CN112953570A - 一种纠错解码方法、装置、设备及计算机可读存储介质 - Google Patents

一种纠错解码方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
CN112953570A
CN112953570A CN202110166838.8A CN202110166838A CN112953570A CN 112953570 A CN112953570 A CN 112953570A CN 202110166838 A CN202110166838 A CN 202110166838A CN 112953570 A CN112953570 A CN 112953570A
Authority
CN
China
Prior art keywords
error
polynomial
vector
correction decoding
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110166838.8A
Other languages
English (en)
Other versions
CN112953570B (zh
Inventor
黄萍
吴睿振
陈静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inspur Computer Technology Co Ltd
Original Assignee
Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Center Co Ltd filed Critical Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Center Co Ltd
Priority to CN202110166838.8A priority Critical patent/CN112953570B/zh
Publication of CN112953570A publication Critical patent/CN112953570A/zh
Application granted granted Critical
Publication of CN112953570B publication Critical patent/CN112953570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种纠错解码方法、装置、设备及计算机可读存储介质,本申请中基于预设的错误位置多项式,能够通过伴随多项式向量与错误位置以及错误值之间的对应关系,将错误位置多项式中的各项系数通过已知的伴随多项式向量表达出来,由于错误位置多项式的根为错误位置的倒数,因此通过将错误位置备选值的倒数依次代入错误位置多项式便可以搜索出错误位置,进而可以通过伴随多项式向量以及错误位置对错误值进行表达,由于本申请中摒弃了暴力求解法,且其中运算量最大的“穷举搜索”部分涉及到的错误位置备选值也仅仅为待解码数据中的数十个位置,因此本申请中的纠错解码的运算量较小,耗时较短,提高了数据传输的效率。

Description

一种纠错解码方法、装置、设备及计算机可读存储介质
技术领域
本发明涉及通信领域,特别是涉及一种纠错解码方法,本发明还涉及一种纠错解码装置、设备及计算机可读存储介质。
背景技术
SAS(Serial Attached SCSI,串行SCSI技术)协议目前应用较为广泛,在通过SAS4协议进行数据传输时,在SAS packet模式下,SAS协议中的Phy层传输的所有数据都被编码为SPL packet,每一个SPL packet由三部分构成,SPL packet header(头文件),SPLpacket payload(有效载荷)和FEC(Forward Error Correction,前向纠错)信息,其中FEC信息用来检查和纠正SPL packet在传输过程中产生的错误。
现有技术中在SAS packet模式下通过RS(30,26)编码对包含FEC信息的待解码数据进行解码时,通常是通过对“伴随多项式向量与错误位置以及错误值之间的对应关系”中包含的四个非线性方程进行暴力求解的方式得到两个错误位置以及两个错误值,以便对待解码数据进行纠错,然而暴力求解的方式运算量非常大,耗时较长,降低了数据传输的效率。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种纠错解码方法,摒弃了暴力求解法,纠错解码的运算量较小,耗时较短,提高了数据传输的效率;本发明的另一目的是提供一种纠错解码装置、设备及计算机可读存储介质,摒弃了暴力求解法,纠错解码的运算量较小,耗时较短,提高了数据传输的效率。
为解决上述技术问题,本发明提供了一种纠错解码方法,包括:
根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式;
其中,所述错误位置多项式的根为所述错误位置的倒数。
优选地,所述错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数,x为所述错误位置备选值的倒数。
优选地,所述根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式具体为:
根据所述错误位置多项式的定义得到:
Figure BDA0002933814380000021
Figure BDA0002933814380000022
将式(1)两边同时乘以
Figure BDA0002933814380000023
的等式与式(2)两边同时乘以
Figure BDA0002933814380000024
的等式相加,得到:
Figure BDA0002933814380000025
其中,Y1为第一错误值,Y2为第二错误值;
将伴随多项式向量代入式(3)得到:
σ1s22s1=-s3 (4)
将式(1)两边同时乘以
Figure BDA0002933814380000026
的等式与式(2)两边同时乘以
Figure BDA0002933814380000027
的等式相加,并将伴随多项式向量代入以得到:
σ1s32s2=-s4 (5)
求解式(4)以及式(5)得到:
Figure BDA0002933814380000028
其中,所述伴随多项式向量与错误位置以及错误值之间的对应关系包括:
Figure BDA0002933814380000031
其中,αn为伽罗华域中的元素。
优选地,所述根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式具体为:
定义函数:
Figure BDA0002933814380000032
即:
Figure BDA0002933814380000033
Figure BDA0002933814380000034
则σ10=1,σ11=-x220=1,σ21=-x1
将s1=Y1x1+Y2x2,
Figure BDA0002933814380000035
代入σj0s2j1s1中,并且由Λj(x)=σj0j1x得到:
Figure BDA0002933814380000036
由于
Figure BDA0002933814380000037
可得:
Figure BDA0002933814380000038
Figure BDA0002933814380000039
最终得到:
Figure BDA00029338143800000310
优选地,所述根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置具体为:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
为解决上述技术问题,本发明还提供了一种纠错解码装置,包括:
转换模块,用于根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
第一确定模块,用于根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
第二确定模块,用于根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式;
其中,所述错误位置多项式的根为所述错误位置的倒数。
优选地,所述错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数。
优选地,所述第一确定模块具体用于:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
为解决上述技术问题,本发明还提供了一种纠错解码设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上所述纠错解码方法的步骤。
为解决上述技术问题,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述纠错解码方法的步骤。
本发明提供了一种纠错解码方法,本申请中基于预设的错误位置多项式,能够通过伴随多项式向量与错误位置以及错误值之间的对应关系,将错误位置多项式中的各项系数通过已知的伴随多项式向量表达出来,由于错误位置多项式的根为错误位置的倒数,因此通过将错误位置备选值的倒数依次代入错误位置多项式便可以搜索出错误位置,进而可以通过伴随多项式向量以及错误位置对错误值进行表达,由于本申请中摒弃了暴力求解法,且其中运算量最大的“穷举搜索”部分涉及到的错误位置备选值也仅仅为待解码数据中的数十个位置,因此本申请中的纠错解码的运算量较小,耗时较短,提高了数据传输的效率。
本发明还提供了一种纠错解码装置、设备及计算机可读存储介质,具有如上纠错解码方法相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种纠错解码方法的流程示意图;
图2为本发明提供的一种各项系数的求解电路示意图;
图3为本发明提供的一种纠错解码装置的结构示意图;
图4为本发明提供的一种纠错解码设备的结构示意图。
具体实施方式
本发明的核心是提供一种纠错解码方法,摒弃了暴力求解法,纠错解码的运算量较小,耗时较短,提高了数据传输的效率;本发明的另一核心是提供一种纠错解码装置、设备及计算机可读存储介质,摒弃了暴力求解法,纠错解码的运算量较小,耗时较短,提高了数据传输的效率。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明提供的一种纠错解码方法的流程示意图,该纠错解码方法包括:
步骤S1:根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
具体的,考虑到如上背景技术中的技术问题,本申请中摒弃了暴力求解非线性方程的方法,设想通过穷举搜索法在所有的错误位置备选值中搜索出错误位置,也即,将各个错误位置备选值的倒数依次代入预先设定的错误位置多项式中,由于错误位置多项式的根为错误值的倒数,因此使得错误位置多项式的值为零的代入值便为错误位置的倒数,从而便可以确定出错误位置。
其中,预先设定的错误位置多项式的特征是“根为错误位置的倒数”,然而错误位置多项式中的各项系数是未知的,只有求解出各项系数,才能顺利地将错误位置备选值代入错误位置多项式中进行错误位置的搜索,因此本申请中通过伴随多项式向量与错误位置以及错误值之间的对应关系,将各项系数均通过已知的伴随多项式向量表达出来,从而可以实现错误位置的搜索。
其中,伴随多项式向量与错误位置以及错误值之间的对应关系为已知的对应关系,且其中的伴随多项式向量为已知量,因此通过伴随多项式向量可以将与错误位置相关的各项系数表达为已知量。
步骤S2:根据各项系数已知的错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
具体的,在将错误位置多项式中的各项系数转换为由伴随多项式向量表达的已知量后,便可以根据各项系数已知的错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置。
具体的,错误位置备选值即为接收端设备通过SAS4协议接收到的码字多项式中的各个可能的位置,总共有30个位置,而这30个位置均为伽罗华域GF(25)中的元素,具体见下表1。
表1
Figure BDA0002933814380000061
Figure BDA0002933814380000071
另外,RS编解码的所有加减乘除运算都是在伽罗华域上进行计算。
步骤S3:根据对应关系以及错误位置多项式,确定出待解码数据中的错误值的基于伴随多项式向量以及错误位置的表达形式;
其中,错误位置多项式的根为错误位置的倒数。
具体的,由于错位位置已知,那么便可以根据对应关系以及错误位置多项式,将待解码数据中的错误值基于伴随多项式向量以及错误位置进行表达,从而求解出错误值,其中仅仅涉及到加减乘除的基本运算对于公式的变换,运算量相对于暴力求解法来说大量减小。
具体的,在SAS packet模式下传输的所有信息都被编码为150比特的数据块,其中20bit的数据为前向纠错冗余数据,用来检测和纠正传输过程引入的错误。SAS4中采用RS编码实现前向纠错,其中RS码是一类纠错能力很强的多进制BCH码,具有同时纠正突发错误和随机错误的能力,已广泛应用于现代数字、通信、数据存储系统中,SAS-4中具体使用的RS编码为RS(30,26),可以同时纠正两个随机错误,通常RS的译码比编码复杂得多,包括计算伴随多项式、求解错误位置多项式、计算错误位置、计算错误值及纠错五个步骤,RS译码问题主要归结为关键方程的求解,传统的求解关键方程的算法包括BM算法和Euclid算法等,该类迭代算法计算复杂且耗时。本发明实施例针对SAS4中特定的RS编码,提出一种适用于SAS4 Phy层前向纠错的快速简易解码方法,显著降低了RS解码算法的复杂度。
本发明提供了一种纠错解码方法,本申请中基于预设的错误位置多项式,能够通过伴随多项式向量与错误位置以及错误值之间的对应关系,将错误位置多项式中的各项系数通过已知的伴随多项式向量表达出来,由于错误位置多项式的根为错误位置的倒数,因此通过将错误位置备选值的倒数依次代入错误位置多项式便可以搜索出错误位置,进而可以通过伴随多项式向量以及错误位置对错误值进行表达,由于本申请中摒弃了暴力求解法,且其中运算量最大的“穷举搜索”部分涉及到的错误位置备选值也仅仅为待解码数据中的数十个位置,因此本申请中的纠错解码的运算量较小,耗时较短,提高了数据传输的效率。
在上述实施例的基础上:
作为一种优选的实施例,错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数,x为错误位置备选值的倒数。
具体的,该错误位置多相式为符合“根为错误位置倒数”这个条件的最简单的形式,通过该错误位置多项式能够进一步地简化运算,提高解码速度。
当然,除了上述的错误位置多项式外,错误位置多项式的具体形式还可以为其他类型,本发明实施例在此不做限定。
作为一种优选的实施例,根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式具体为:
根据错误位置多项式的定义得到:
Figure BDA0002933814380000091
Figure BDA0002933814380000092
将式(1)两边同时乘以
Figure BDA0002933814380000093
的等式与式(2)两边同时乘以
Figure BDA0002933814380000094
的等式相加,得到:
Figure BDA0002933814380000095
其中,Y1为第一错误值,Y2为第二错误值;
将伴随多项式向量代入式(3)得到:
σ1s22s1=-s3 (4)
将式(1)两边同时乘以
Figure BDA0002933814380000096
的等式与式(2)两边同时乘以
Figure BDA0002933814380000097
的等式相加,并将伴随多项式向量代入以得到:
σ1s32s2=-s4 (5)
求解式(4)以及式(5)得到:
Figure BDA0002933814380000098
其中,伴随多项式向量与错误位置以及错误值之间的对应关系包括:
Figure BDA0002933814380000099
其中,αn为伽罗华域中的元素。
具体地,为了更好地对本发明实施例进行说明,伴随多项式向量的求解过程具体如下:
定义校验矩阵H4×30如下:
Figure BDA00029338143800000910
接收到的码字多项式为
Figure BDA0002933814380000101
对应的接收码字向量为r=[r29,r28,…,r0],其中
Figure BDA0002933814380000102
为错误图样多项式,表示传输过程中引入的错误,对应的错误图样向量为e=[e29,e28,…,e0],r=c+e,定义伴随多项式对应的向量s为接收到的码字向量和校验矩阵转置的乘积:
s=[s1,s2,s3,s4]=rHT=(c+e)HT=eHT
把x=α,α234代入R(x)中得到:
R(α)=r29α29+r28α28+…+r1α+r0=s1
R(α2)=r292)29+r282)28+…+r1α2+r0=s2
R(α3)=r293)29+r283)28+…+r1α3+r0=s3
R(α4)=r294)29+r284)28+…+r1α4+r0=s4
如果伴随多项式向量s中的元素全为0,说明数据在传输过程中没有被损坏,则跳过后面的步骤。
错误图样多项式
Figure BDA0002933814380000103
ei是GF(25)的元素。假设传输过程中产生了2个随机错误,分别位于x1和x2,相应的错误值为Y1和Y2,则E(x)=Y1x1+Y2x2,解码的关键就是求解四个未知变量{x1,x2,Y1,Y2},伴随多项式向量的值为:
s1=E(α)=Y1x1+Y2x2
Figure BDA0002933814380000104
Figure BDA0002933814380000105
Figure BDA0002933814380000106
Figure BDA0002933814380000107
用矩阵表示为:
Figure BDA0002933814380000108
该式中有4个未知数,包含2个错误位置和2个错误值,对于上述方程组的4个非线性方程,现有技术中可以通过暴力求解法求解出4个解,从而确定错误位置和错误值,但是运算量巨大。
具体的,基于前述介绍的伴随多项式向量与错误位置以及错误值之间的对象关系,可以采用本发明实施例中提供的方法将错误位置多项式中的各项系数用伴随多项式向量进行表示,也即如上式(6)所示的形式,且式(6)的求解过程可以通过图2中的电路实现,图2为本发明提供的一种各项系数的求解电路示意图。
当然,除了前述的具体过程中,将各项系数通过伴随多项式向量表达的具体过程还可以为其他形式,本发明实施例在此不做限定。
作为一种优选的实施例,根据对应关系以及错误位置多项式,确定出待解码数据中的错误值的基于伴随多项式向量以及错误位置的表达形式具体为:
定义函数:
Figure BDA0002933814380000111
即:
Figure BDA0002933814380000112
Figure BDA0002933814380000113
则σ10=1,σ11=-x220=1,σ21=-x1
将s1=Y1x1+Y2x2,
Figure BDA0002933814380000114
代入σj0s2j1s1中,并且由Λj(x)=σj0j1x得到:
Figure BDA0002933814380000115
由于
Figure BDA0002933814380000116
可得:
Figure BDA0002933814380000117
Figure BDA0002933814380000118
最终得到:
Figure BDA0002933814380000121
具体的,通过本发明实施例中提供的具体的变换方式便可以求解出两个错误值,且两个错误值是和错误位置相对应的,本发明实施例中的求解错误值的过程也比较简单,运算量少,提高了纠错解码的速度。
其中,值得一提的是,求解出来的错误值中,其中一个错误值可能是零,此种情况下代表本次接收到的码字多项式中仅仅存在一个错误位置以及一个错误值,当然也有可能两个错误值都不是零,那么代表其中存在两个错误位置以及两个错误值,本发明实施例在此不做限定。
具体的,在得到两个错误位置以及两个错误值后,纠错的过程具体如下:
根据估计的错误位置x1,x2和错误值Y1,Y2,得到估计的错误图样为:
Figure BDA0002933814380000122
纠错后的码字多项式为:
Figure BDA0002933814380000123
作为一种优选的实施例,根据各项系数已知的错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置具体为:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
具体的,α0…α30即为前述提到的伽罗华域GF(25)中的30个元素,也即错误位置备选值,将这30个值的倒数依次代入各项系数已知的错误位置多项式中,一旦错误位置多项式的值为零,那么便可以确定此时代入的为错误位置的倒数,从而确定出错误位置。
其中,本发明实施例中的搜索过程最多进行30次代入便可以完成错误位置的确定,运算量较小,可以提高纠错解码的速度。
请参考图3,图3为本发明提供的一种纠错解码装置的结构示意图,该纠错解码装置包括:
转换模块1,用于根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
第一确定模块2,用于根据各项系数已知的错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
第二确定模块3,用于根据对应关系以及错误位置多项式,确定出待解码数据中的错误值的基于伴随多项式向量以及错误位置的表达形式;
其中,错误位置多项式的根为错误位置的倒数。
作为一种优选的实施例,错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数。
作为一种优选的实施例,第一确定模块具体用于:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
对于本发明实施例提供的纠错解码装置的介绍请参照前述的纠错解码方法的实施例,本发明实施例在此不再赘述。
请参考图4,图4为本发明提供的一种纠错解码设备的结构示意图,该纠错解码设备包括:
存储器4,用于存储计算机程序;
处理器5,用于执行计算机程序时实现如前述实施例中纠错解码方法的步骤。
对于本发明实施例提供的纠错解码设备的介绍请参照前述的纠错解码方法的实施例,本发明实施例在此不再赘述。
本发明还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如如前述实施例中纠错解码方法的步骤。
对于本发明实施例提供的计算机可读存储介质的介绍请参照前述的纠错解码方法的实施例,本发明实施例在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种纠错解码方法,其特征在于,包括:
根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式;
其中,所述错误位置多项式的根为所述错误位置的倒数。
2.根据权利要求1所述的纠错解码方法,其特征在于,所述错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数,x为所述错误位置备选值的倒数。
3.根据权利要求2所述的纠错解码方法,其特征在于,所述根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式具体为:
根据所述错误位置多项式的定义得到:
Figure FDA0002933814370000011
Figure FDA0002933814370000012
将式(1)两边同时乘以
Figure FDA0002933814370000013
的等式与式(2)两边同时乘以
Figure FDA0002933814370000014
的等式相加,得到:
Figure FDA0002933814370000015
其中,Y1为第一错误值,Y2为第二错误值;
将伴随多项式向量代入式(3)得到:
σ1s22s1=-s3 (4)
将式(1)两边同时乘以
Figure FDA0002933814370000016
的等式与式(2)两边同时乘以
Figure FDA0002933814370000017
的等式相加,并将伴随多项式向量代入以得到:
σ1s32s2=-s4 (5)
求解式(4)以及式(5)得到:
Figure FDA0002933814370000021
其中,所述伴随多项式向量与错误位置以及错误值之间的对应关系包括:
Figure FDA0002933814370000022
其中,αn为伽罗华域中的元素。
4.根据权利要求3所述的纠错解码方法,其特征在于,所述根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式具体为:
定义函数:
Figure FDA0002933814370000023
即:
Figure FDA0002933814370000024
Figure FDA0002933814370000025
则σ10=1,σ11=-x220=1,σ21=-x1
将s1=Y1x1+Y2x2,
Figure FDA0002933814370000026
代入σj0s2j1s1中,并且由Λj(x)=σj0j1x得到:
Figure FDA0002933814370000027
由于
Figure FDA0002933814370000028
可得:
Figure FDA0002933814370000029
Figure FDA00029338143700000210
最终得到:
Figure FDA0002933814370000031
5.根据权利要求1至4任一项所述的纠错解码方法,其特征在于,所述根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置具体为:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
6.一种纠错解码装置,其特征在于,包括:
转换模块,用于根据伴随多项式向量与错误位置以及错误值之间的对应关系,将预设的错误位置多项式中各项系数均转换为基于伴随多项式向量的表达形式;
第一确定模块,用于根据各项系数已知的所述错误位置多项式,通过穷举搜索法从错误位置备选值中确定出待解码数据中的错误位置;
第二确定模块,用于根据所述对应关系以及所述错误位置多项式,确定出所述待解码数据中的错误值的基于所述伴随多项式向量以及所述错误位置的表达形式;
其中,所述错误位置多项式的根为所述错误位置的倒数。
7.根据权利要求6所述的纠错解码装置,其特征在于,所述错误位置多项式为:
Λ(x)=(1-x1x)(1-x2x)=1+σ1x+σ2x2
其中,x1为第一错误位置,x2为第二错误位置,σ1为一次项系数,σ2为二次项系数。
8.根据权利要求7所述的纠错解码装置,其特征在于,所述第一确定模块具体用于:
将x=1/α0,1/α1,…,1/α30依次代入Λ(x)中,并将Λ(x)等于0时的代入值的倒数对应的位置xi确定为错误位置。
9.一种纠错解码设备,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如权利要求1至5任一项所述纠错解码方法的步骤。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述纠错解码方法的步骤。
CN202110166838.8A 2021-02-04 2021-02-04 一种纠错解码方法、装置、设备及计算机可读存储介质 Active CN112953570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110166838.8A CN112953570B (zh) 2021-02-04 2021-02-04 一种纠错解码方法、装置、设备及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110166838.8A CN112953570B (zh) 2021-02-04 2021-02-04 一种纠错解码方法、装置、设备及计算机可读存储介质

Publications (2)

Publication Number Publication Date
CN112953570A true CN112953570A (zh) 2021-06-11
CN112953570B CN112953570B (zh) 2022-08-19

Family

ID=76243020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110166838.8A Active CN112953570B (zh) 2021-02-04 2021-02-04 一种纠错解码方法、装置、设备及计算机可读存储介质

Country Status (1)

Country Link
CN (1) CN112953570B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202176A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 一种数据处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459431A (zh) * 2008-12-30 2009-06-17 北京大学 一种信道纠错码bch码和rs码的译码方法
CN102170327A (zh) * 2011-04-06 2011-08-31 烽火通信科技股份有限公司 超强前向纠错的硬件译码方法及装置
CN103762991A (zh) * 2013-12-20 2014-04-30 记忆科技(深圳)有限公司 一种bch码译码方法及系统
US20180138926A1 (en) * 2015-07-31 2018-05-17 Fujian Landi Commercial Equipment Co., Ltd. Rs error correction decoding method
CN110679090A (zh) * 2017-06-16 2020-01-10 国际商业机器公司 减少延迟错误校正解码

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459431A (zh) * 2008-12-30 2009-06-17 北京大学 一种信道纠错码bch码和rs码的译码方法
CN102170327A (zh) * 2011-04-06 2011-08-31 烽火通信科技股份有限公司 超强前向纠错的硬件译码方法及装置
CN103762991A (zh) * 2013-12-20 2014-04-30 记忆科技(深圳)有限公司 一种bch码译码方法及系统
US20180138926A1 (en) * 2015-07-31 2018-05-17 Fujian Landi Commercial Equipment Co., Ltd. Rs error correction decoding method
CN110679090A (zh) * 2017-06-16 2020-01-10 国际商业机器公司 减少延迟错误校正解码

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周娣: "二维码感知识别技术的研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202176A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 一种数据处理方法及装置

Also Published As

Publication number Publication date
CN112953570B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2001039378A1 (en) Accelerated reed-solomon error correction
CN101162965B (zh) 一种ldpc码的纠删译码方法及系统
WO2017020733A1 (zh) 一种rs纠错解码方法
CN112953570B (zh) 一种纠错解码方法、装置、设备及计算机可读存储介质
CN105812000B (zh) 一种改进的bch软判决译码方法
EP1370003A1 (en) Reed-Solomon Decoder
US5818854A (en) Reed-solomon decoder
CN101567696B (zh) 一种参数可变的bch码编码器及译码器
JPH07202723A (ja) デコーダ、これに使用するエラー探知シーケンス・ジェネレータおよびデコーディング方法
US10756763B2 (en) Systems and methods for decoding bose-chaudhuri-hocquenghem encoded codewords
CN113904755A (zh) 一种截短rs码解码方法
US7206993B2 (en) Method and device for decoding Reed-Solomon code or extended Reed-Solomon code
EP1102406A2 (en) Apparatus and method for decoding digital data
US7100103B2 (en) Efficient method for fast decoding of BCH binary codes
US20030126542A1 (en) Method and apparatus for computing reed-solomon error magnitudes
US6735737B2 (en) Error correction structures and methods
CN108471315B (zh) 一种纠删译码方法及装置
US8060809B2 (en) Efficient Chien search method and system in Reed-Solomon decoding
CN100417031C (zh) 宽带无线接入系统中里德索洛门卷积级联码的实现方法
US6421807B1 (en) Decoding apparatus, processing apparatus and methods therefor
CN112688696B (zh) 有限域编码和译码的方法、装置、设备及存储介质
WO2022267031A1 (zh) 一种rs码译码方法及装置
US8255777B2 (en) Systems and methods for locating error bits in encoded data
CN115037415A (zh) 基于crc的纠错编码的方法、装置、终端
US8042026B2 (en) Method for efficiently calculating syndromes in reed-solomon decoding, and machine-readable storage medium storing instructions for executing the method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20241009

Address after: 2324, Building 1, Aosheng Building, No. 1166 Xinluo Street, High tech Zone, Jinan City, Shandong Province, 250000

Patentee after: Inspur Computer Technology Co.,Ltd.

Country or region after: China

Address before: 35th floor, S01 building, Inspur science and Technology Park, 1036 Inspur Road, Jinan area, Jinan pilot Free Trade Zone, Jinan City, Shandong Province

Patentee before: Shandong Yunhai guochuang cloud computing equipment industry innovation center Co.,Ltd.

Country or region before: China