06-28 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺 Active CN113025975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110248396.1A CN113025975B (zh) 2019-06-28 2019-06-28 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910571554.XA CN110230031B (zh) 2019-06-28 2019-06-28 一种宽频带无源耐高温柔性振动传感器及其制备工艺
CN202110248396.1A CN113025975B (zh) 2019-06-28 2019-06-28 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910571554.XA Division CN110230031B (zh) 2019-06-28 2019-06-28 一种宽频带无源耐高温柔性振动传感器及其制备工艺

Publications (2)

Publication Number Publication Date
CN113025975A CN113025975A (zh) 2021-06-25
CN113025975B true CN113025975B (zh) 2022-08-30

Family

ID=67857665

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910571554.XA Active CN110230031B (zh) 2019-06-28 2019-06-28 一种宽频带无源耐高温柔性振动传感器及其制备工艺
CN202110248396.1A Active CN113025975B (zh) 2019-06-28 2019-06-28 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910571554.XA Active CN110230031B (zh) 2019-06-28 2019-06-28 一种宽频带无源耐高温柔性振动传感器及其制备工艺

Country Status (1)

Country Link
CN (2) CN110230031B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646474A (zh) * 2019-10-25 2020-01-03 中北大学 一种基于wo3的无线无源h2气体传感器及其制备方法
CN111024213B (zh) * 2019-12-27 2021-03-30 安徽芯淮电子有限公司 柔性电容式振动传感器及其制作方法
CN113325199B (zh) * 2021-06-09 2022-04-29 东南大学 一种热电堆式高灵敏度柔性加速度传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519545A (zh) * 2003-02-03 2004-08-11 ��ʽ�����װ 传感器器件以及用于安装电子元件的陶瓷封装外壳
CN102325294A (zh) * 2010-05-13 2012-01-18 欧姆龙株式会社 声音传感器
CN102890273A (zh) * 2011-07-22 2013-01-23 罗伯特·博世有限公司 用于检测和/或发送超声的超声传感器装置
TW201516167A (zh) * 2013-10-22 2015-05-01 Semiconductor Energy Lab 氧化物半導體膜之製作方法
CN105043530A (zh) * 2015-06-25 2015-11-11 冯跃 感知平面全方向振动的mems传感器和能量采集器及方法
CN105452520A (zh) * 2014-04-30 2016-03-30 日东电工株式会社 透明导电性薄膜
EP3252444A1 (en) * 2016-06-01 2017-12-06 Sonion Nederland B.V. Vibration or acceleration sensor applying squeeze film damping
CN109916502A (zh) * 2018-04-30 2019-06-21 索尼昂荷兰有限公司 振动传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160111A1 (en) * 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode
US7600429B2 (en) * 2006-04-20 2009-10-13 Intel Corporation Vibration spectrum sensor array having differing sensors
CN103323042A (zh) * 2013-06-06 2013-09-25 中北大学 一体化全振导电薄膜结构的电容式超声传感器及其制作方法
CN105021120B (zh) * 2015-07-06 2019-07-19 电子科技大学 一种电容应变传感器及其制备方法
JP6600550B2 (ja) * 2015-12-16 2019-10-30 日東電工株式会社 金属層積層透明導電性フィルムおよびそれを用いたタッチセンサ
CN106601480B (zh) * 2017-02-24 2018-11-20 中国振华集团云科电子有限公司 一种高温高频聚酰亚胺片式薄膜电容器及其制作工艺
CN207717276U (zh) * 2018-01-26 2018-08-10 陕西电器研究所 一种基于离子束溅射薄膜的堵片传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519545A (zh) * 2003-02-03 2004-08-11 ��ʽ�����װ 传感器器件以及用于安装电子元件的陶瓷封装外壳
CN102325294A (zh) * 2010-05-13 2012-01-18 欧姆龙株式会社 声音传感器
CN102890273A (zh) * 2011-07-22 2013-01-23 罗伯特·博世有限公司 用于检测和/或发送超声的超声传感器装置
TW201516167A (zh) * 2013-10-22 2015-05-01 Semiconductor Energy Lab 氧化物半導體膜之製作方法
CN105452520A (zh) * 2014-04-30 2016-03-30 日东电工株式会社 透明导电性薄膜
CN105043530A (zh) * 2015-06-25 2015-11-11 冯跃 感知平面全方向振动的mems传感器和能量采集器及方法
EP3252444A1 (en) * 2016-06-01 2017-12-06 Sonion Nederland B.V. Vibration or acceleration sensor applying squeeze film damping
CN109916502A (zh) * 2018-04-30 2019-06-21 索尼昂荷兰有限公司 振动传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An availability of MEMS-based accelerometers and current sensors in machinery fault diagnosis;Jong-Duk Son等;《Measurement》;20160831;第94卷;第680-691页 *
Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection;Yonggang Jiang等;《Sensors》;20170526;第17卷;第1-10页 *
大型柔性曲面振动智能检测;樊红朝等;《机械工程学报》;20080715;第44卷(第7期);第202-208页 *
超灵敏、宽频域新型柔性仿生振动传感;李连辉等;《中国科学:技术科学》;20170620;第47卷(第6期);第632-638页 *

Also Published As

Publication number Publication date
CN110230031B (zh) 2021-03-02
CN113025975A (zh) 2021-06-25
CN110230031A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN113025975B (zh) 一种面向复杂构件表面振动测量的无源mems传感器的制备工艺
KR100545928B1 (ko) 용량식 진공 측정 셀
WO2020114366A1 (zh) 压力传感器及其制备方法
JP2013057616A (ja) 環境センサ
CN105021120B (zh) 一种电容应变传感器及其制备方法
JP2006352823A (ja) 高分子基コンデンサー超音波エネルギー転換器の製造方法
CN108846318A (zh) 超声波指纹识别装置及其制作方法以及应用其的电子装置
CN104568239B (zh) 一种9mm压电激励小型振动筒压力传感器
CN111457833B (zh) 基于立体电极结构的柔性弯曲传感器及加工方法
CN106601480B (zh) 一种高温高频聚酰亚胺片式薄膜电容器及其制作工艺
CN113091811A (zh) 一种柔性温压一体化传感器及其制备方法和应用
CN105873249A (zh) 加热器、传感器、智能终端及加热器的制作方法
CN109163837A (zh) 一种微尺度柔性复合式超高压力传感器及其制造方法
CN110061715B (zh) 一种在非硅基底上制造压电薄膜谐振器的方法
Han et al. Mapping and Simultaneous Detection of Arterial and Venous Pulses using Large‐Scale High‐Density Flexible Piezoelectret Sensor Array
CN111879958B (zh) 一种高频响无源lc转速传感器及其测试方法
CN112604930A (zh) 一种基于mems技术的压电式柔性超声换能器及制备方法
CN107817058A (zh) 电感悬臂梁无线无源温度传感器
CN114739281A (zh) 电容式应变传感器及其制备方法
US11003290B2 (en) Sensing film with an integrated structure
CN110044537A (zh) 压力传感器及其制造方法
CN206584827U (zh) 一种高温高频聚酰亚胺片式薄膜电容器
WO2018014525A1 (zh) 基于聚酰亚胺的纳米银触控模组及其制作方法、电子设备
Alzoubi et al. Stability of interdigitated microelectrodes of flexible chemiresistor sensors
CN110459672B (zh) 一种压电陶瓷传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant