CN112958123A - 复合光催化剂及其制备方法和应用 - Google Patents

复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112958123A
CN112958123A CN202110111069.1A CN202110111069A CN112958123A CN 112958123 A CN112958123 A CN 112958123A CN 202110111069 A CN202110111069 A CN 202110111069A CN 112958123 A CN112958123 A CN 112958123A
Authority
CN
China
Prior art keywords
composite photocatalyst
pmo
tio
solution
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110111069.1A
Other languages
English (en)
Other versions
CN112958123B (zh
Inventor
赵钊
赵鑫宇
谭华桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhouju Technology Co ltd
Original Assignee
Zhejiang Zhouju Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Zhouju Technology Co ltd filed Critical Zhejiang Zhouju Technology Co ltd
Priority to CN202110111069.1A priority Critical patent/CN112958123B/zh
Publication of CN112958123A publication Critical patent/CN112958123A/zh
Application granted granted Critical
Publication of CN112958123B publication Critical patent/CN112958123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种复合光催化剂及其制备方法和应用,复合光催化剂以介孔TiO2为载体,Ti2.5PMo10V2O40封装于介孔TiO2内,Ag纳米粒子沉积于介孔TiO2的表面上。该复合光催化剂提升了光谱吸收,促进了载流子的分离,能够大幅度地提高污染物的降解效率,且可以降解多种污染物,对于农药的主要成分、抗生素、重金属离子及染料均具有降解活性,具有潜在的应用前景。本发明提供的复合光催化剂的制备方法工艺简单、环保、成本低。

Description

复合光催化剂及其制备方法和应用
技术领域
本发明涉及纳米材料制备技术领域,特别涉及一种复合光催化剂及其制备方法和应用。
背景技术
目前,水资源正处于紧张状态,净化污水、废水以获得洁净的水资源被视为是一种可行的途径。卤代苯酚是水环境中有毒有害的污染物之一,其主要来源于杀虫剂、杀菌剂和除草剂的广泛使用。由于卤代苯酚毒性大,对人类和野生动物的危害严重,所以即便少量的卤化酚在水中存在也引起了人们的担忧。污水、废水中还存在双酚A、四环素、染料及重金属等污染物,其对人类及野生动物的健康也存在严重的威胁。目前,光催化被认为是一种很有前途的废水净化方法,是一种技术上可行的净化工艺。大量的科研工作者们已经合成了一系列性能稳定的光催化剂,如LaNiO3、ZnO、TiO2、g-C3N4、CdS等。但上述光催化剂对于卤代苯酚等污染物的催化效率不高,我们亟需研发一种对众多污染物更有效的光催化剂。
发明内容
本发明提供一种复合光催化剂及其制备方法和应用,以解决现有技术中光催化剂催化效率不高、催化能力单一的技术问题。
为达到上述目的,本发明的技术方案是这样实现的:
本发明的第一方面,提供了一种复合光催化剂,所述复合光催化剂以介孔TiO2为载体,Ti2.5PMo10V2O40封装于所述介孔TiO2内,Ag纳米粒子沉积于所述介孔TiO2的表面上。
进一步地,所述Ag纳米粒子的粒径为15nm~25nm。
根据本发明的第二方面,还提供了上述复合光催化剂的制备方法,包括以下步骤:
S1、将磷酸盐溶液加入到偏钒酸盐溶液中混合,并加入浓硫酸,反应后再依次加入钼酸盐溶液和浓硫酸,反应得到第一混合液;
S2、向所述步骤S1制得的所述第一混合液中加入乙醚萃取,在乙醚层得到H5PMo10V2O40
S3、将模板剂与所述步骤S2制得的所述H5PMo10V2O40混合得到第二混合液,向所述第二混合液中加入钛源,并使加入所述钛源后的溶液pH值保持在1.0~2.0,反应得到第一沉淀物;将所述第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2
S4、将所述步骤S3制得的所述Ti2.5PMo10V2O40-TiO2溶解得到悬浮液,用氙灯照射所述悬浮液后向所述悬浮液中加入银离子溶液,反应得到第二沉淀物即为复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag。
进一步地,所述步骤S1中,所述偏钒酸盐与所述磷酸盐的质量比为2~4∶1;和/或所述步骤S1中,加入的所述钼酸盐与所述磷酸盐的摩尔比为10~12∶1。
进一步地,所述步骤S3中,所述模板剂为P123和/或F127。
进一步地,所述步骤S3中,所述钛源为钛酸异丙酯和/或钛酸四丁酯,所述钛源与所述H5PMo10V2O40的摩尔比为1∶0.1~0.2。
进一步地,所述步骤S3中,将所述第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2的步骤具体包括:将所述第一沉淀物在50℃~100℃下老化4h~24h,将老化后的所述第一沉淀物在380℃~420℃下煅烧,即可得到所述Ti2.5PMo10V2O40-TiO2
进一步地,所述步骤S4中,将制得的所述Ti2.5PMo10V2O40-TiO2溶解得到悬浮液的步骤具体包括:将所述Ti2.5PMo10V2O40-TiO2加入到异丙醇与水的混合液中并超声,即可得到所述悬浮液;所述异丙醇与所述水的体积比为1∶1。
进一步地,所述步骤S4中,所述氙灯的功率为100W~300W,照射时间为1h~3h。
根据本发明的第三方面,还提供了上述复合光催化剂或者上述制备方法制得的所述复合光催化剂在光催化污水处理中的应用。
本发明提供的复合光催化剂提升了光谱吸收,促进了载流子的分离,能够大幅度地提高污染物的降解效率,且可以降解多种污染物,对于农药的主要成分、抗生素、重金属离子及染料均具有降解活性,具有潜在的应用前景。本发明提供的复合光催化剂的制备方法工艺简单、环保、成本低。
附图说明
图1为本发明实施例的复合光催化剂的XRD图;
图2为本发明实施例的复合光催化剂的固体紫外漫反射图;
图3为透射电子显微镜图,其中,图3a为本发明实施例的复合光催化剂的透射电子显微镜图;图3b为本发明实施例的复合光催化剂的高分辨透射电子显微镜图;图3c为图3b中Ti的元素分布图;图3d为图3b中Ag的元素分布图;图3e为图3b中P的元素分布图;图3f为图3b中V的元素分布图。
具体实施方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本申请实施例的第一方面,提供了一种复合光催化剂,复合光催化剂以介孔TiO2为载体,Ti2.5PMo10V2O40封装于介孔TiO2内,Ag纳米粒子沉积于介孔TiO2的表面上。
研究中发现,光催化剂本身具有一些缺点,比如光谱吸收窄,载流子难以分离,光催化剂容易被光腐蚀,稳定性不好等;将光催化剂应用到污染物的降解上,同样存在着以上的问题,并且一些光催化剂能够降解的污染物种类单一,降解效率也不理想。在这种情况下,本申请实施例提供的复合光催化剂,写作Ti2.5PMo10V2O40-TiO2/Ag,其提升了光谱吸收,由于S-机制的存在,促进了载流子的分离,大幅度地提高了污染物的降解效率,且可以降解多种污染物,对于农药的主要成分、抗生素、重金属离子及染料均具有降解活性,具有潜在的应用前景。
本申请实施例的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag中,介孔TiO2具有比表面积大、活性位点多等优点;并且介孔也可以充当“微反应器”,能够将其他均相或不稳定的材料封装在孔中,这不仅有利于提高样品的稳定性,而且也有利于构建复合材料。多金属氧酸盐是一种绿色、丰产的分子基催化剂,Ti2.5PMo10V2O40的能带为2.17eV,这意味着其吸收光谱涵盖了整个可见光,甚至达到了近红外光。多金属氧酸盐广泛的光谱吸收能力提高了对太阳光的捕获率并产生更多的光生电子,从而为实现高效的光催化性能开辟了可能性。此外,Ti2.5PMo10V2O40具有很强的氧化还原特性,可促进污水中有机物的光催化降解。但是,POM是均相的水溶液,无法进行循环实验,因此,将POMs封装到TiO2中,不仅实现了POMs的异相化,而且扩展了TiO2的光谱。Ag纳米粒子的引入,又提高了催化剂的导电性,促进了载流子的分离,从而获得了高效稳定的光催化剂。
本申请实施例的第二方面,提供了上述复合光催化剂的制备方法,包括以下步骤:
S1、将磷酸盐溶液加入到偏钒酸盐溶液中混合,并加入浓硫酸,反应后再依次加入钼酸盐溶液和浓硫酸,反应得到第一混合液;
S2、向步骤S1制得的第一混合液中加入乙醚萃取,在乙醚层得到H5PMo10V2O40
S3、将模板剂与步骤S2制得的H5PMo10V2O40混合得到第二混合液,向第二混合液中加入钛源,并使加入钛源后的溶液pH值保持在1.0~2.0,反应得到第一沉淀物;将第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2
S4、将步骤S3制得的Ti2.5PMo10V2O40-TiO2溶解得到悬浮液,用氙灯照射悬浮液后向悬浮液中加入银离子溶液,反应得到第二沉淀物即为上述复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag。
本申请实施例提供的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag的制备方法工艺简单、环保、成本低;制备得到的三元复合物Ti2.5PMo10V2O40-TiO2/Ag样品纯度高,对水中的卤代酚、双酚A、四环素、染料及重金属等污染物具有良好的降解作用。
本申请实施例复合光催化剂的制备方法的步骤S1和S2中,硫酸盐溶液与偏钒酸盐溶液混合后加入浓硫酸的作用是作为氧化剂并为反应提供酸性环境;向上述溶液中加入钼酸盐之后又加入浓硫酸,其作用是浓硫酸能够与多酸产生同离子效应,降低多酸在水中的溶解度,增强多酸在乙醚中中的溶解度,使多酸能够被乙醚萃取出来。进一步地,步骤S1中,偏钒酸盐与磷酸盐的质量比为2~4∶1。步骤S1中,钼酸盐的加入量由分子式决定,加入的钼酸盐与磷酸盐的摩尔比为10~12∶1。
本申请实施例复合光催化剂的制备方法中,步骤S3能够将POM均匀地分散在二氧化钛中,又可以进行原位沉积Ag纳米粒子。模板剂可以控制二氧化钛粒子的大小,将多酸加入到二氧化钛的合成原料中之后,可以使多酸在钛源水解成二氧化钛时,将多酸均匀地包裹到二氧化钛当中。一些实施例中,模板剂为P123和/或F127。钛源为钛酸异丙酯和/或钛酸四丁酯,钛源与多酸H5PMo10V2O40的摩尔比为1∶0.1~0.2。
一些实施例中,步骤S3中将第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2的步骤具体包括:将第一沉淀物在50℃~100℃下老化4h~24h,将老化后的第一沉淀物在380℃~420℃下煅烧,即可得到Ti2.5PMo10V2O40-TiO2
本申请实施例复合光催化剂的制备方法中,步骤S4用氙灯照射悬浮液,光激发Ti2.5PMo10V2O40-TiO2产生光生电子和空穴,空穴被溶解Ti2.5PMo10V2O40-TiO2的溶液消耗掉,光生电子将Ag离子还原成Ag纳米粒子,并将Ag纳米粒子沉积在二氧化钛表面。
一些实施例中,步骤S4中,将制得的Ti2.5PMo10V2O40-TiO2溶解得到悬浮液的步骤具体包括:将Ti2.5PMo10V2O40-TiO2加入到异丙醇与水的混合液中并超声,即可得到悬浮液;异丙醇与水的体积比为1∶1。异丙醇与水的混合液能够使Ti2.5PMo10V2O40-TiO2均匀分散,受光均匀;异丙醇也是空穴牺牲剂,保证有更多的电子将Ag离子还原成Ag纳米粒子;此处异丙醇可以由其它空穴牺牲剂代替。也就是说,将步骤S3制得的Ti2.5PMo10V2O40-TiO2加入到空穴牺牲剂与水的混合液中,得到悬浮液。一些实施例中,步骤S4中,氙灯的功率为100W~300W,照射时间为1h~3h。
本申请实施例的第三方面,提供了上述制备方法制得的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag在光催化污水处理中的应用。
本申请实施例的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag具有优异的光催化降解性能,光谱吸收大大提升,由于S-机制的存在,促进了载流子的分离,大幅度地提高了污染物的降解效率;并且对于农药的主要成分、抗生素、重金属及染料等众多污染物都具有降解活性。
以下实施例中各药品均为市售。
实施例1
本实施例提供了一种复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag,其以介孔TiO2为载体,Ti2.5PMo10V2O40封装于介孔TiO2内,Ag纳米粒子沉积于介孔TiO2的表面上。Ag纳米粒子的粒径为20nm。
本实施例复合光催化剂的制备方法,包括:
(1)将24.4g偏钒酸钠溶于100ml沸水中;将7.1g Na2HPO4溶于100ml水中。将配制好的Na2HPO4溶液加入到偏钒酸钠溶液中,待冷却后,加入5ml浓硫酸,溶液变红。随后,将121gNaMoO4·2H2O溶于200ml水溶液中,并加入到上述混合溶液中,然后在剧烈搅拌下向上述混合溶液中添加85ml浓硫酸,反应得到第一混合液。待第一混合液冷却至室温后,加入500ml乙醚萃取,H5PMo10V2O40的红色固体粉末是通过收集乙醚层并将醚层驱除而获得的。
(2)将1.25g P123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物)和上述制备得到的一定量H5PMo10V2O40(相当于钛酸异丙酯的10%~20%)溶解在40ml水溶液中(水∶乙醇=3∶1,pH=1.5),得到第二混合液。然后在剧烈搅拌下将3g钛酸异丙酯滴加到第二混合液中,其中溶液的pH用硫酸和氨水维持在1.5左右。反应持续2小时以获得第一沉淀物,然后将第一沉淀物在70℃下老化5小时,离心,洗涤,90℃下干燥,然后在马弗炉中煅烧1h、煅烧温度为400℃,得到Ti2.5PMo10V2O40-TiO2
(3)取制备得到的Ti2.5PMo10V2O40-TiO2 0.2g加入到含有50ml异丙醇和50ml去离子水的混合液中,超声15分钟,得到悬浮液。在搅拌下将上述悬浮液放到300W氙灯下照射1h,悬浮液的颜色逐渐加深。然后,将不同体积的AgNO3溶液(20mM·L-1)注入到上述悬浮液中,在避光的条件下再搅拌1小时,得到第二沉淀物。将第二沉淀物用去离子水洗涤,并在70℃下干燥12h,所得样品标记为PMo10V2-TiO2/Agx(其中x代表所添加AgNO3的质量,x=0.05g、0.1g、0.2g),也可以记为Ti2.5PMo10V2O40-TiO2/Ag。
图1~图3为本实施例复合光催化剂的表征图。图1为本实施例复合光催化剂的XRD图,在25.4°(101)、38.0°(004)、48.0°(200)、54.2°(105)和62.6°(204)处出现一系列峰,可归属于锐钛矿型TiO2(JCPDS编号21-1272)。XRD图中没有观察到POMs(多金属氧酸盐)的峰,表明POMs均匀地分散在TiO2中。沉积Ag纳米粒子后出现了38.1°的新峰,属于Ag(111)的衍射峰。
图2为本实施例复合光催化剂的固体紫外漫反射图,从图中可以看出,Ti2.5PMo10V2O40-TiO2/Ag在紫外区和可见光区均具有光吸收,为优异的光催化性能提供了前提。
图3中图3a为本实施例复合光催化剂的透射电子显微镜图(TEM图),从图3a可以看出,Ag纳米粒子分布在多酸掺杂的TiO2表面,其粒径在15nm~25nm之间。图3b为本实施例复合光催化剂的高分辨TEM图,其显示了一系列的晶格衍射条纹,晶格间距约为0.245nm的条纹被归因于Ag的(111)晶面(JCPDS NO.04-0783);晶格间距约为0.23nm和0.35nm的条纹可分布归因于TiO2的(112)和(101)晶格面(JCPDS NO.21-1272)。未观察到POM晶格,这也证明了其均匀分散在TiO2中。此外,图3c、图3d、图3e、图3f显示P、Mo、V、Ti、Ag元素均匀分散在Ti2.5PMo10V2O40-TiO2/Ag中,证明本实施例Ti2.5PMo10V2O40-TiO2/Ag制备成功。
将本实施例制备得到的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag投入到装有不同污染物溶液的烧杯中,超声使上述复合光催化剂分散均匀。将烧杯放入冷凝套中,暗反应30分钟,以实现吸附-脱附平衡。然后自烧杯中取1ml溶液至离心管中,离心分离,利用紫外分光光度计测定其浓度。30分钟之后开启氙灯(300W,波长大于420nm),之后每隔一定时间取1ml溶液,离心分离,测定其浓度。如表1所示,为本实施例的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag对不同污染物的光催化降解表。
表1复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag对不同污染物的光催化降解表
Figure BDA0002916775860000081
表1说明,本实施例的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag可以将2,4-二氟苯酚、2,4-二氯苯酚、2,4-二溴苯酚、六氟双酚A分别在150分钟,180分钟,210分钟,200分钟内完全降解;对于抗生素之一的四环素,可以在80分钟内将其降解90%;还可以降解染料,可以将甲基橙在30分钟之内降解完全;在110分钟之内可以将重金属离子重铬酸钾100%还原成低价态,降低其毒性。由此可将,本实施例制得的复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag对于多种污染物均具有降解活性,且降解效率很高。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不同限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。并且,本发明各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种复合光催化剂,其特征在于,所述复合光催化剂以介孔TiO2为载体,Ti2.5PMo10V2O40封装于所述介孔TiO2内,Ag纳米粒子沉积于所述介孔TiO2的表面上。
2.根据权利要求1所述的复合光催化剂,其特征在于,所述Ag纳米粒子的粒径为15nm~25nm。
3.权利要求1或2所述的复合光催化剂的制备方法,其特征在于,包括以下步骤:
S1、将磷酸盐溶液加入到偏钒酸盐溶液中混合,并加入浓硫酸,反应后再依次加入钼酸盐溶液和浓硫酸,反应得到第一混合液;
S2、向所述步骤S1制得的所述第一混合液中加入乙醚萃取,在乙醚层得到H5PMo10V2O40
S3、将模板剂与所述步骤S2制得的所述H5PMo10V2O40混合得到第二混合液,向所述第二混合液中加入钛源,并使加入所述钛源后的溶液pH值保持在1.0~2.0,反应得到第一沉淀物;将所述第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2
S4、将所述步骤S3制得的所述Ti2.5PMo10V2O40-TiO2溶解得到悬浮液,用氙灯照射所述悬浮液后向所述悬浮液中加入银离子溶液,反应得到第二沉淀物即为复合光催化剂Ti2.5PMo10V2O40-TiO2/Ag。
4.根据权利要求3所述的复合光催化剂的制备方法,其特征在于,所述步骤S1中,所述偏钒酸盐与所述磷酸盐的质量比为2~4∶1;和/或
所述步骤S1中,加入的所述钼酸盐与所述磷酸盐的摩尔比为10~12∶1。
5.根据权利要求3所述的复合光催化剂的制备方法,其特征在于,所述步骤S3中,所述模板剂为P123和/或F127。
6.根据权利要求3所述的复合光催化剂的制备方法,其特征在于,所述步骤S3中,所述钛源为钛酸异丙酯和/或钛酸四丁酯,所述钛源与所述H5PMo10V2O40的摩尔比为1∶0.1~0.2。
7.根据权利要求3~6任意一项所述的复合光催化剂的制备方法,其特征在于,所述步骤S3中,将所述第一沉淀物老化并煅烧后得到Ti2.5PMo10V2O40-TiO2的步骤具体包括:
将所述第一沉淀物在50℃~100℃下老化4h~24h,将老化后的所述第一沉淀物在380℃~420℃下煅烧,即可得到所述Ti2.5PMo10V2O40-TiO2
8.根据权利要求3~6任意一项所述的复合光催化剂的制备方法,其特征在于,所述步骤S4中,将制得的所述Ti2.5PMo10V2O40-TiO2溶解得到悬浮液的步骤具体包括:将所述Ti2.5PMo10V2O40-TiO2加入到异丙醇与水的混合液中并超声,即可得到所述悬浮液;所述异丙醇与所述水的体积比为1∶1。
9.根据权利要求3~6任意一项所述的复合光催化剂的制备方法,其特征在于,所述步骤S4中,所述氙灯的功率为100W~300W,照射时间为1h~3h。
10.一种权利要求1或2所述的复合光催化剂或者权利要求3~9任意一项所述的制备方法制得的所述复合光催化剂在光催化污水处理中的应用。
CN202110111069.1A 2021-01-26 2021-01-26 复合光催化剂及其制备方法和应用 Active CN112958123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110111069.1A CN112958123B (zh) 2021-01-26 2021-01-26 复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110111069.1A CN112958123B (zh) 2021-01-26 2021-01-26 复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112958123A true CN112958123A (zh) 2021-06-15
CN112958123B CN112958123B (zh) 2023-06-23

Family

ID=76273178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110111069.1A Active CN112958123B (zh) 2021-01-26 2021-01-26 复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112958123B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504258A (zh) * 2002-11-29 2004-06-16 东北师范大学 用于光催化降解有机污染物的多酸-二氧化钛复合材料及其制备方法
CN102698809A (zh) * 2012-05-11 2012-10-03 沈阳化工大学 一种H3PW12O40/纳米TiO2复合光催化剂的制备方法
CN104107726A (zh) * 2013-04-18 2014-10-22 东北师范大学 处理亚甲基蓝和罗丹明b染料废水的吸附型光催化剂及其制备方法和应用方法
CN109046411A (zh) * 2018-10-16 2018-12-21 九江学院 一种可见光响应高活性TiO2复合光催化剂的制备方法
CN109967074A (zh) * 2019-03-20 2019-07-05 金华职业技术学院 一种银负载的二氧化钛光催化剂的制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504258A (zh) * 2002-11-29 2004-06-16 东北师范大学 用于光催化降解有机污染物的多酸-二氧化钛复合材料及其制备方法
CN102698809A (zh) * 2012-05-11 2012-10-03 沈阳化工大学 一种H3PW12O40/纳米TiO2复合光催化剂的制备方法
CN104107726A (zh) * 2013-04-18 2014-10-22 东北师范大学 处理亚甲基蓝和罗丹明b染料废水的吸附型光催化剂及其制备方法和应用方法
CN109046411A (zh) * 2018-10-16 2018-12-21 九江学院 一种可见光响应高活性TiO2复合光催化剂的制备方法
CN109967074A (zh) * 2019-03-20 2019-07-05 金华职业技术学院 一种银负载的二氧化钛光催化剂的制备方法与应用

Also Published As

Publication number Publication date
CN112958123B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Xiang et al. Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study
Yang et al. Visible-light-driven photocatalytic degradation of 4-CP and the synergistic reduction of Cr (VI) on one-pot synthesized amorphous Nb2O5 nanorods/graphene heterostructured composites
Raza et al. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide
Zhang Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
Huang et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution
CN102824921B (zh) 一种Ag2S/Ag3PO4复合光催化剂的制备方法
US10933406B2 (en) Method of preparing large-size high-porosity Fe-doped photocatalytic porous magnetic microspheres and uses thereof
Bai et al. High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods
Zhang et al. Enhanced photocatalytic activity of Bi2WO6 doped with upconversion luminescence agent
CN102380366B (zh) 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN105771980A (zh) 一种石墨烯/银/介孔二氧化钛纳米复合光催化剂及其制备工艺
Tang et al. Synthesis, characterization and photocatalysis of AgAlO2/TiO2 heterojunction with sunlight irradiation
CN105148983A (zh) 一种降解废水中染料的光催化剂及其制备方法
CN105664995A (zh) 一种多元素共掺杂纳米二氧化钛光催化材料
CN104226340B (zh) 可见光纳米复合光催化剂AgCl-SnO2的制备方法
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Yu et al. Construction of rutile/anatase TiO2 homojunction and metal-support interaction in Au/TiO2 for visible photocatalytic water splitting and degradation of methylene blue
Cheng et al. In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation
Prabhavathy et al. Visible light-induced Silver and Lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants
Yuliati et al. Modification of titanium dioxide nanoparticles with copper oxide co-catalyst for photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid
Rattan Paul et al. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation
Yang et al. Synthesis of cake-like Ti-Bi bimetallic MOFs-derived OV-rich A-TiO2/β-Bi2O3 heterojunctions for photodegradation of ciprofloxacin
Fang et al. Optical and photocatalytic properties of Er 3+ and/or Yb 3+ doped TiO 2 photocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant