CN113018455A - 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用 - Google Patents

一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用 Download PDF

Info

Publication number
CN113018455A
CN113018455A CN202110282050.3A CN202110282050A CN113018455A CN 113018455 A CN113018455 A CN 113018455A CN 202110282050 A CN202110282050 A CN 202110282050A CN 113018455 A CN113018455 A CN 113018455A
Authority
CN
China
Prior art keywords
adenine
drug
hyaluronic acid
nano
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110282050.3A
Other languages
English (en)
Inventor
陈亮
辛秀兰
段彦旭
梁浩
吴巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Beijing Polytechnic
Original Assignee
Beijing University of Chemical Technology
Beijing Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology, Beijing Polytechnic filed Critical Beijing University of Chemical Technology
Priority to CN202110282050.3A priority Critical patent/CN113018455A/zh
Publication of CN113018455A publication Critical patent/CN113018455A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用,该方法基于腺嘌呤和金属离子的配位自组装特性构建药物负载率高、生物相容性好的纳米载体。其次,通过静电吸附作用将透明质酸修饰在纳米载体的表面形成复合纳米载体,赋予载药体系优异的分散性、稳定性和癌细胞靶向性,提高肿瘤细胞对负载药物的摄取。本发明所述方法制备不仅过程温和,材料均为生物可降解,且来源广泛,可负载药物的种类宽泛,对药物分子在治疗领域中的发展和应用具有重要意义。

Description

一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法 和应用
技术领域
本发明属于生物材料技术领域,特别涉及一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用。
背景技术
腺嘌呤(Adenine)是从生物质中获得的核碱基之一,其H键结合能力和分子结构的刚性使其成分理想的构建生物框架的分子。Zn2+和Adenine配位自组装可构建3D多孔骨架,该多孔骨架通过Zn2+与Adenine的N1、N3、N7和N9配位,组成由共享顶点延伸的多面体框架,具有稳定特性和独特的吸附功能,可以用于储存敏感药物分子。
但实际上,Zn2+和Adenine配位自组装形成的多孔骨架分散性差,难以在药物运输中进行实际的应用。
因此,如何增加Zn2+和Adenine配位自组装构造的分散性,使其应用于药物运输中,是目前需要解决的一个问题。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用,利用透明质酸的修饰增加载药体系的分散度,并减少纳米颗粒在正常组织处的蓄积,实现癌细胞靶向给药。
本发明的目的是通过以下技术方案实现的:
一种透明质酸修饰的负载疏水药物的纳米载体的制备方法,包括以下步骤:
步骤1,Zn-Adenine纳米颗粒的制备:将Zn2+和Adenine(腺嘌呤)的水溶液、疏水药物的乙醇溶液在缓冲溶液中,通过一锅法制备得到负载药物的Zn-Adenine纳米颗粒,记为Drug@(Zn-Adenine);
步骤2,透明质酸的修饰:将步骤1制备得到的Drug@(Zn-Adenine)纳米颗粒离心收集,而后和透明质酸分别溶解在去离子水中,在搅拌过程中通过静电吸附作用形成均一的溶液;
步骤3,纯化处理:将步骤2中所得溶液离心处理,并用去离子水洗涤底部沉淀,从而得到透明质酸修饰的Drug@(Zn-Adenine)纳米颗粒,记为Drug@(Zn-Adenine)@HA,即所述透明质酸修饰的基于Zn2+和Adenine配位自组装的纳米药物载体。
进一步的,所述疏水药物包括光甘草定、喜树碱、紫杉醇。
进一步的,步骤1中Zn2+来源于含锌离子的试剂,优选为六水合硝酸锌。
进一步的,步骤1中所述缓冲液为HEPES缓冲溶液;优选的,所述HEPES缓冲溶液的体积分数为62.5%,浓度为50mM,pH为7.4。
进一步的,步骤1中Zn2+和Adenine的质量比为(5~15):1;所述疏水药物和Adenine的质量比为(1~5):1。
进一步的,步骤2中所述透明质酸的分子量MW<150 KDa,优选的,所述透明质酸的分子量MW=100 KDa。
进一步的,步骤2中所述透明质酸与Drug@(Zn-Adenine)纳米颗粒两者之和的质量浓度为15%~25%。
进一步的,步骤2中产生静电吸附的搅拌条件为600~1000 rpm/min,3~5小时。
进一步的,步骤2中静电吸附作用的搅拌条件为600~1000rpm/min,3~5小时;优选的,搅拌条件为800rpm/min,4小时。
本发明的另一方面:
一种透明质酸修饰的负载疏水药物的纳米载体,所述纳米载体由上述制备方法制备得到。
所述纳米载体的应用,其中,所述纳米载体科应用于制备药物。
本发明相比现有技术的有益效果为:
1、本发明所述透明质酸修饰的负载疏水药物的纳米载体的制备方法,利用了配位自组装技术,首次成功制备了锌离子和腺嘌呤金属-生物分子框架,并作为药物载体负载疏水药物;
2、本发明采用静电吸附作用,利用透明质酸修饰负载疏水药物的纳米载体,使得到的溶液分散性高,从而大大提高所负载药物的稳定性;同时当所述纳米载体负载的药物具有癌细胞靶向性时,还能够提高肿瘤组织的药物摄取量,进一步提高抗癌作用;
3、本发明所述透明质酸修饰的负载疏水药物的纳米载体的制备方法,制备条件温和,全程无高温,减少了药物在制备过程中的损失,提高了药物包埋率和载药率;
4、本发明所述透明质酸修饰的负载疏水药物的纳米载体的制备方法中,使用的材料均为生物可降解材料,生物相容性理想。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图1为本发明实施的一种透明质酸修饰的负载疏水药物的纳米载体的制备流程图;
图2为Cur@(Zn-Adenine)(图2A)和透明质酸修饰的纳米载药颗粒(图2B)Cur@(Zn-Adenine)@HA的透射电镜图;
图3为Cur的标准曲线;
图4为纳米载体负载姜黄素和游离姜黄素的pH稳定性图;
图5为空白载体Zn-Adenine、(Zn-Adenine)@HA对A549细胞作用72 h后的细胞存活率折线图;
图6为负载姜黄素的载体Cur@(Zn-Adenine)、Cur@(Zn-Adenine)@HA和游离姜黄素对A549细胞作用72 h后的细胞存活率柱状图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定发明。
实施例中所用原料均为常规原料,市购产品。其中,腺嘌呤(Adenine,M=135.13):百灵威化学技术有限公司;透明质酸(HA,MW=100KD):华熙福瑞达生物医药有限公司;姜黄素(Cur,M=368.39):韶远化学技术(上海)有限公司。
A549细胞为人非小细胞肺癌细胞,为肿瘤细胞,为普通市购产品。
CCK-8全称为2-(2-甲氧基-4-硝基苯基)-3-(4-硝基苯基)-5-(2,4-二磺酸苯)-2H-四唑单钠盐,购自美国Sigma-Aldrich公司。
实施例1
本实施例提供了一种透明质酸修饰的负载姜黄素的纳米载体,如图1所示其制备方法为:
各溶液的配置:分别配置姜黄素(Cur, Curcumin)乙醇溶液(2 mg / mL Cur)、HEPES缓冲溶液、Zn(NO3)2·6H2O水溶液(50 mM)、Adenine水溶液(10 mM)、HA水溶液(1 mg /mL);
其中所述HEPES缓冲溶液:由4-羟乙基哌嗪乙磺酸配制的缓冲溶液,体积浓度为62.5%,浓度为50mM,pH为7.4。
步骤1,Cur@(Zn-Adenine)纳米颗粒的制备:将4 mL Adenine水溶液、4 mL Cur乙醇溶液、4 mL Zn(NO3)2·6H2O水溶液按顺序加入20 mL HEPES缓冲液中,将混合物在黑暗中强力搅拌(800 rpm/min)2 h;将混合物离心收集,用去离子水洗涤底部沉淀物三次得到负载药物的纳米颗粒,记为Cur@(Zn-Adenine),收集用于下一步反应或冷冻干燥备用。
步骤2,透明质酸的修饰:将步骤1收集的Cur@(Zn-Adenine)分散在5 mL去离子水中,然后倒入装有20 mL HA溶液的小烧杯中,避光处理,剧烈搅拌4 h,搅拌条件为800rpm/min,在搅拌过程中通过静电吸附作用形成均一的溶液。
步骤3,纯化处理:将步骤2中所得溶液离心30min去除未连接的HA,并用去离子水洗涤底部沉淀物3次以得到透明质酸修饰的纳米颗粒,记为Cur@(Zn-Adenine)@HA。
采用透射电镜(型号:HT7700)观察本实施例制备的纳米载药颗粒Cur@(Zn-Adenine)和透明质酸修饰的纳米载药颗粒Cur@(Zn-Adenine)@HA,结果如图2所示,从图中可以看到HA修饰之后的纳米颗粒分散性显著提高。
实施例2——透明质酸修饰的负载姜黄素的纳米载体包埋率和载药率
Cur标准曲线的建立:
准确称取10 mg Cur于10 mL容量瓶中,用乙醇溶解并稀释至刻度线处,配制浓度为1 mg/mL的标准液,然后依次梯度稀释至1、2、3、4、5 μg/mL,用UV检测Cur标准溶液,检测波长为428 nm。以浓度为纵坐标,吸光值为横坐标作线性回归标准曲线,Cur的标准曲线如图3所示,模拟得到的回归方程为y = 0.1568x+ 0.0296 (R2 = 0.9993)。
称取0.5 mg实施例1制备的透明质酸修饰的负载姜黄素的纳米载体于1 mL乙醇,于超声波清洗机中超声1 h至纳米颗粒完全溶解后,加入1 mL乙醇稀释,取上清液于428 nm的波长下进行紫外检测。
透明质酸修饰的负载姜黄素的纳米载体的包埋率和载药率计算公式为:
包埋率(%)=纳米颗粒中Cur的含量/加入的Cur的总量×100%。
载药率(%)=纳米颗粒中Cur的含量/加入的纳米颗粒的总量×100%。
根据公式计算出实施例1制备的透明质酸修饰的负载姜黄素的纳米载体的包埋率为98.9±1.24%,载药率为18.6±0.65%。
实施例3——透明质酸修饰的负载姜黄素的纳米载体的pH稳定性实验
考察pH 5.5和7.4条件下纳米颗粒的稳定性并与游离姜黄素进行比较。
称取1 mg实施例1制备的负载姜黄素的纳米载体Cur@(Zn-Adenine)、透明质酸修饰的负载姜黄素的纳米载体Cur@(Zn-Adenine)@HA和姜黄素加入到10 mL不同pH的PBS缓冲溶液(10 mM)中,分别在0 min和120 min取样100 μL样品,加入900 μL乙醇使其完全溶解,通过高效液相色谱(HPLC,LC-20A)检测姜黄素含量。将姜黄素初始时间时的含量设定为100%。
HPLC条件:C18反相色谱柱;流动相为:0.1%磷酸盐-乙腈(50:50);检测波长:430nm;流速:1.0 mL/min;柱温为25 ℃,进样量为20 μL。
纳米载体负载姜黄素和游离姜黄素的pH稳定性如图4所示。在pH为5.5和7.4 PBS溶液中反应120 min后,Cur的含量均小于40%,Cur@(Zn-Adenine)在两种溶液中的损失量均小于10%,Cur@(Zn-Adenine)@HA在pH=5.5溶液中含量损失约25.3%。(Zn-Adenine)@HA提高姜黄素稳定性的效果略差一点,可能是因为HA的修饰使纳米载体呈现水溶液的分散状态,增加了纳米载体与外界环境的接触,从而使其稳定性减弱。
实施例4——透明质酸修饰的负载姜黄素的纳米载体的体外毒性实验
使用CCK-8试剂盒分别评估游离姜黄素、纳米载体负载姜黄素和透明质酸修饰纳米载体负载的姜黄素对A549细胞的毒性。
培养基配方:DMEM培养基含10%胎牛血清 (FBS)、1%双抗(100 U/mL链霉素和100U/mL青霉素)。
培养箱条件:37 ℃,5% CO2
将A549细胞培养至对数生长期后,用0.25%的胰酶溶液消化并离心收集。调配细胞浓度(4000个/mL),每孔加入100 μL细胞悬液,在96孔板中培养12 h。去除培养基,每孔加入100 μL用DMEM稀释的由DMSO预溶解的药物,培养72 h。其中,Zn-Adenine、(Zn-Adenine)@HA溶液的浓度为0, 20, 40, 60, 80, 100 μg/mL;Cur@(Zn-Adenine)、Cur@(Zn-Adenine)@HA和游离Cur中,Cur有效药物浓度为1-10 μg/mL。CCK-8用DMEM培养基以1:10的比例稀释,每孔加入10 μL 稀释后的CCK-8溶液并避光培养1 h。用酶标仪在450 nm波长下检测每个孔的吸光度。
细胞存活率的计算公式如下:
细胞存活率(%)=(实验组的吸光值/对照组的吸光值)⨯100%。
空白载体Zn-Adenine、(Zn-Adenine)@HA对A549细胞的毒性情况如图5所示,结果表明,Zn-Adenine处理的细胞活力略有所下降,但即使在100 μg/mL的浓度下细胞的存活率仍超过80%。(Zn-Adenine)@HA几乎对细胞活力没有影响。说明纳米载体本身对细胞没有明显的毒副作用,具有良好的生物相容性。负载姜黄素的纳米载体Cur@(Zn-Adenine)、Cur@(Zn-Adenine)@HA和游离Cur对A549细胞的抑制效果如图6所示,随Cur浓度增加,游离Cur、Cur@(Zn-Adenine)和Cur@(Zn-Adenine)@HA表现出的细胞存活率逐渐下降,说明不论是游离Cur还是NPs负载的Cur都对肿瘤细胞具有抑制作用。当Cur浓度为1 μg/mL时,游离Cur表现出的细胞存活率为97.32%,Cur@(Zn-Adenine)的细胞存活率为83.18 %,Cur@(Zn-Adenine)@HA的细胞存活率为76.92%。当Cur浓度为7 μg/mL时,游离Cur仅诱导了30.83%的细胞死亡,Cur@(Zn-Adenine)的细胞死亡率为44.94%,而Cur@(Zn-Adenine)@HA处理的细胞死亡率为79.69%,其抑癌细胞作用比游离Cur提高了约2.58倍。当浓度上升至10 μg/mL时,游离Cur处理后的细胞死亡率为61.21%,Cur@(Zn-Adenine)的细胞死亡率为80.65%,Cur@(Zn-Adenine)@HA处理的细胞死亡率高达84.5%。结果表明,Cur@(Zn-Adenine)可以提高Cur的生物利用度,而经过透明质酸修饰后,Cur@(Zn-Adenine)@HA的抗癌作用显著提高,一方面归因于其稳定性的增加;另一方面,HA的癌细胞靶向性,促进了药物的内吞,实现了药物在细胞内的累积释放。
最后应说明的是,以上仅用以说明本发明的技术方案而非限制,尽管参照较佳布置方案对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

1.一种透明质酸修饰的负载疏水药物的纳米载体的制备方法,其特征在于,所述制备方法包括以下步骤:
步骤1,Zn-Adenine纳米颗粒的制备:将Zn2+和Adenine(腺嘌呤)的水溶液、疏水药物的乙醇溶液在缓冲溶液中,通过一锅法制备得到负载药物的Zn-Adenine纳米颗粒,记为Drug@(Zn-Adenine);
步骤2,透明质酸的修饰:将步骤1制备得到的Drug@(Zn-Adenine)纳米颗粒离心收集,而后和透明质酸分别溶解在去离子水中,在搅拌过程中通过静电吸附作用形成均一的溶液;
步骤3,纯化处理:将步骤2中所得溶液离心处理,并用去离子水洗涤底部沉淀,从而得到透明质酸修饰的Drug@(Zn-Adenine)纳米颗粒,记为Drug@(Zn-Adenine)@HA,即所述透明质酸修饰的基于Zn2+和Adenine配位自组装的纳米药物载体。
2.根据权利要求1所述的制备方法,其特征在于,所述疏水药物包括光甘草定、喜树碱、紫杉醇。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中Zn2+来源于含锌离子的试剂。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中所述缓冲液为HEPES缓冲溶液。
5.根据权利要求1~4任一项所述的制备方法,其特征在于,步骤1中Zn2+和Adenine的质量比为(5~15):1;所述疏水药物和Adenine的质量比为(1~5):1。
6.根据权利要求1~4任一项所述的制备方法,其特征在于,步骤2中所述透明质酸的分子量MW<150 KDa。
7.根据权利要求1~4任一项所述的制备方法,其特征在于,步骤2中所述透明质酸与Drug@(Zn-Adenine)纳米颗粒两者之和的质量浓度为15%~25%。
8.根据权利要求1~4任一项所述的制备方法,其特征在于,步骤2中产生静电吸附的搅拌条件为600~1000 rpm/min,3~5小时。
9.一种透明质酸修饰的负载疏水药物的纳米载体,其特征在于,所述纳米载体由权利要求1~8任一项所述制备方法制备得到。
10.如权利要求9所述纳米载体的应用,其特征在于,所述纳米载体在制备药物中的应用。
CN202110282050.3A 2021-03-16 2021-03-16 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用 Pending CN113018455A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110282050.3A CN113018455A (zh) 2021-03-16 2021-03-16 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110282050.3A CN113018455A (zh) 2021-03-16 2021-03-16 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113018455A true CN113018455A (zh) 2021-06-25

Family

ID=76471088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110282050.3A Pending CN113018455A (zh) 2021-03-16 2021-03-16 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113018455A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114712343A (zh) * 2022-02-22 2022-07-08 南昌大学第二附属医院 一种携载光甘草定的脾靶向纳米药物的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187046A (zh) * 2018-01-18 2018-06-22 中国科学院长春应用化学研究所 一种改性透明质酸遮蔽的金属有机框架、纳米粒子、纳米粒子的制备方法及其应用
CN110522910A (zh) * 2019-08-01 2019-12-03 山东大学 基于金属有机框架纳米给药系统及其制备方法和应用
CN111643673A (zh) * 2020-07-08 2020-09-11 福建医科大学孟超肝胆医院(福州市传染病医院) 一种同时包载光敏剂和蛋白质的肿瘤靶向纳米药物及其应用
CN111821282A (zh) * 2020-08-05 2020-10-27 中国科学院长春应用化学研究所 一种介导级联反应的纳米颗粒及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187046A (zh) * 2018-01-18 2018-06-22 中国科学院长春应用化学研究所 一种改性透明质酸遮蔽的金属有机框架、纳米粒子、纳米粒子的制备方法及其应用
CN110522910A (zh) * 2019-08-01 2019-12-03 山东大学 基于金属有机框架纳米给药系统及其制备方法和应用
CN111643673A (zh) * 2020-07-08 2020-09-11 福建医科大学孟超肝胆医院(福州市传染病医院) 一种同时包载光敏剂和蛋白质的肿瘤靶向纳米药物及其应用
CN111821282A (zh) * 2020-08-05 2020-10-27 中国科学院长春应用化学研究所 一种介导级联反应的纳米颗粒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TRANG THI THU NGUYEN等: "《Mild and large-scale synthesis of nanoscale metal-organic framework used as a potential adenine-based drug nanocarrier》", 《JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY》 *
吴巧: "《负载姜黄素及四氢姜黄素的复合自组装纳米载体的构建及活性研究》", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114712343A (zh) * 2022-02-22 2022-07-08 南昌大学第二附属医院 一种携载光甘草定的脾靶向纳米药物的制备方法及应用
CN114712343B (zh) * 2022-02-22 2024-04-09 南昌大学第二附属医院 一种携载光甘草定的脾靶向纳米药物的制备方法及应用

Similar Documents

Publication Publication Date Title
Sun et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy
Luo et al. Light‐Induced redox‐responsive smart drug delivery system by using selenium‐containing polymer@ MOF shell/core nanocomposite
CN106806343B (zh) 一种叶酸和聚多巴胺修饰的肿瘤靶向介孔二氧化硅纳米粒及制备方法与应用
Kundu et al. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency
CN110787146B (zh) 氧化还原响应性肿瘤靶向顺铂纳米递药系统的制备方法及其应用
Li et al. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery
Zhang et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly (β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer
He et al. Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation
Yang et al. Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy
Yu et al. Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication
CN110408047B (zh) 纳米配位聚合物及其制备方法和应用
CN109589411B (zh) 一种无载体纳米药物传递系统及其制备方法和应用
Ma et al. Metal-organic frameworks and their composites towards biomedical applications
Mu et al. A tumor-specific ferric-coordinated epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy
Liu et al. Engineering of a core–shell nanoplatform to overcome multidrug resistance via ATP deprivation
CN102908318B (zh) 一种10-羟基喜树碱纳米微球及其制备方法
US9101672B2 (en) Use of gold nanoclusters in ameliorating oxidate stress and/or aging
Altangerel et al. PEGylation of 6-amino-6-deoxy-curdlan for efficient in vivo siRNA delivery
Liu et al. Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy
Cai et al. Enhanced lysosomal escape of cell penetrating peptide-functionalized metal–organic frameworks for co-delivery of survivin siRNA and oridonin
Wang et al. Mitochondria-targeting folic acid-modified nanoplatform based on mesoporous carbon and a bioactive peptide for improved colorectal cancer treatment
CN113018455A (zh) 一种透明质酸修饰的负载疏水药物的纳米载体及其制备方法和应用
Huang et al. Supramolecular chemotherapy: Host–guest complexes of Heptaplatin-Cucurbit [7] uril toward colorectal normal and tumor cells
Chen et al. Branched polyethyleneimine modified with hyaluronic acid via a PEG spacer for targeted anticancer drug delivery
Hou et al. Treatment of acute kidney injury using a dual enzyme embedded zeolitic imidazolate frameworks cascade that catalyzes in vivo reactive oxygen species scavenging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210625

WD01 Invention patent application deemed withdrawn after publication