CN113003722A - 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法 - Google Patents

三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法 Download PDF

Info

Publication number
CN113003722A
CN113003722A CN202110175160.XA CN202110175160A CN113003722A CN 113003722 A CN113003722 A CN 113003722A CN 202110175160 A CN202110175160 A CN 202110175160A CN 113003722 A CN113003722 A CN 113003722A
Authority
CN
China
Prior art keywords
reactor
sludge
water
water inlet
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110175160.XA
Other languages
English (en)
Inventor
彭永臻
张方斋
王众
姜浩
任尚
邱金港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110175160.XA priority Critical patent/CN113003722A/zh
Publication of CN113003722A publication Critical patent/CN113003722A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

三段式短程硝化‑厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法,属于高氨氮废水污泥生物处理领域。垃圾渗滤液中高浓度氨氮首先在短程硝化反应器内被氧化为亚硝态氮;含有亚硝态氮的短程硝化反应器出水与剩余污泥一同泵入发酵耦合反硝化反应器,实现反硝化与剩余污泥原位发酵利用的同步进行;剩余污泥发酵过程释放的氨氮在三级反应器内连续曝气条件下通过短程硝化‑厌氧氨氧化的耦合过程得到进一步去除。本发明实现了高氨氮负荷、低C/N比垃圾渗滤液和剩余污泥的同步处理。

Description

三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩 余污泥的装置与方法
技术领域
本发明涉及一种三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法,属于高氨氮废水污泥生物处理领域。具体是垃圾渗滤液首先进入短程硝化反应器,原水中全部氨氮被氧化为亚硝态氮;含有高浓度亚硝态氮的短程硝化反应器出水与剩余污泥一同泵入发酵耦合反硝化反应器,实现反硝化与剩余污泥原位发酵利用的同步进行;剩余污泥发酵过程释放的氨氮在三级反应器内连续曝气条件下通过短程硝化-厌氧氨氧化的耦合过程得到进一步去除。本发明实现了高氨氮负荷、低C/N比垃圾渗滤液和剩余污泥的同步处理。
背景技术
近年来,城市进程不断推进固体废物产量与日俱增,卫生填埋成为全世界范围内固体垃圾的最主要处理方式,在美国和中国分别有43.5%和78.6%的城市固体废物通过卫生填埋的方式进行处理。垃圾渗滤液作为卫生填埋的副产物,具有氨氮浓度高、水质水量波动大、可生化性差和营养元素比例失调等特点,其处理过程成为世界范围内尚未解决的难题。
活性污泥法是目前全世界应用最广泛的污水处理方式,剩余污泥作为活性污泥法的副产物在后续的处理过程中能量消耗巨大,处理费用占据整个污水处理厂运行费用的60%及以上。同时剩余污泥中含有大量有机物,经厌氧发酵过程后产生的挥发性短链脂肪酸是活性污泥法亟需的优质碳源。因此开发出新型的生物污泥发酵原位利用的生物工艺,将一次性解决污水处理过程中剩余污泥产量大和进水碳源不足的问题。
发明内容
本发明提出了三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥,具体是垃圾渗滤液中高浓度氨氮首先在短程硝化反应器内被氧化为亚硝态氮;含有高浓度亚硝态氮的短程硝化反应器出水与剩余污泥一同泵入发酵耦合反硝化反应器,实现反硝化与剩余污泥原位发酵利用的同步进行;剩余污泥发酵过程释放的氨氮在三级反应器内连续曝气条件下通过短程硝化-厌氧氨氧化的耦合过程得到进一步去除。
本发明的目的是通过以下技术方案来实现的:
三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置,其特征在于,包括短程硝化反应器(1)、第一中间水箱(2)、储泥罐(3)、发酵耦合反硝化反应器(4)、第二中间水箱(5)、短程硝化-厌氧氨氧化反应器(6);所述短程硝化反应器(1)设有第一搅拌器(1.1)、pH/DO实时在线监测设备(1.2)、第一进水蠕动泵(1.3)、第一进水口(1.4)、第一空气压缩机(1.5)、第一曝气砂头(1.6)、第一排水口(1.7)、第一出水蠕动泵(1.8)、第一取样口(1.9)、第一溢流口(1.10);所述第一中间水箱(2)设有第二进水口(2.1)、第二出水口(2.2);所述储泥罐(3)设有第一出泥口(3.1);所述污泥发酵耦合反硝化反应器(4)设有第二搅拌器(4.1)、第一进泥口(4.2)、第三进水口(4.3)、第三出水口(4.4)、第二pH/ORP实时在线监测设备(4.5);所述第二中间水箱(5)设有第四进水口(5.1)、第四出水口(5.2);所述短程硝化-厌氧氨氧化反应器(6)设有第三搅拌器(6.1)、pH/DO实时在线检测设备(6.2)、第二进水蠕动泵(6.3)、第四进水口(6.4)、第二空气压缩机(6.5)、第二曝气砂头(6.6)、第四出水口(6.7)。
垃圾渗滤液通过第一进水蠕动泵(1.3)与短程硝化反应器第一进水口(1.4)相连,空气经过第一空气压缩机(1.5)第一曝气砂头(1.6)打入短程硝化反应器(1),短程硝化反应器第一出水口(1.7)经过第一出水如东泵(1.8)与第一中间水箱(2)第二进水口(2.1)相连;储泥罐(3)第一出泥口(3.1)与发酵耦合反硝化反应器第一进泥口(4.2)相连接;第一中间水箱第二出水口(2.2)与发酵耦合反硝化反应器(4)第三进水口(4.3)相连接,第三出水口(4.4)与第二中间水箱(5)第四进水口(5.1)相连接;第二中间水箱第四出水口(5.2)通过第二进水蠕动泵(6.3)与短程硝化-厌氧氨氧化反应器(6)第五进水口(6.4)相连接,空气经过第二空气压缩机(6.5)经过第二曝气砂头(6.6)打入短程硝化-厌氧氨氧化反应器(6)。
利用所述装置进行三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥,包括以下过程:
1)垃圾渗滤液通过进水蠕动泵以1L/min流速泵送至短程硝化反应器,打开第一空气压缩机和第一搅拌器(rpm=100),调整空气压缩机的气体流量控制反应器内溶解氧浓度保持在0.5mg/L以下,在线监测设备实时收集统计pH和DO等指标,在pH曲线不再下降出现拐点“氨谷点”时及时停止曝气,使氨氮的氧化过程停留在短程硝化阶段,关闭第一空气压缩机和第一搅拌器,沉淀0.5h后按50%体积比将出水排入第一中间水箱。
2)打开储泥罐第一出泥口和第一中间水箱第二出水口,剩余污泥和中间水箱中亚硝态氮废水以1L/min流速一同泵入发酵耦合反硝化反应器内,打开第二搅拌器(rpm=100)。作为亚硝态氮的质子化形式,游离亚硝酸具有抑制微生物合成代谢的能力,进而促进剩余污泥原位发酵。发酵过程产生的碳源被反硝化过程所利用,实现剩余污泥发酵与反硝化的同步进行。反硝化过程是产生碱度的过程,在线监测设备实时收集统计pH指标,当pH曲线不再上升出现拐点“亚硝酸盐肘”时关闭第二搅拌器,沉淀2h后将上清液按照50%体积比排入第二中间水箱。
3)打开第二进水蠕动泵以1L/min流速将第二中间水箱中废水全部泵入短程硝化-厌氧氨氧化反应器,第三搅拌器(rpm=100)和第二空气压缩机。调整空气压缩机的气体流量,控制反应器内溶解氧浓度小于0.2mg/L。在线监测设备实时统计收集pH数值,当pH曲线出现明显拐点时及时停止曝气和搅拌,沉淀0.5h后出水。
技术原理
三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法,垃圾渗滤液中高浓度氨氮首先在短程硝化反应器内被氧化为亚硝态氮;含有高浓度亚硝态氮的短程硝化反应器出水与剩余污泥一同泵入发酵耦合反硝化反应器,实现反硝化与剩余污泥原位发酵利用的同步进行;污泥的发酵过程伴随着大量氨氮释放,为实现深度脱氮目的剩余污泥发酵过程释放的氨氮在三级反应器连续曝气条件下通过短程硝化-厌氧氨氧化的耦合过程得到进一步去除。本发明实现了高氨氮负荷、低C/N比垃圾渗滤液和剩余污泥的同步处理。
本发明涉及的三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法具有以下优点:
1)通过短程硝化、剩余污泥发酵以及厌氧氨氧化的有效结合,不仅实现了无外碳源条件下垃圾渗滤液的深度处理,同时完成了外源剩余污泥的发酵减量。
2)与传统硝化-反硝化生物脱氮工艺相比,三段式短程硝化-厌氧氨氧化工艺仅将进水中氨氮氧化为亚硝态氮节约了25%曝气量。
3)剩余污泥中的大分子有机物经发酵过程代谢释放,作为反硝化电子供体将短程硝化过程产生的亚硝态氮还原为氮气,实现了剩余污泥发酵原位利用,节约100%外加碳源。
4)发酵过程释放的氨氮在三级反应器内,通过短程硝化-厌氧氨氧化的耦合过程完成进一步去除,实现垃圾渗滤液的深度处理。
5)本发明充分利用在线监测设备实时收集统计相关指标,通过pH和DO曲线特征点实时控制曝气及缺氧搅拌时间,一方面提高反应效率,另一方面有效的避免了不必要的能源浪费。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置,其特征在于,包括短程硝化反应器(1)、第一中间水箱(2)、储泥罐(3)、发酵耦合反硝化反应器(4)、第二中间水箱(5)、短程硝化-厌氧氨氧化反应器(6)。
所述短程硝化反应器(1)设有第一搅拌器(1.1)、pH/DO实时在线监测设备(1.2)、第一进水蠕动泵(1.3)、第一进水口(1.4)、第一空气压缩机(1.5)、第一曝气砂头(1.6)、第一排水口(1.7)、第一出水蠕动泵(1.8)、第一取样口(1.9)、第一溢流口(1.10);所述第一中间水箱(2)设有第二进水口(2.1)、第二出水口(2.2);所述储泥罐(3)设有第一出泥口(3.1);所述污泥发酵耦合反硝化反应器(4)设有第二搅拌器(4.1)、第一进泥口(4.2)、第三进水口(4.3)、第三出水口(4.4)、第二pH/ORP实时在线监测设备(4.5);所述第二中间水箱(5)设有第四进水口(5.1)、第四出水口(5.2);所述短程硝化-厌氧氨氧化反应器(6)设有第三搅拌器(6.1)、pH/DO实时在线检测设备(6.2)、第二进水蠕动泵(6.3)、第四进水口(6.4)、第二空气压缩机(6.5)、第二曝气砂头(6.6)、第四出水口(6.7)。
垃圾渗滤液通过第一进水蠕动泵(1.3)与短程硝化反应器第一进水口(1.4)相连,空气经过第一空气压缩机(1.5)第一曝气砂头(1.6)打入短程硝化反应器(1),短程硝化反应器第一出水口(1.7)经过第一出水如东泵(1.8)与第一中间水箱(2)第二进水口(2.1)相连;储泥罐(3)第一出泥口(3.1)与发酵耦合反硝化反应器第一进泥口(4.2)相连接;第一中间水箱第二出水口(2.2)与发酵耦合反硝化反应器(4)第三进水口(4.3)相连接,第三出水口(4.4)与第二中间水箱(5)第四进水口(5.1)相连接;第二中间水箱第四出水口(5.2)通过第二进水蠕动泵(6.3)与短程硝化-厌氧氨氧化反应器(6)第五进水口(6.4)相连接,空气经过第二空气压缩机(6.5)经过第二曝气砂头(6.6)打入短程硝化-厌氧氨氧化反应器(6)。
本实施中具体试验用水为晚期垃圾渗滤液,其平均COD浓度为2391mg/L,平均NH4 +-N浓度为1673mg/L;剩余污泥取自于实际污水处理厂MLSS=18324mg/L。试验短程硝化反应器采用10L序批式反应器,排水比为50%;发酵耦合反硝化反应器采用6L序批式反应器,排水比为41.7%,污泥投配比为41.7%。短程硝化-厌氧氨氧化反应器采用10L序批式反应器。
具体操作过程如下:
1)垃圾渗滤液通过进水蠕动泵以1L/min流速泵入短程硝化反应器,打开第一空气压缩机和第一搅拌器(rpm=100),调整空气压缩机的气体流量控制反应器内溶解氧浓度保持在0.5mg/L以下,在线监测设备实时收集统计pH和DO等指标,在pH曲线不再下降出现拐点“氨谷点”出现时停止曝气,使氨氮的氧化过程停留在短程硝化阶段,关闭第一空气压缩机和第一搅拌器,沉淀0.5h后按50%体积比将出水排入第一中间水箱。
2)打开储泥罐第一出泥口和第一中间水箱第二出水口,剩余污泥和中间水箱中亚硝态氮废水一同进入发酵耦合反硝化反应器内,打开第二搅拌器(rpm=100)。作为亚硝态氮的质子化形式,游离亚硝酸具有抑制微生物合成代谢的能力,进而促进剩余污泥原位发酵。发酵过程产生的碳源被反硝化过程所利用,实现剩余污泥发酵与反硝化的同步进行。反硝化过程是产生碱度的过程,在线监测设备实时收集统计pH指标,当pH曲线不再上升出现拐点“亚硝酸盐肘”时及时关闭第二搅拌器,沉淀2h后将上清液按照50%体积比排入第二中间水箱。
3)打开第二进水蠕动泵以1L/min流速将第二中间水箱中废水全部泵入短程硝化-厌氧氨氧化反应器,打开第三搅拌器(rpm=100)和第二空气压缩机。调整空气压缩机的气体流量,控制反应器内溶解氧浓度小于0.2mg/L。在线监测设备实时统计收集pH数值,当pH曲线不再上升出现明显拐点时及时停止曝气和搅拌,沉淀0.5h后出水。
试验结果表明:
三段式短程硝化-厌氧氨氧化工艺在进水COD、氨氮、总氮和外源剩余污泥浓度分别为2391mg/L、1673mg/L、1924mg/L和18324mg/L条件下,总氮去除率和外源污泥减量率分别为98.7%和43.2%,平均污泥消化速率高达4.2kg/m3 d。

Claims (2)

1.三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置,其特征在于,包括短程硝化反应器(1)、第一中间水箱(2)、储泥罐(3)、发酵耦合反硝化反应器(4)、第二中间水箱(5)、短程硝化-厌氧氨氧化反应器(6);
所述短程硝化反应器(1)设有第一搅拌器(1.1)、pH/DO实时在线监测设备(1.2)、第一进水蠕动泵(1.3)、第一进水口(1.4)、第一空气压缩机(1.5)、第一曝气砂头(1.6)、第一排水口(1.7)、第一出水蠕动泵(1.8)、第一取样口(1.9)、第一溢流口(1.10);所述第一中间水箱(2)设有第二进水口(2.1)、第二出水口(2.2);所述储泥罐(3)设有第一出泥口(3.1);所述污泥发酵耦合反硝化反应器(4)设有第二搅拌器(4.1)、第一进泥口(4.2)、第三进水口(4.3)、第三出水口(4.4)、第二pH/ORP实时在线监测设备(4.5);所述第二中间水箱(5)设有第四进水口(5.1)、第四出水口(5.2);所述短程硝化-厌氧氨氧化反应器(6)设有第三搅拌器(6.1)、pH/DO实时在线检测设备(6.2)、第二进水蠕动泵(6.3)、第四进水口(6.4)、第二空气压缩机(6.5)、第二曝气砂头(6.6)、第四出水口(6.7);
第一进水蠕动泵(1.3)与短程硝化反应器第一进水口(1.4)相连,空气经过第一空气压缩机(1.5)第一曝气砂头(1.6)打入短程硝化反应器(1),短程硝化反应器第一出水口(1.7)经过第一出水如东泵(1.8)与第一中间水箱(2)第二进水口(2.1)相连;储泥罐(3)第一出泥口(3.1)与发酵耦合反硝化反应器第一进泥口(4.2)相连接;第一中间水箱第二出水口(2.2)与发酵耦合反硝化反应器(4)第三进水口(4.3)相连接,第三出水口(4.4)与第二中间水箱(5)第四进水口(5.1)相连接;第二中间水箱第四出水口(5.2)通过第二进水蠕动泵(6.3)与短程硝化-厌氧氨氧化反应器(6)第五进水口(6.4)相连接,空气经过第二空气压缩机(6.5)经过第二曝气砂头(6.6)打入短程硝化-厌氧氨氧化反应器(6)。
2.应用如权利要求1所述装置进行垃圾渗滤液与剩余污泥的同步处置的方法,其特征在于,包括以下过程:
1)垃圾渗滤液通过第一进水水泵以1L/min流速打入短程硝化反应器,打开第一空气压缩机和第一搅拌器,调整空气压缩机的气体流量控制反应器内溶解氧浓度保持在0.5mg/L以下,在线监测设备实时收集统计pH和DO指标,在pH曲线不再下降或出现拐点“氨谷点”时及时停止曝气,使氨氮的氧化过程停留在短程硝化阶段,关闭第一空气压缩机和第一搅拌器,沉淀0.5h后按50%体积比将出水排入第一中间水箱;
2)打开储泥罐第一出泥口和第一中间水箱第二出水口,剩余污泥和中间水箱中亚硝态氮废水一同进入发酵耦合反硝化反应器内,打开第二搅拌器;发酵过程产生的碳源被反硝化过程所利用,实现剩余污泥发酵与反硝化的同步进行;反硝化过程是产生碱度的过程,在线监测设备实时收集统计pH实时在线监测指标,当pH曲线不再上升或出现拐点“亚硝酸盐肘”时关闭第二搅拌器,沉淀2h后将上清液按照50%体积比排入第二中间水箱;
3)打开第二进水蠕动泵以1L/min流速将第二中间水箱中废水全部泵入短程硝化-厌氧氨氧化反应器,第三搅拌器和第二空气压缩机;调整空气压缩机的气体流量,控制反应器内溶解氧浓度小于0.2mg/L;在线监测设备实时统计收集pH数值,当pH曲线不再下降或出现拐点时及时停止曝气和搅拌,沉淀0.5h后出水。
CN202110175160.XA 2021-02-09 2021-02-09 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法 Pending CN113003722A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110175160.XA CN113003722A (zh) 2021-02-09 2021-02-09 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110175160.XA CN113003722A (zh) 2021-02-09 2021-02-09 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法

Publications (1)

Publication Number Publication Date
CN113003722A true CN113003722A (zh) 2021-06-22

Family

ID=76384018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110175160.XA Pending CN113003722A (zh) 2021-02-09 2021-02-09 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法

Country Status (1)

Country Link
CN (1) CN113003722A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291962A (zh) * 2021-11-26 2022-04-08 北京工业大学 三级推流式pn-pna-de工艺处理晚期垃圾渗滤液的装置与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485149A (zh) * 2018-12-22 2019-03-19 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN109574218A (zh) * 2018-12-22 2019-04-05 北京工业大学 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN109867359A (zh) * 2019-04-03 2019-06-11 北京工业大学 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485149A (zh) * 2018-12-22 2019-03-19 北京工业大学 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN109574218A (zh) * 2018-12-22 2019-04-05 北京工业大学 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN109867359A (zh) * 2019-04-03 2019-06-11 北京工业大学 利用污泥发酵混合物短程硝化反硝化耦合部分厌氧氨氧化深度脱氮的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291962A (zh) * 2021-11-26 2022-04-08 北京工业大学 三级推流式pn-pna-de工艺处理晚期垃圾渗滤液的装置与方法

Similar Documents

Publication Publication Date Title
CN112250178B (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN109721156B (zh) 间歇曝气一体化/短程反硝化-厌氧氨氧化处理晚期垃圾渗滤液的装置与方法
CN109721158B (zh) 半短程硝化/双厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN110451721B (zh) 一种垃圾焚烧厂渗滤液除碳脱氮处理装置及方法
CN109485149B (zh) 一种实现晚期垃圾渗滤液深度脱氮和剩余污泥减量的装置与方法
CN109574218B (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN109721157B (zh) 短程硝化/厌氧氨氧化/短程反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN105000664B (zh) 一体式短程硝化-厌氧氨氧化工艺脱氮效果恶化的原位恢复方法
CN113233597B (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的方法
CN1887740A (zh) 城市垃圾渗滤液短程深度生物脱氮方法
CN113800636A (zh) 短程硝化/厌氧氨氧化-发酵耦合短程反硝化/厌氧氨氧化处理污泥消化液的方法和装置
CN113233592B (zh) 一种实现晚期垃圾渗滤液与生活污水同步深度脱氮除碳的处理装置与方法
CN110357350A (zh) 一种用于垃圾渗滤液的处理工艺
CN101973668B (zh) 一种丙烯酸行业废水处理工艺
US20230071009A1 (en) Apparatus and method for synchronously treating sewage and sludge through combination of step-feed partial nitrification and anaerobic ammonia oxidation
CN113716693A (zh) 一种基于厌氧-好氧-缺氧运行对垃圾渗滤液深度脱氮的装置与方法
CN113233596A (zh) 连续流短程硝化/内源短程反硝化/厌氧氨氧化一体化工艺处理中晚期垃圾渗滤液的方法
CN113526658A (zh) 一种快速短程反硝化处理污水的装置和方法
CN111908618A (zh) 一种高氨氮废水处理系统
CN108033555B (zh) 一种快速启动垃圾焚烧厂渗沥液的厌氧生物处理系统的方法
CN114105299A (zh) 强化城市污水碳源污泥捕获联合自养与异养脱氮的装置和方法
CN113003722A (zh) 三段式短程硝化-厌氧氨氧化工艺同步处理垃圾渗滤液和剩余污泥的装置与方法
CN207418548U (zh) 一种污水资源化处理装置
CN202594915U (zh) 一种高氨氮废水处理装置
CN114772733A (zh) 一种基于厨余垃圾消化液作为外碳源的晚期垃圾渗滤液厌氧氨氧化深度脱氮装置与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210622