CN112973648A - 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用 - Google Patents

一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用 Download PDF

Info

Publication number
CN112973648A
CN112973648A CN202110142895.2A CN202110142895A CN112973648A CN 112973648 A CN112973648 A CN 112973648A CN 202110142895 A CN202110142895 A CN 202110142895A CN 112973648 A CN112973648 A CN 112973648A
Authority
CN
China
Prior art keywords
micromotor
adsorbent
sulfonic acid
crescent
convex surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110142895.2A
Other languages
English (en)
Inventor
任永晴
潘建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110142895.2A priority Critical patent/CN112973648A/zh
Publication of CN112973648A publication Critical patent/CN112973648A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属化工分离材料制备技术领域,涉及一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用。本发明首先制备了油酸包覆的MnO2纳米粒子,再利用各向异性乳液模板法一步制备具有磺酸功能化凸表面的月牙形微马达吸附剂;本发明用乳液法一步制备的微马达吸附剂,方法简便且易宏量制备;其次微马达通过界面聚合修饰的磺酸基团可以特异性吸附Li(Ⅰ);同时,该孔结构为MnO2催化产生氧气气泡驱动微马达运动提供成核位点,提高了Li(Ⅰ)吸附的动力学性能。

Description

一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其 提锂应用
技术领域
本发明属化工分离材料技术领域,涉及一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用。
背景技术
锂广泛用于不同领域,例如锂电池、催化剂、轻合金和核聚变,在现代技术中具有不可替代的作用,因此具有重要的商业意义。鉴于全球锂消费量的迅速增长,从废电池或催化剂中提取锂的问题引起了广泛关注。因此,如何用一种经济有效的,环境友好的方法从中提取锂是化学工程和分离科学领域的研究热点之一。目前已经探索了诸如液-液萃取,固-液萃取,化学沉淀,离子交换和吸附等方法。其中,吸附法由于效率高,成本低,操作简单且产生的二次污染少,是提取锂最广泛的方法。然而,目前锂离子吸附剂普遍存在吸附时间长,选择性较差的缺点,为了快速高效的提取Li(Ⅰ),急需要开发一种具有快速动力学吸附性能和优异选择性的吸附剂。
自推进式微型电动机(SPM)是一种合成的微型机器,可以在由于化学反应或刺激响应特性而产生的自发推进下运动。近年来,SPM已被用来执行不同的任务,这些任务应用在水处理,有机污染物降解,移动传感器,药物输送和纳米级组装。由于增强了吸附剂颗粒与污染物之间的传质和接触频率的优势,可以尽可能的减少吸附时间和成本,因此SPM在饮用水或废水的吸附过程中起着至关重要的作用。如今,球形SPM已被首选作为吸附剂,并且由于其高比表面积和易于定向运动而被广泛研究。磁控溅射和微流体技术被广泛用于制造不对称球体基板,其半表面具有催化材料。然而,上述两种主要方法通常需要昂贵的设备,繁琐的程序和高成本。另外,在凸表面上引入的催化材料易于泄漏或覆盖结合位点。因此,开发简单的策略来调节催化材料和结合位点的分布仍然是一个挑战。
雅努斯(Janus)乳液被视为由两个不混溶相组成的液滴。因其具有可以控制的大小,几何形状和稳定性而备受青睐,在形状,组成和其他属性的可控不对称性使其成为制备各向异性颗粒的重要平台。目前基于微流体技术可以制备各向异性的SPM并成功控制形状。但是,此方法不仅涉及昂贵的设备,并且大规模制备月牙形SPM吸附剂对于Janus乳液也具有挑战性。
发明内容
本发明为解决现有技术存在制备方法复杂、催化材料与吸附结合位点分布不均以及吸附效果不佳的问题,而提供一种一步法制备具有磺酸功能化凸表面的月牙形微马达吸附剂及其提锂应用。
本发明利用可光聚合的单体乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)和不可光聚合的单体液体石蜡(PO)作为分散油相,聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物(F127)的水溶液作为连续水相,通过乳液模板法制备Janus乳液。其次,分别再混合油相中加入疏水的二氧化锰(MnO2)纳米粒子,水相中加入对苯乙烯磺酸钠(PSS)单体,通过紫外线条件下照射界面聚合后洗去液体石蜡制得凸表面为磺酸基团、凹表面为MnO2的单孔球形微马达吸附剂。所制得的材料用于废水溶液中Li(I)的选择性吸附与分离。
为达到上述技术的目的,本发明采用的技术方案是:
本发明首先提供一种具有磺酸功能化凸表面的月牙形微马达吸附剂,其次提供一种具有磺酸功能化凸表面的月牙形微马达吸附剂废水中提锂的方法。
一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法,包括以下步骤:
(1)将高锰酸钾分散在蒸馏水中,机械搅拌一段时间溶解后,然后室温下将油酸滴加到高锰酸钾溶液中继续搅拌反应一段时间,收集棕褐色产物,水洗后,烘箱干燥,得到二氧化锰纳米粒子;
(2)将聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物(F127)表面活性剂和水溶于烧杯中混合均匀作为水连续相,乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)、液体石蜡(PO)、二氧化锰(MnO2)粒子和2-羟基-2-甲基-2-苯基丙烷-1-酮(Irgacure-1173)光引发剂按一定比例混合形成分散油相,先超声再涡旋振荡使油相混合均匀后,高速搅拌下将分散油相滴加到水连续相中,持续搅拌一段时间形成W2/W1/O乳液,静置一段时间后ETPTA与PO自发相分离,随后将一定量对苯乙烯磺酸钠(PSS)溶解到F127水溶液中,滴加到W2/W1/O乳液中摇晃分散均匀,将得到的乳液在恒温恒湿箱中紫外光聚合一段时间,之后离心收集聚合物材料,用异丙醇和乙醇分别洗涤数次,干燥,得到单孔球形微马达吸附剂(CSMSs),即凸表面磺酸功能化月牙形微马达吸附剂。
步骤(1)中,所用高锰酸钾和水的比例为0.25g:125mL;机械搅拌时间为20~30min;所用高锰酸钾和油酸的比例为0.25g:2.5mL;所用转速为500~600rpm;反应时间为20h;反应温度为25℃;干燥温度为60~80℃。
步骤(2)中,水连续相中,聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物(F127)与水的用量比为1g:50mL。
步骤(2)中,分散油相中,乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)、液体石蜡(PO)和2-羟基-2-甲基-2-苯基丙烷-1-酮(Irgacure-1173)的质量比为1.5~4.0g:0.5g:0.06~0.16g;混合油相和二氧化锰粒子的比例为2.5g:5mg~15mg,超声时间5~10min,涡旋振荡3~5min。
步骤(2)中,水连续相和分散油相的质量比为11~12g:2~4.5g。高速搅拌速度为10000~12000rpm,高速搅拌时间为5min。
步骤(2)中,分散油相和对苯乙烯磺酸钠(PSS)的比例为2.5g:50mg~250mg,对苯乙烯磺酸钠(PSS)溶解到F127水溶液时,F127水溶液的质量百分浓度为2%。
步骤(2)中,紫外光聚合温度为25℃,聚合时间为6h;干燥温度为60~80℃。
将本发明制备的凸表面磺酸功能化月牙形微马达吸附剂用于溶液中一价锂的选择性提取的用途,具体用法为:将凸表面磺酸功能化月牙形微马达吸附剂置于含过氧化氢的废水中,对锂离子进行吸附,然后用电感耦合等离子光谱仪对吸附容量进行检测。
其中,所述含过氧化氢的废水中,过氧化氢的质量分数为5%~10%。
与现有技术相比较,本发明的有益效果体现如下:
(1)本发明结合乳液模板法一步制备了具有催化与吸附性能的微马达吸附材料,实现了Li(Ⅰ)快速有效的吸附。
(2)本发明基于水包油包油乳液模板法,二氧化锰充当Pickering粒子分布在乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)和液体石蜡(PO)界面处,聚合后嵌入乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)的凹界面,用来提供催化过氧化氢产生气泡的催化位点,从而提高吸附过程中的传质动力学。
(3)通过乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)与对苯乙烯磺酸钠(PSS)界面聚合来引入磺酸基特异性吸附Li(Ⅰ),可以引入其他官能团对特定离子或分子进行吸附。
附图说明
图1为实施例1中的ETPTA:PO不同质量比的单孔球形材料的扫描电镜图。
图2为实施例1中的MnO2纳米粒子的扫描电镜图(a)、接触角(b)和X射线衍射(c)。
图3为实施例1中PETPTA(a1,a2)、PETPTA-PSS(b1、b2)、CSMSs(c1、c2)的C、O、S、Mn的EDS分析和元素表面扫描(mapping),CSMSs(d1、d2)的S、Mn的EDS分析和元素线扫描分布特征图。
图4为实施例1中制备的PETPTA、PETPTA-PSS和CSMSs红外光谱图(a)、XPS谱图(b)及其C1s、O 1s、S 2p和Mn 2p高分辨谱图(c-f)。
图5(a)和(b)分别为pH对实施例1中制备PETPTA、PETPTA-PSS和CSMSs对Li(Ⅰ)吸附影响和Zeta电位分析。
图6为CSMSs在不同浓度过氧化氢中的自驱动运动图。
图7为实施例1中制备得到的CSMSs的吸附动力学曲线(a)和吸附平衡曲线(b)。
具体实施方式
本发明具体实施方式中识别性能评价按照下述方法进行:利用静态吸附实验完成。将5.0mg的PETPTA、PETPTA-PSS和CSMSs在pH=9.0-11.0范围内对Li(Ⅰ)的吸附容量,吸附后Li(Ⅰ)的含量用电感耦合等离子体发射光谱仪测定,并根据结果确定最佳吸附pH;为了研究CSMSs对Li(Ⅰ)的吸附动力学,选择过氧化氢浓度为0%和8%,Li(Ⅰ)初始浓度为100mgL-1的溶液进行对比实验,并利用准一级动力学和准二级动力学模型对数据进行了拟合,根据实验结果确定最佳吸附时间;为研究CSMSs的最大吸附容量,我们在Li(Ⅰ)浓度为50-600mg L-1范围内进行了吸附平衡试验,采用Langmuir模型和Freundlich模型对吸附数据进行了拟合,根据结果计算吸附容量;最后对CSMSs的吸附再生性能进行了研究。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)二氧化锰纳米粒子的制备;
将0.25g高锰酸钾分散在125mL蒸馏水中,500rpm机械搅拌下30min至溶解,然后室温下将2.5mL油酸滴加到高锰酸钾溶液中继续搅拌反应20h,收集棕褐色产物,水洗一次后,60℃下烘箱干燥10h得到二氧化锰纳米粒子。
(2)CSMSs的制备;
将步骤(1)中油酸改性的15mg MnO2球形纳米颗粒和0.08g 2-羟基-2-甲基-2-苯基丙烷-1-酮光引发剂分散于2g可光聚合油相乙氧基化三羟甲基丙烷三丙烯酸酯油相中超声分散均匀,再将0.5g不可光聚合油相石蜡油加入乙氧基化三羟甲基丙烷三丙烯酸酯中涡旋振荡3min得到分散油相;连续水相为2%F127表面活性剂的水溶液11g。在10000rpm转速下将混合油相滴加到水相中高速搅拌5min。得到均质稳定的O2/O1/W乳液;乳液形成后,静置30min,将250mg对苯乙烯磺酸钠(PSS)溶解在1mL 2%F127水溶液中后,滴加到上述乳液中摇晃均匀,并在25℃的恒温恒湿箱中用200W紫外灯光照下聚合6h,最后离心收集产物,聚合物颗粒分散在异丙醇中洗涤五次去除石蜡油,后用乙醇洗涤三次。最后将聚合物颗粒在70℃下干燥。获得单孔球形聚合物微粒,记为CSMSs。
(3)单孔球形微马达吸附剂(CSMSs)对废水中锂离子的吸附:
将单孔球形微马达吸附剂置于不含和含8%过氧化氢的含锂废水中,对锂离子进行吸附,然后用电感耦合等离子光谱仪对吸附容量进行检测。
实施例2:
(1)二氧化锰纳米粒子的制备;
将0.25g高锰酸钾分散在125mL蒸馏水中,500rpm机械搅拌下30min至溶解,然后室温下将2.5mL油酸滴加到高锰酸钾溶液中继续搅拌反应20h,收集棕褐色产物,水洗一次后,60℃下烘箱干燥10h得到二氧化锰纳米粒子。
(2)CSMSs的制备;
将步骤(1)中油酸改性的10mg MnO2球形纳米颗粒和0.08g 2-羟基-2-甲基-2-苯基丙烷-1-酮光引发剂分散于2g可光聚合油相乙氧基化三羟甲基丙烷三丙烯酸酯油相中超声分散均匀,再将0.5g不可光聚合油相石蜡油加入乙氧基化三羟甲基丙烷三丙烯酸酯中涡旋振荡3min得到分散油相;连续水相为2%F127表面活性剂的水溶液11g。在11000rpm转速下将混合油相滴加到水相中高速搅拌5min。得到均质稳定的O2/O1/W乳液;乳液形成后,静置30min,将150mg对苯乙烯磺酸钠(PSS)溶解在1mL 2%F127水溶液中后,滴加到上述乳液中摇晃均匀,并在25℃的恒温恒湿箱中用200W紫外灯光照下聚合6h,最后离心收集产物,聚合物颗粒分散在异丙醇中洗涤五次去除石蜡油,后用乙醇洗涤三次。最后将聚合物颗粒在70℃下干燥。获得单孔球形聚合物微粒,记为CSMSs。
(3)单孔球形微马达吸附剂(CSMSs)对废水中锂离子的吸附:
将单孔球形微马达吸附剂置于不含和含10%过氧化氢的含锂废水中,对锂离子进行吸附,然后用电感耦合等离子光谱仪对吸附容量进行检测。
实施例3:
(1)二氧化锰纳米粒子的制备;
将0.25g高锰酸钾分散在125mL蒸馏水中,500rpm机械搅拌下30min至溶解,然后室温下将2.5mL油酸滴加到高锰酸钾溶液中继续搅拌反应20h,收集棕褐色产物,水洗一次后,60℃下烘箱干燥10h得到二氧化锰纳米粒子。
(2)CSMSs的制备;
将步骤(1)中油酸改性的5mg MnO2球形纳米颗粒和0.08g 2-羟基-2-甲基-2-苯基丙烷-1-酮光引发剂分散于2g可光聚合油相乙氧基化三羟甲基丙烷三丙烯酸酯油相中超声分散均匀,再将0.5g不可光聚合油相石蜡油加入乙氧基化三羟甲基丙烷三丙烯酸酯中涡旋振荡3min得到分散油相;连续水相为2%F127表面活性剂的水溶液11g。在12000rpm转速下将混合油相滴加到水相中高速搅拌5min。得到均质稳定的O2/O1/W乳液;乳液形成后,静置30min,将50mg对苯乙烯磺酸钠(PSS)溶解在1mL2%F127水溶液中后,滴加到上述乳液中摇晃均匀,并在25℃的恒温恒湿箱中用200W紫外灯光照下聚合6h,最后离心收集产物,聚合物颗粒分散在异丙醇中洗涤五次去除石蜡油,后用乙醇洗涤三次。最后将聚合物颗粒在70℃下干燥。获得单孔球形聚合物微粒,记为CSMSs。
(3)单孔球形微马达吸附剂(CSMSs)对废水中锂离子的吸附:
实验步骤同实施例2。
图1显示出混合油相ETPTA:PO不同质量比所制备的Janus结构的PETPTA的扫描电子显微镜图像。从SEM图中可以发现聚合物颗粒是单分散的单孔球形,微粒直径约为10-20μm。我们得到随着ETPTA:PO比例增大,与所制备的单孔球形微粒孔结构尺寸成反比。其中O1:O2=4:1质量比条件下具有大小合适的孔结构,易于推动微马达进行自主运动。因此,以下实验无特别说明均在4:1条件下进行。
图2(a)为所制备的二氧化锰SEM图。由扫描图发现二氧化锰尺寸约为100nm。如图2(b)所示接触角为137°,主要是因为二氧化锰表面的油酸起作用,可以很容易的将二氧化锰分散到ETPTA中。同时,为了证明二氧化锰的晶体结构,如图2(c)所示为二氧化锰的X射线衍射图谱(XRD),其中XRD峰分别在2θ=30.46°、36.58°、50.53°和65.37°为典型的二氧化锰特征峰。
通过PETPTA和、PETPTA-PSS和CSMSs的元素分析如图3所示,3(b2)、(c2)中S元素分布在单孔球的整个界面,证明对PSS单体已成功引入,图3(d2)CSMSs中的线扫描显示孔结构处Mn元素的存在,证明MnO2附着在凹界面处。
同时,FT-IR和XPS光谱研究了CSMSs的化学表面修饰。PETPTA和CSMSs的FT-IR光谱和XPS光谱如图4所示,1177cm-1、1049cm-1对用于S=O的反对称和对称振动吸收峰,结果表明功能单体对苯乙烯磺酸钠的成功引入。XPS谱图上CSMSs与PETPTA对比,CSMSs中出现了新的S 2p、Na 1s和Mn 2p的弱信号峰,证明ETPTA与PSS表面引发聚合成功以及MnO2已经成功附着。
图6表示用奥林巴斯显微镜表征CSMSs在5%~20%浓度过氧化氢中的自驱动情况,CSMSs在20%过氧化氢燃料中运动速度约为55μm/s,可以实现在溶液中的自主运动。
试验例1:
环境pH值对金属离子吸附行为有巨大影响;因此研究了PETPTA、PETPTA-PSS和CSMSs在pH 9.0-11.0范围内对Li(Ⅰ)的吸附容量的影响。以实施例1制备的材料为研究对象;
如图5所示,PETPTA、PETPTA-PSS和CSMSs在pH 9.0-11.0范围内的吸附容量均随着pH的增大呈现逐渐上升趋势,且CSMSs的吸附容量在任何pH条件下均高于PETPTA和PETPTA-PSS的吸附容量。由于溶液在PH>10条件下会发生部分金属离子的沉淀进而污染环境,因此本实验在PH=10条件下来吸附Li(Ⅰ)。
试验例2:
为了分析Li(Ⅰ)吸附的动力学,取5mL含0%和8%H2O2和0.5%TX-100表面活性剂的100mg/L Li(Ⅰ)溶液加入到离心管中,分别加入5mg实施例1中的CSMSs,把测试液放在25℃的下静置,分别在30min,60min,120min,240min,360min,600min和720min的时候取出;通过离心将吸附剂和溶液分离开,再使用孔径为0.22μm的微孔硝酸纤维素膜对溶液进行过滤去除悬浮的粒子。滤液中的锂离子浓度由电感耦合等离子体光谱仪测定,并根据结果计算出吸附容量;从图7(a)中可以得出结果,CSMSs在含过氧化氢的溶液中更快的到达吸附动力学平衡。归因于CSMSs在溶液中的自主运动增强了吸附剂颗粒与污染物之间的传质和接触频率。
试验例3:
为研究CSMSs的最大吸附容量,本发明在Li(Ⅰ)浓度为50-600mg L-1范围内温度条件分别为25、35℃,进行了吸附平衡试验,采用Langmuir模型和Freundlich模型对吸附数据进行了拟合,并探索了温度对吸附容量的影响;如图7(b)所示,在测试温度范围内,吸附容量随着温度的升高而增加。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (10)

1.一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法,其特征在于,包括以下步骤:
(1)将高锰酸钾分散在蒸馏水中,机械搅拌一段时间溶解后,然后室温下将油酸滴加到高锰酸钾溶液中继续搅拌反应一段时间,收集棕褐色产物,水洗后,烘箱干燥,得到二氧化锰纳米粒子;
(2)将聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物F127表面活性剂和水溶于烧杯中混合均匀作为水连续相,乙氧基化三羟甲基丙烷三丙烯酸酯ETPTA、液体石蜡PO、二氧化锰粒子和2-羟基-2-甲基-2-苯基丙烷-1-酮Irgacure-1173光引发剂按一定比例混合形成分散油相,先超声再涡旋振荡使油相混合均匀后,高速搅拌下将分散油相滴加到水连续相中,持续搅拌一段时间形成W2/W1/O乳液,静置一段时间后ETPTA与PO自发相分离,随后将一定量对苯乙烯磺酸钠PSS溶解到F127水溶液中,滴加到W2/W1/O乳液中摇晃分散均匀,将得到的乳液在恒温恒湿箱中紫外光聚合一段时间,之后离心收集聚合物材料,用异丙醇和乙醇分别洗涤数次,干燥,得到单孔球形微马达吸附剂CSMSs,即凸表面磺酸功能化月牙形微马达吸附剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所用高锰酸钾和水的比例为0.25g:125mL;机械搅拌时间为20~30min;所用高锰酸钾和油酸的比例为0.25g:2.5mL;所用转速为500~600rpm;反应时间为20h;反应温度为25℃;干燥温度为60~80℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,水连续相中,聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物F127与水的用量比为1g:50mL。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,分散油相中,乙氧基化三羟甲基丙烷三丙烯酸酯ETPTA、液体石蜡PO和2-羟基-2-甲基-2-苯基丙烷-1-酮Irgacure-1173的质量比为1.5~4.0g:0.5g:0.06~0.16g;混合油相和二氧化锰粒子的比例为2.5g:5mg~15mg,超声时间5~10min,涡旋振荡3~5min。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,水连续相和分散油相的质量比为11~12g:2~4.5g,高速搅拌速度为10000~12000rpm,高速搅拌时间为5min。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,分散油相和对苯乙烯磺酸钠PSS的比例为2.5g:50mg~250mg,对苯乙烯磺酸钠PSS溶解到F127水溶液时,F127水溶液的质量百分浓度为2%。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,紫外光聚合温度为25℃,聚合时间为6h;干燥温度为60~80℃。
8.权利要求1-7任意一项所述方法制备的凸表面磺酸功能化月牙形微马达吸附剂用于溶液中一价锂的选择性提取的用途。
9.如权利要求8所述的用途,其特征在于,具体用法为:将凸表面磺酸功能化月牙形微马达吸附剂置于含过氧化氢的废水中,对锂离子进行吸附,然后用电感耦合等离子光谱仪对吸附容量进行检测。
10.如权利要求9所述的用途,其特征在于,所述含过氧化氢的废水中,过氧化氢的质量分数为5%~10%。
CN202110142895.2A 2021-02-02 2021-02-02 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用 Pending CN112973648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110142895.2A CN112973648A (zh) 2021-02-02 2021-02-02 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110142895.2A CN112973648A (zh) 2021-02-02 2021-02-02 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用

Publications (1)

Publication Number Publication Date
CN112973648A true CN112973648A (zh) 2021-06-18

Family

ID=76346159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110142895.2A Pending CN112973648A (zh) 2021-02-02 2021-02-02 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用

Country Status (1)

Country Link
CN (1) CN112973648A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282942A (zh) * 2022-09-01 2022-11-04 江苏大学 一种近红外响应的月牙状印迹微凝胶吸附剂的制备方法
CN115286741A (zh) * 2022-09-01 2022-11-04 江苏大学 一种乳液界面聚合法制备磁性介孔磺化月牙型吸附剂的方法及其铅离子吸附应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025113A (ja) * 2002-06-27 2004-01-29 Ind Technol Res Inst 吸着剤によるリチウム含有水溶液からのリチウムイオンの吸着方法
CN107758608A (zh) * 2017-10-13 2018-03-06 济南大学 一种可精确调控的微马达一步制备方法
CN108970592A (zh) * 2018-07-20 2018-12-11 江苏科技大学 一种磺酸型银离子多孔吸附剂及其制备方法与应用
CN109650483A (zh) * 2018-12-25 2019-04-19 四川大学 具有微米/纳米分级式多孔结构的气泡推进型微驱动器及其制备方法
CN110327987A (zh) * 2019-06-11 2019-10-15 济南大学 一种基于液液相分离的聚合物Janus微马达制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025113A (ja) * 2002-06-27 2004-01-29 Ind Technol Res Inst 吸着剤によるリチウム含有水溶液からのリチウムイオンの吸着方法
CN107758608A (zh) * 2017-10-13 2018-03-06 济南大学 一种可精确调控的微马达一步制备方法
CN108970592A (zh) * 2018-07-20 2018-12-11 江苏科技大学 一种磺酸型银离子多孔吸附剂及其制备方法与应用
CN109650483A (zh) * 2018-12-25 2019-04-19 四川大学 具有微米/纳米分级式多孔结构的气泡推进型微驱动器及其制备方法
CN110327987A (zh) * 2019-06-11 2019-10-15 济南大学 一种基于液液相分离的聚合物Janus微马达制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI GUO等: "Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation", 《ANGEW. CHEM. INT. ED.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282942A (zh) * 2022-09-01 2022-11-04 江苏大学 一种近红外响应的月牙状印迹微凝胶吸附剂的制备方法
CN115286741A (zh) * 2022-09-01 2022-11-04 江苏大学 一种乳液界面聚合法制备磁性介孔磺化月牙型吸附剂的方法及其铅离子吸附应用

Similar Documents

Publication Publication Date Title
Yang et al. Ionic self-assembly of poly (ionic liquid)-polyoxometalate hybrids for selective adsorption of anionic dyes
Mahmoodi et al. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media
Zhou et al. Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar
Li et al. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica
Li et al. Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment
Chen et al. Controllable preparation of porous hollow carbon sphere@ ZIF-8: Novel core-shell nanomaterial for Pb2+ adsorption
Ghoochian et al. Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples
Wang et al. The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water
Zhang et al. Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites
Liang et al. Highly efficient removal of quinolones by using the easily reusable MOF derived-carbon
CN112973648A (zh) 一种凸表面磺酸功能化月牙形微马达吸附剂的制备方法及其提锂应用
Jiao et al. Nanoscale zero-valent iron modified with carboxymethyl cellulose in an impinging stream-rotating packed bed for the removal of lead (II)
Liu et al. Rapid removal of Cr (III) from high-salinity wastewater by cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bio-adsorbent
Lu et al. Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+
Wang et al. Mosaic-inspired magnetic alginate composite sorbents derived from coalesce of two emulsion droplets for selective recognition of 2′-deoxyadenosine
Ren et al. Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by A Janus emulsion strategy and adsorption for Li+
Jampa et al. Adsorption and recyclability aspects of humic acid using nano-ZIF-8 adsorbent
Chai et al. In-suit ion-imprinted bio-sorbent with superior adsorption performance for gallium (III) capture
Li et al. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd (II)-adsorption properties and mechanism
Mazinani et al. Sulfonated calixarene modified Poly (methyl methacrylate) nanoparticles: A promising adsorbent for Removal of Vanadium Ions from aqueous media
Fresco-Cala et al. Advanced polymeric solids containing nano-and micro-particles prepared via emulsion-based polymerization approaches. A review
Chen et al. Hydrophilic triazine-based dendron for copper and lead adsorption in aqueous systems: performance and mechanism
Zhang et al. One-pot synthesis of multi-functional and environmental friendly tannic acid polymer with Fe3+ and formaldehyde as double crosslinking agents for selective removal of cation pollutants
Santhamoorthy et al. Surface grafted silica adsorbent for efficient removal of Hg2+ ions from contaminated water
Deng et al. Hollow SiO2 microspheres with thiol-rich surfaces: The scalable templated fabrication and their application for toxic metal ions adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210618