CN109589411B - 一种无载体纳米药物传递系统及其制备方法和应用 - Google Patents

一种无载体纳米药物传递系统及其制备方法和应用 Download PDF

Info

Publication number
CN109589411B
CN109589411B CN201710901886.0A CN201710901886A CN109589411B CN 109589411 B CN109589411 B CN 109589411B CN 201710901886 A CN201710901886 A CN 201710901886A CN 109589411 B CN109589411 B CN 109589411B
Authority
CN
China
Prior art keywords
dox
nano
carrier
delivery system
hco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710901886.0A
Other languages
English (en)
Other versions
CN109589411A (zh
Inventor
贾慧珍
李明辉
刘文广
王玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710901886.0A priority Critical patent/CN109589411B/zh
Publication of CN109589411A publication Critical patent/CN109589411A/zh
Application granted granted Critical
Publication of CN109589411B publication Critical patent/CN109589411B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种无载体纳米药物传递系统及其制备方法和应用,本发明所制备的无载体纳米药物传递系统,通过自组装的方式大大提高了载药量,而且无载体载药避免了由纳米载体的引入而引起的毒副作用,具有良好的生物相容性和生物安全性。同时聚多巴胺的引入有效保护了阿霉素药物分子在血液运输过程中不被提前释放,进一步降低抗癌药物对正常组织的毒副作用。NH4HCO3的引入实现了近红外光热诱导条件下的“爆破式”释放,提高了肿瘤治疗效果。本发明制备方法简单,反应条件温和,能够降低生产和使用成本。可以预见的是,无载体纳米载药系统在肿瘤治疗方面具有良好的应用前景。

Description

一种无载体纳米药物传递系统及其制备方法和应用
技术领域
本发明涉及生物医药技术领域,特别是涉及一种无载体纳米药物传递系统及其制备方法和应用。
背景技术
癌症是目前困扰人类的一大疑难杂症之一,我国每年因癌症而死亡的人数约为250万,因而有效的治疗癌症对减轻患者疾苦,降低死亡率具有十分重要的意义。化疗是目前临床上常用的癌症治疗手段,但由于化疗药物的水溶性低,半衰期短,毒副作用大等缺陷极大的限制了其在临床上的应用,进而影响了癌症的治疗效果。
随着纳米生物技术的发展,纳米材料作为一种新型的药物传递载体问世。许多非水溶性或稳定性较差的药物都可以利用纳米材料包裹的方式进入体内病变部位。通过控制纳米载体的大小(20-200nm)、形状(大长径比)及表面电荷(带正电)等可以更好地实现药物传输。这些纳米载药系统具有良好的生物相容性,极大地促进药物进入肿瘤组织,因此显著地提高了化疗药物的癌症治疗效率。但不幸的是这些纳米载体也存在许多缺陷。例如,这些纳米载体作为惰性外源物,在进入细胞后通常会引起毒性以及通过激活氧化应激途径等诱导产生一些不利影响。其次,一些纳米载药系统在血液循环中的稳定性不足,更重要的是,载药量通常低于10%,在药效方面受到了极大限制;因此新型的生物相容性较好的高载药量纳米载药系统的设计显得尤为重要。
已有研究报道表明疏水抗癌药物例如阿霉素(DOX)等可以自组装成为纳米粒子,并通过体内体外实验证明该药物可以很好的发挥肿瘤治疗效果。但避免药物的提前释放以及实现其在特定部位的快速释放仍然是一个挑战。有研究表明,多巴胺在水溶液中溶解氧的作用下能够发生氧化-交联反应形成聚多巴胺,而聚多巴胺具有极强的粘附性能,能够粘附在有机、无机以及金属材料表面,同时聚多巴胺具有吸收近红外光的能力和较高的光热转换能力(40%),而NH4HCO3在近红外光热的作用下又可以分解产生气体。为此,本专利中我们将聚多巴胺引入到DOX自聚体表面,保护DOX在血液循环过程中不会被提前释放,同时往体系中引入NH4HCO3,以实现药物分子通过被动靶向效应到达肿瘤部位后的“爆破式”释放,最终实现癌症的高效治疗。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种无载体纳米药物传递系统及其制备方法和应用。
为实现本发明的目的所采用的技术方案是:
本发明的一种无载体纳米药物传递系统,包括聚多巴胺膜,所述聚多巴胺膜内包裹有阿霉素纳米组装体和碳酸氢铵。
优选的,所述阿霉素纳米组装体的平均粒径为8-12nm,所述无载体纳米药物传递系统的平均粒径为70-80nm。
优选的,所述无载体纳米药物传递系统在受到近红外光的刺激时,聚多巴胺膜结构发生扰动,促进包裹在其内部的药物释放。
本发明的另一方面,还包括一种无载体纳米药物传递系统的制备方法,包括以下步骤:
步骤1,制备阿霉素纳米组装体,记为DOX NPs;
步骤2,制备聚多巴胺同时包裹DOX NPs和碳酸氢铵的无载体纳米药物传递系统。
优选的,所述阿霉素纳米组装体的平均粒径为8-12nm,所述无载体纳米药物传递系统的平均粒径为70-80nm。
优选的,所述步骤1中DOX NPs的制备方法,包括以下步骤:对盐酸阿霉素进行脱盐处理形成疏水阿霉素,疏水阿霉素通过自组装形成阿霉素纳米组装体DOX NPs。
优选的,所述DOX NPs的自组装步骤如下:将脱盐阿霉素滴加到剧烈搅拌的纯水溶液中,其中脱盐阿霉素与纯水的体积比为(0.01-0.03):1,室温20-25℃搅拌12-24h,过滤后即可得到无载体阿霉素纳米粒子DOX NPs的水溶液。
优选的,所述步骤2中聚多巴胺同时包裹DOX NPs和碳酸氢铵的体系的制备方法,包括以下步骤:将NH4HCO3和多巴胺溶解在pH=8-8.5的PBS缓冲液中,其中NH4HCO3、多巴胺的质量比为2:1,再加入步骤1得到的DOX NPs的水溶液,避光条件下,于室温20-25℃振荡12-24h后,即可制得DOX/NH4HCO3@PDA。
本发明的另一方面,还包括所述无载体纳米药物传递系统在制备抗癌药物上的应用。
与现有技术相比,本发明的有益效果是:
本发明所制备的无载体纳米药物传递系统,通过自组装的方式大大提高了载药量,而且无载体载药避免了由纳米载体的引入而引起的毒副作用,具有良好的生物相容性和生物安全性。同时聚多巴胺的引入有效保护了阿霉素药物分子在血液运输过程中不被提前释放,进一步降低抗癌药物对正常组织的毒副作用。NH4HCO3的引入实现了近红外光热诱导条件下的“爆破式”释放,提高了肿瘤治疗效果。本发明制备方法简单,反应条件温和,能够降低生产和使用成本。可以预见的是,无载体纳米载药系统在肿瘤治疗方面具有良好的应用前景。
附图说明
图1.DOXNPs(1a)、DOX@PDA(1b)、DOX/NH4HCO3@PDA(1c)的粒径分布图。
图2.DOX/NH4HCO3@PDA的透射电镜(TEM)图像
图3.DOX NPs和DOX/NH4HCO3@PDA在pH=7.4和5.0缓冲溶液中的体外释药曲线图
图4.pH=7.4(4a)和pH=5.0(4b)条件下DOX NPs、DOX@PDA、DOX/NH4HCO3@PDA的细胞毒性检测
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
(1)DOX脱盐(1mg/mL)溶液的制备
准备实验所需使用的器具,清洗反应所用的10mL小玻璃瓶、烧杯、磁子并置于烘箱中烘干备用。将10mg的DOX·HCl(阿霉素盐酸盐)加入到9mL二甲基亚砜(DMSO)溶液中使其完全溶解,再向溶液中加入1mL三乙胺(TEA)溶液。在避光条件下搅拌过夜,制备1mg/mL的DOX脱盐溶液。
(2)0.2M pH=8.5磷酸盐缓冲液(PBS缓冲液)的配制
称取3.58g Na2HPO4·12H2O溶于50mL去离子H2O中得到0.2M Na2HPO4溶液;称取1.56g NaH2PO4·2H2O并溶于50mL去离子H2O中得到0.2M NaH2PO4溶液;然后用量筒量取40.5mL0.2M Na2HPO4溶液和9.5mL 0.2M NaH2PO4溶液并将其混合、摇匀即可得到0.2M pH=7.4PBS缓冲液。最后,在搅拌条件下用NaOH溶液对其进行pH调节,用精确pH试纸进行检测,最终得到0.2M pH=8.5的磷酸缓冲液(PBS缓冲液)。
(3)DOXNPs、DOX@PDA、DOX/NH4HCO3@PDA自组装体的制备
取200μL的1mg/mL的DOX脱盐溶液,用微型注射器缓慢滴加到10mL剧烈搅拌(1000rpm/min)的纯水中,在避光条件下搅拌过夜,然后用220nm的滤头对其进行过滤即可制得DOX NPs。
称取6.7mg多巴胺,溶解于50mL含有DOX NPs的0.1M pH=8.5的PBS缓冲溶液中。在避光条件下,利用摇床室温下振荡过夜,即可得到多巴胺(PDA)包裹的DOX复合物(DOX@PDA)。同样采用220nm的滤头对其进行过滤以除去没有包裹上的聚多巴胺。
与多巴胺(PDA)包裹的DOX NPs纳米自组装体的制备方法类似,只是在制备的过程中将碳酸氢铵(NH4HCO3)加入到了该体系中,即:称取6.7mg PDA溶于50mL含有13.4mgNH4HCO3DOX NPs的0.1M pH=8.5的PBS缓冲混合溶液中;同样在避光条件下,室温下振荡过夜即可制得DOX/NH4HCO3@PDA。
从附图1中可以看出三种纳米自组装体粒径依次增大,初步证明DOXNPs、DOX@PDA、DOX/NH4HCO3@PDA的成功合成;附图2是DOX/NH4HCO3@PDA的TEM图像,图中黑色颗粒表示的是DOX NPs,可以直观看出DOX NPs的成功制备及聚多巴胺膜的成功包裹。
(4)DOXNPs、DOX/NH4HCO3@PDA体外释药行为研究
为了模拟体内环境,分别探讨了中性条件(pH=7.4)和酸性条件下(pH=5.0)DOXNPs、DOX/NH4HCO3@PDA的体外释药行为。首先配制500mL PBS缓冲液(pH=7.4)和500mL醋酸盐缓冲溶液(pH=5.0)。所有缓冲液的离子强度均为0.02M。采用公式I=1/2(∑CiZi2)来计算溶液的离子强度以及所需氯化钠的量,此处Ci指代离子浓度(mol/L),Zi指代电荷含量。然后,将3mL DOX NPs和DOX/NH4HCO3@PDA溶液装入透析袋中并直接浸没在5mL pH=7.4的磷酸缓冲溶液和pH=5.0的醋酸缓冲溶液中,在37℃条件下对其体外释药行为进行研究。在特定的时间间隔内,将离心管中的溶液全部取出并加入等体积的新鲜缓冲溶液,pH=5.0条件下的DOX/NH4HCO3@PDA分别在1h、3h、5h、7h进行近红外激光照射(5W/cm3,10min)。DOX的释药量通过荧光光谱仪测定DOX在560nm处的荧光吸收强度并依据标准曲线计算而得。从附图3中可以看出,PDA引入之后,无论在酸性条件还是中性条件下DOX的释放量均较DOX NPs有所降低,表明PDA的引入可以对DOX NPs进行有效保护,提高了其在体内正常生理环境下的稳定性,避免了药物在传输过程中的提前渗漏,即减少其对正常组织的毒副作用;而在pH=5.0酸性条件下引入近红外光刺激后,相比于pH=7.4条件下DOX释药量显著增大,甚至较pH=5.0条件下无近红外激光处理时的释药量也有所增强,体现出“爆破式”释放效果。
(5)DOXNPs、DOX@PDA、DOX/NH4HCO3@PDA细胞毒性检测
通过体外细胞毒性实验进一步证明了无载体纳米载药系统对肿瘤细胞的毒性大小,选用人源宫颈癌细胞(Hela细胞)作研究对象。具体步骤如下:首先将HeLa细胞以6000个细胞/孔的密度接种在96孔板中,然后在5%CO2培养箱中于37℃条件下培养24h。之后每孔加入200μL含有不同浓度的DOXNPs、DOX@PDA、DOX/NH4HCO3@PDA的含有10%FBS的DMEM培养基中,培养4h后换液并进行近红外光照处理,光照强度为5W/cm3,光照时间为1min,然后继续培养48h。之后换液,加入200μL新鲜的含有10%FBS的DMEM培养基。再在每个孔中各加入20μL MTT的磷酸盐缓冲液溶液(5mg/mL),在37℃培养箱中继续培养4h,弃去培养基,每孔中加入150μLDMSO并在室温下振荡1min以使其混合均匀,之后用酶标仪(Bio-Rad,Model 550)记录570nm处的吸光值。用如下公式计算细胞的相对存活率:细胞相对存活率(%)=(OD570(sample)/OD570(control))×100,其中OD570(control)是未加入药物时测定的吸光值,OD570(sample)是加入药物后测得的吸光值。OD值的测定基于4个独立平行样取平均值,结果表示为平均值±标准偏差(SD)。从附图4可以看出随着药物浓度增大,三种纳米粒子细胞毒性均增大,引入PDA后,近红外光的刺激使PDA膜结构发生扰动,促进药物释放,细胞毒性明显增强。从图中可以看出,同时引入NH4HCO3后,DOX/NH4HCO3@PDA细胞毒性急剧增大,进一步证明了该纳米体系在近红外光的诱导下可以实现DOX的“爆破式”释放。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种无载体纳米药物传递系统,其特征在于,通过以下步骤制备:
步骤1,制备阿霉素纳米组装体,记为DOX NPs:将脱盐阿霉素滴加到剧烈搅拌的纯水溶液中,其中脱盐阿霉素与纯水的体积比为(0.01-0.03):1,室温20-25℃搅拌12-24h,过滤后即可得到无载体阿霉素纳米粒子DOX NPs的水溶液;
步骤2,制备聚多巴胺同时包裹DOX NPs和碳酸氢铵的无载体纳米药物传递系统:将NH4HCO3和多巴胺溶解在pH=8-8.5的PBS缓冲液中得到混合液,其中NH4HCO3、多巴胺的质量比为2:1,再向所述混合液中加入步骤1得到的DOX NPs的水溶液,避光条件下,于室温20-25℃振荡12-24h后,即可制得DOX/NH4HCO3@PDA。
2.根据权利要求1所述的一种无载体纳米药物传递系统,其特征在于,所述阿霉素纳米组装体的平均粒径为8-12nm,所述无载体纳米药物传递系统的平均粒径为70-80nm。
3.根据权利要求1所述的一种无载体纳米药物传递系统,其特征在于,所述无载体纳米药物传递系统在受到近红外光的刺激时,聚多巴胺膜结构发生扰动,促进包裹在其内部的药物释放。
4.一种无载体纳米药物传递系统的制备方法,其特征在于,包括以下步骤:
步骤1,制备阿霉素纳米组装体,记为DOX NPs;
步骤2,制备聚多巴胺同时包裹DOX NPs和碳酸氢铵的无载体纳米药物传递系统。
5.根据权利要求4所述的无载体纳米药物传递系统的制备方法,其特征在于,所述步骤2中阿霉素纳米组装体的平均粒径为8-12nm,所述无载体纳米药物传递系统的平均粒径为70-80nm。
6.根据权利要求4所述的无载体纳米药物传递系统的制备方法,其特征在于,所述步骤1中DOX NPs的制备方法,包括以下步骤:对盐酸阿霉素进行脱盐处理形成疏水阿霉素,疏水阿霉素通过自组装形成阿霉素纳米组装体DOX NPs。
7.根据权利要求6所述的无载体纳米药物传递系统的制备方法,其特征在于,所述DOXNPs的自组装步骤如下:将脱盐阿霉素滴加到剧烈搅拌的纯水溶液中,其中脱盐阿霉素与纯水的体积比为(0.01-0.03):1,室温20-25℃搅拌12-24h,过滤后即可得到无载体阿霉素纳米粒子DOX NPs的水溶液。
8.根据权利要求4所述的无载体纳米药物传递系统的制备方法,其特征在于,所述步骤2中聚多巴胺同时包裹DOX NPs和碳酸氢铵的体系的制备方法,包括以下步骤:将NH4HCO3和多巴胺溶解在pH=8-8.5的PBS缓冲液中得到混合液,其中NH4HCO3、多巴胺的质量比为2:1,再向所述混合液中加入步骤1得到的DOX NPs的水溶液,避光条件下,于室温20-25℃振荡12-24h后,即可制得DOX/NH4HCO3@PDA。
9.根据权利要求8所述的无载体纳米药物传递系统的制备方法,其特征在于,所述DOXNPs的水溶液与所述混合液的体积比为(1-1.2):(1-1.2)。
10.如权利要求1-3中任一项所述的无载体纳米药物传递系统在制备抗癌药物上的应用。
CN201710901886.0A 2017-09-28 2017-09-28 一种无载体纳米药物传递系统及其制备方法和应用 Expired - Fee Related CN109589411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710901886.0A CN109589411B (zh) 2017-09-28 2017-09-28 一种无载体纳米药物传递系统及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710901886.0A CN109589411B (zh) 2017-09-28 2017-09-28 一种无载体纳米药物传递系统及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109589411A CN109589411A (zh) 2019-04-09
CN109589411B true CN109589411B (zh) 2022-03-25

Family

ID=65955418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710901886.0A Expired - Fee Related CN109589411B (zh) 2017-09-28 2017-09-28 一种无载体纳米药物传递系统及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109589411B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112137986B (zh) * 2020-05-25 2021-12-14 中国科学院长春应用化学研究所 一种具有线粒体靶向功能的响应性纳米颗粒、其制备方法及应用
CN111568866A (zh) * 2020-06-03 2020-08-25 太原师范学院 一种乙酸根调控的阿霉素无载体纳米药物及其制备方法和应用
CN112121029B (zh) * 2020-09-08 2022-05-17 中国药科大学 一种仿生多巴胺聚合载药纳米递释系统及其制备方法
CN112438961A (zh) * 2020-11-08 2021-03-05 天津理工大学 一种具有温度敏感性的聚多巴胺双载药纳米材料的制备方法
CN115317465B (zh) * 2022-09-19 2023-05-26 中南大学湘雅医院 一种提高小分子药物稳定释放的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy";Ko-Jie Chen et al.;《ACS NANO》;20140417;第8卷(第5期);第5105–5115页 *
"Multifunctional Fe3O4@Polydopamine CoreShell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy";Li-Sen Lin et al.;《ACS NANO》;20140321;第8卷(第4期);第3876–3883页 *
"Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis";Caitong Yu et al.;《Nanoscale》;20150219;第7卷(第2015期);第5683–5690页 *

Also Published As

Publication number Publication date
CN109589411A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109589411B (zh) 一种无载体纳米药物传递系统及其制备方法和应用
Hu et al. Layered double hydroxide-based nanomaterials for biomedical applications
Lazaro et al. Application of zirconium MOFs in drug delivery and biomedicine
Qin et al. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy
Wang et al. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications
Feng et al. Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy
Yang et al. Functionalized mesoporous silica materials for controlled drug delivery
Jiang et al. Indocyanine green–encapsulated nanoscale metal–organic frameworks for highly effective chemo-photothermal combination cancer therapy
Yang et al. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer
Ma et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging
Zhu et al. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates
Moorthy et al. Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
Ai et al. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy
Dai et al. SiO2-coated magnetic nano-Fe3O4 photosensitizer for synergistic tumour-targeted chemo-photothermal therapy
Rafique et al. Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanoparticles: an effective synergistic cancer therapy
CN110755385A (zh) 一种zif-8纳米球负载SERS编码的金纳米粒子用于细胞内光热治疗的制备方法
CN104840977A (zh) 一种磁性荧光复合纳米药物载体的制备方法
CN104474556A (zh) 碳点作为抗肿瘤药物载体的应用
Siboro et al. Ultrasound-activated, tumor-specific in situ synthesis of a chemotherapeutic agent using ZIF-8 nanoreactors for precision cancer therapy
Miao et al. Recent advances in the biomedical applications of black phosphorus quantum dots
Mishra et al. Nanosilver and its medical implications
Han et al. Fabrication of core/shell/shell structure nanoparticle with anticancer drug and dual-photosensitizer co-loading for synergistic chemotherapy and photodynamic therapy
Wang et al. Encapsulation of Enzymes in Metal–Phenolic Network Capsules for the Trigger of Intracellular Cascade Reactions
Wang et al. Tunable Zeolitic Imidazolate Framework‐8 Nanoparticles for Biomedical Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220325