CN112946593A - 毫米波雷达测试系统及方法 - Google Patents

毫米波雷达测试系统及方法 Download PDF

Info

Publication number
CN112946593A
CN112946593A CN202110292610.3A CN202110292610A CN112946593A CN 112946593 A CN112946593 A CN 112946593A CN 202110292610 A CN202110292610 A CN 202110292610A CN 112946593 A CN112946593 A CN 112946593A
Authority
CN
China
Prior art keywords
millimeter wave
radar
wave radar
corner reflector
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110292610.3A
Other languages
English (en)
Inventor
石常鑫
方炳发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autel Intelligent Automobile Corp Ltd
Original Assignee
Autel Intelligent Automobile Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autel Intelligent Automobile Corp Ltd filed Critical Autel Intelligent Automobile Corp Ltd
Priority to CN202110292610.3A priority Critical patent/CN112946593A/zh
Publication of CN112946593A publication Critical patent/CN112946593A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Abstract

本发明实施例涉及雷达测试技术领域,公开了一种毫米波雷达测试系统及方法。该系统包括:控制装置、雷达调节装置和探测装置;控制装置分别与雷达调节装置及探测装置电连接;雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,以及向探测装置发送第二控制信号;雷达调节装置用于根据第一控制信号将毫米波雷达调整至目标视场角,以使毫米波雷达在目标视场角发射电磁波信号;探测装置用于根据第二控制信号将角反射器调整至目标高度;控制装置还用于根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。通过上述方式,本发明实施例实现了对毫米波雷达性能参数的自动化测试。

Description

毫米波雷达测试系统及方法
技术领域
本发明实施例涉及雷达测试技术领域,具体涉及一种毫米波雷达测试系统及方法。
背景技术
毫米波雷达是指工作频段在毫米波频段的雷达。由于毫米波雷达具有探测精度高、抗干扰能力强等优点,使其在智能驾驶领域得到广泛应用。
为了检验毫米波雷达的性能,需要对毫米波雷达的性能参数进行检测。毫米波雷达发射电磁波后,角反射器对毫米波雷达发射的电磁波进行反射,产生回波信号。毫米波雷达对接收到的回波信号进行处理以得到角反射器的探测位置信息。将毫米波雷达得到的角反射器的探测位置信息与角反射器的实际位置信息进行对比,可以得出毫米波雷达的性能参数。然而,在实现本发明实施例的过程中,发明人发现:相关技术对毫米波雷达的性能进行检验时,需要人工对角反射器的位置进行反复调节,测试效率较低。
发明内容
鉴于上述问题,本发明实施例提供了一种毫米波雷达测试系统及方法,用于解决现有技术中存在的毫米波雷达测试效率较低的问题。
根据本发明实施例的一个方面,提供了一种毫米波雷达测试系统,所述系统包括:控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述控制装置,用于向所述雷达调节装置发送第一控制信号,以及向所述探测装置发送第二控制信号;
所述雷达调节装置,用于根据所述第一控制信号将所述毫米波雷达调整至目标视场角,以使所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
所述探测装置,用于根据所述第二控制信号将所述角反射器调整至目标高度,以使所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
所述控制装置,还用于根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
在一种可选的方式中,所述毫米波雷达的性能参数包括:测距性能参数、测角性能参数和测高性能参数;
所述控制装置,用于:
根据所述回波信号,计算所述角反射器与所述毫米波雷达之间的探测距离,获取所述角反射器与所述毫米波雷达之间的实际距离,根据所述探测距离和所述实际距离计算所述毫米波雷达的测距性能参数;
根据所述回波信号,计算所述角反射器的探测角度,根据所述探测角度与所述角反射器的实际角度,计算所述毫米波雷达的测角性能参数;
根据所述回波信号,计算所述角反射器的探测高度,根据所述探测高度与所述角反射器的实际高度,计算所述毫米波雷达的测高性能参数。
在一种可选的方式中,所述视场角包括水平视场角及俯仰视场角;
所述雷达调节装置包括第一基座和旋转体,所述旋转体的底端与所述第一基座通过第一电机连接,所述第一电机安装于所述第一基座内部;
所述旋转体的顶端安装有支撑横梁,所述支撑横梁与第二电机连接,所述毫米波雷达安装于所述支撑横梁上;
所述第一电机,用于根据所述第一控制信号带动所述旋转体相对所述第一基座旋转,以调节所述毫米波雷达的水平视场角;
所述第二电机,用于根据所述第一控制信号带动所述支撑横梁相对所述旋转体旋转,以调节所述毫米波雷达的俯仰视场角。
在一种可选的方式中,所述支撑横梁的中部设置有雷达夹具,所述毫米波雷达通过所述雷达夹具与所述支撑横梁连接。
在一种可选的方式中,所述探测装置包括第二基座和角反射器杆,所述角反射器杆的一端可旋转安装于所述第二基座上;
所述角反射器与安装于所述角反射器杆上的滑块固定连接;
所述第二基座内部安装有第三电机,所述第三电机与所述滑块连接;
所述第三电机,用于根据所述第二控制信号带动所述滑块沿所述角反射器杆上下滑动,以调节所述角反射器的高度。
在一种可选的方式中,所述第二基座内部安装有第四电机,所述第四电机用于根据所述第二控制信号带动所述角反射器杆的一端相对所述第二基座旋转,以使得所述角反射器杆在卧倒姿态与正立姿态之间进行切换。
在一种可选的方式中,所述第二基座的安装平面上设置有基坑;
所述角反射器杆处于卧倒姿态时,所述角反射器收容于所述基坑内。
在一种可选的方式中,所述系统包括多个探测装置;
所述多个探测装置安装于所述雷达调节装置的一侧,并且所述多个探测装置的安装位置依次间隔预设距离。
在一种可选的方式中,所述控制装置用于:
确定目标探测装置,所述目标探测装置为任一探测装置;
根据所述目标探测装置的安装位置生成第一控制信号,将生成的第一控制信号发送至所述探测装置,以控制所述目标探测装置的角反射器杆处于正立姿态,所述目标探测装置以外的探测装置的角反射器杆处于卧倒姿态。
在一种可选的方式中,所述第三电机通过牵引绳与所述滑块连接;
所述角反射器杆的另一端设置有滚轮;
所述牵引绳的一端连接至所述第三电机,另一端通过所述滚轮连接至所述滑块。
在一种可选的方式中,所述控制装置通过控制电缆分别与所述雷达调节装置和所述探测装置电连接,所述控制电缆敷设于地下。
根据本发明实施例的另一方面,提供了一种毫米波雷达测试方法,其特征在于,应用于上述的毫米波雷达测试系统,所述系统包括:控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述方法包括:
所述控制装置向所述雷达调节装置发送第一控制信号,以及向所述探测装置发送第二控制信号;
所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,以使所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,以使所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
所述控制装置根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
在一种可选的方式中,所述毫米波雷达的性能参数包括:测距性能参数、测角性能参数和测高性能参数,所述方法包括:
所述控制装置根据所述回波信号,计算所述角反射器与所述毫米波雷达之间的探测距离,获取所述角反射器与所述毫米波雷达之间的实际距离,根据所述探测距离和所述实际距离计算所述毫米波雷达的测距性能参数;
所述控制装置根据所述回波信号,计算所述角反射器的探测角度,根据所述探测角度与所述角反射器的实际角度,计算所述毫米波雷达的测角性能参数;
所述控制装置根据所述回波信号,计算所述角反射器的探测高度,根据所述探测高度与所述角反射器的实际高度,计算所述毫米波雷达的测高性能参数。
根据本发明实施例的另一方面,提供了一种毫米波雷达测试方法,应用于上述的毫米波雷达测试系统中的控制装置,所述系统包括:所述控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述方法包括:
向所述雷达调节装置发送第一控制信号,以使所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
向所述探测装置发送第二控制信号,以使所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
本发明实施例的毫米波雷达测试系统包括控制装置、雷达调节装置和探测装置,控制装置分别与雷达调节装置及探测装置电连接,雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,使得雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,毫米波雷达在目标视场角发射电磁波信号;控制装置还用于向探测装置发送第二控制信号,使得探测装置根据第二控制信号将角反射器调整至目标高度;控制装置根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。可以看出,在测试过程中,通过控制装置发送的第一控制信号可以自动调节毫米波雷达的视场角,通过控制装置发送的第二控制信号可以自动调节角反射器的高度,测试过程无需人工干预,可以提高毫米波雷达的测试效率。
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
附图仅用于示出实施方式,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本发明实施例提供的毫米波雷达测试系统的结构示意图;
图2示出了本发明实施例提供的雷达调节装置的结构示意图;
图3示出了本发明实施例提供的探测装置的结构示意图;
图4示出了本发明实施例提供的探测装置的局部结构放大示意图;
图5示出了本发明另一实施例提供的毫米波雷达测试系统的结构示意图;
图6示出了本方面实施例提供的毫米波雷达测试方法的流程示意图;
图7示出了本发明另一实施例提供的毫米波雷达测试方法的流程示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。
图1示出了本发明实施例毫米波雷达测试系统的结构示意图。如图1所示,该毫米波雷达测试系统包括:控制装置100、雷达调节装置200和探测装置300。
其中,控制装置100分别与雷达调节装置200及探测装置300电连接。控制装置100包括控制设备,该控制设备例如可以是平板设备、手机设备、台式计算机设备等智能硬件设备。控制设备上可以安装并运行应用软件,该应用软件包括控制界面。雷达调节装置200上安装有毫米波雷达230,毫米波雷达230是工作频段在毫米波频段的雷达,具有探测精度高、抗干扰能力强等优点。探测装置300上安装有角反射器330,角反射器330能够将接收到的电磁波信号进行放大,并生成回波信号。
其中,控制装置100用于向雷达调节装置200发送第一控制信号,以及向探测装置300发送第二控制信号。例如,控制装置100可以通过控制设备上安装的应用软件分别向雷达调节装置200发送第一控制信号,以及向探测装置300发送第二控制信号。雷达调节装置200用于根据第一控制信号将毫米波雷达230调整至目标视场角,以使毫米波雷达230在目标视场角向角反射器330发射电磁波信号。探测装置300用于根据第二控制信号将角反射器330调整至目标高度,以使角反射器330在目标高度对电磁波信号进行反射,产生回波信号。控制装置100还用于根据毫米波雷达230接收到的回波信号,计算毫米波雷达230的性能参数。
在一种可选的方式中,毫米波雷达230的性能参数包括测距性能参数、测角性能参数和测高性能参数。测距性能参数用于表征毫米波雷达230探测距离的精确度,测角性能参数用于表征毫米波雷达230探测角度的精确度,测高性能参数用于表征毫米波雷达230探测高度的精确度。
其中,控制装置100分别用于:根据回波信号,计算角反射器330与毫米波雷达230之间的探测距离,获取角反射器330与毫米波雷达230之间的实际距离,根据探测距离和实际距离计算毫米波雷达230的测距性能参数;根据回波信号,计算角反射器330的探测角度,根据探测角度与角反射器330的实际角度,计算毫米波雷达230的测角性能参数;根据回波信号,计算角反射器330的探测高度,根据探测高度与角反射器330的实际高度,计算毫米波雷达230的测高性能参数。控制装置100的控制设备可以实时获取角反射器330与毫米波雷达230之间的实际距离、角反射器330的实际角度以及角反射器330的实际高度。
本发明实施例的毫米波雷达测试系统包括控制装置、雷达调节装置和探测装置,控制装置分别与雷达调节装置及探测装置电连接,雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,使得雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,毫米波雷达在目标视场角发射电磁波信号;控制装置还用于向探测装置发送第二控制信号,使得探测装置根据第二控制信号将角反射器调整至目标高度;控制装置根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。可以看出,在测试过程中,通过控制装置发送的第一控制信号可以自动调节毫米波雷达的视场角,通过控制装置发送的第二控制信号可以自动调节角反射器的高度,测试过程无需人工干预,可以提高毫米波雷达的测试效率。
图2示出了本发明实施例雷达调节装置的结构示意图。如图2所示,雷达调节装置200包括第一基座210和旋转体220。旋转体220安装于第一基座210上。
其中,旋转体220的底端与第一基座210通过第一电机211连接,第一电机211安装于第一基座210内部。旋转体220的顶端安装有支撑横梁221,支撑横梁221与第二电机222连接,毫米波雷达230安装于支撑横梁221上。毫米波雷达230的视场角包括水平视场角及俯仰视场角。第一电机211用于根据第一控制信号带动旋转体220相对第一基座210旋转,以调节毫米波雷达230的水平视场角。第二电机222用于根据第一控制信号带动支撑横梁221相对旋转体220旋转,以调节毫米波雷达230的俯仰视场角。第二电机222可以安装于支撑横梁221的一端。
在一种可选的方式中,支撑横梁221的中部设置有雷达夹具223,毫米波雷达230通过雷达夹具223与支撑横梁221连接。雷达夹具223上设置有凹槽,毫米波雷达230可以设置于雷达夹具223的凹槽中。
图3示出了本发明实施例探测装置的结构示意图,图4示出了本发明实施例探测装置在A处的放大示意图。如图3、图4所示,探测装置300包括第二基座310和角反射器杆320。
其中,角反射器杆320的一端可旋转安装于第二基座310上,角反射器330与安装于角反射器杆320上的滑块321固定连接。进一步的,角反射器330与滑块321上可以分别设置螺栓孔,角反射器330与滑块321通过螺栓进行连接。滑块321可以沿角反射器杆320上下滑动,从而带动角反射器330运动,使角反射器330的高度产生变化。第二基座310内部安装有第三电机311,第三电机311与滑块321连接,使得第三电机311在转动时可以带动滑块321沿角反射器杆320上下滑动。第三电机311根据第二控制信号带动滑块321沿角反射器杆320上下滑动,以调节角反射器330的高度。
在一种可选的方式中,第二基座310内部安装有第四电机312,第四电机312用于根据第二控制信号带动角反射器杆320的一端相对第二基座310旋转,以使得角反射器杆320在卧倒姿态与正立姿态之间进行切换。
在一种可选的方式中,第二基座310的安装平面上设置有基坑340,角反射器杆320处于卧倒姿态时,角反射器330收容于基坑340内。
图5示出了本发明另一实施例提供的毫米波雷达测试系统的结构示意图。如图5所示,本发明实施例的毫米波雷达测试系统可以包括多个探测装置300,多个探测装置300安装于雷达调节装置200的一侧,并且多个探测装置300的安装位置依次间隔预设距离,使得每个探测装置300与雷达调节装置200之间具有不同的距离,每个探测装置300上的角反射器330与雷达调节装置200上的毫米波雷达230具有不同的实际距离。根据不同的测试需求,可以在多个探测装置300选择不同的探测装置300。
在一种可选的方式中,控制装置100用于确定目标探测装置,目标探测装置为任一探测装置300。根据目标探测装置的安装位置生成第一控制信号,将生成的第一控制信号发送至所有的探测装置300,以控制目标探测装置的角反射器杆320处于正立姿态,目标探测装置以外的探测装置300的角反射器杆320处于卧倒姿态,由此可以避免目标探测装置以外的探测装置300对毫米波雷达230的电磁波产生干扰,使得测试结果更加准确。
在一种可选的方式中,第三电机311通过牵引绳323与滑块321连接,角反射器杆320的另一端设置有滚轮322;牵引绳323的一端连接至第三电机311,另一端通过滚轮322连接至滑块321。
在一种可选的方式中,控制装置100通过控制电缆400分别与雷达调节装置200和探测装置300电连接,控制电缆400敷设于地下。控制电缆400可以向雷达调节装置200和探测装置300进行供电,并分别向雷达调节装置200和探测装置300发送第一控制信号和第二控制信号。
本发明实施例的毫米波雷达测试系统包括控制装置、雷达调节装置和探测装置,控制装置分别与雷达调节装置及探测装置电连接,雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,使得雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,毫米波雷达在目标视场角发射电磁波信号;控制装置还用于向探测装置发送第二控制信号,使得探测装置根据第二控制信号将角反射器调整至目标高度;控制装置根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。可以看出,在测试过程中,通过控制装置发送的第一控制信号可以自动调节毫米波雷达的视场角,通过控制装置发送的第二控制信号可以自动调节角反射器的高度,测试过程无需人工干预,可以提高毫米波雷达的测试效率。
图6示出了本发明实施例毫米波雷达测试方法的流程示意图。该方法应用于前述任一实施例中的毫米波雷达测试系统。毫米波雷达测试系统包括:控制装置、雷达调节装置和探测装置。控制装置分别与雷达调节装置及探测装置电连接。雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器。如图6所示,本发明实施例的毫米波雷达测试方法包括:
步骤501:所述控制装置向所述雷达调节装置发送第一控制信号,以及向所述探测装置发送第二控制信号。
其中,控制装置可以包括控制设备,控制设备上可以安装并运行应用软件。控制装置可以通过该应用软件生成第一控制信号和第二控制信号,并向雷达调节装置发送第一控制信号,以及向探测装置发送第二控制信号。
步骤502:所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,以使所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号。
其中,第一控制信号中包含调节毫米波雷达的视场角的指令信息。雷达调节装置接收到第一控制信号后,可以根据第一控制信号将毫米波雷达调整至目标视场角,以使毫米波雷达在目标视场角向角反射器发射电磁波信号。第一控制信号中还可以包含对毫米波雷达进行上电及下电的指令信息。雷达调节装置还可以根据第一控制信号对毫米波雷达进行上电及下电。
步骤503:所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,以使所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号。
其中,第二控制信号中包含调节角反射器的高度的指令信息。探测装置接收到第二控制信号后,可以根据第二控制信号将角反射器调整至目标高度,以使角反射器在目标高度对电磁波信号进行反射,并产生回波信号。
步骤504:所述控制装置根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
其中,毫米波雷达可以接收角反射器产生的回波信号,并且将接收到的回波信号发送给控制装置。控制装置进一步根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。
在一种可选的方式中,毫米波雷达的性能参数包括:测距性能参数、测角性能参数和测高性能参数。测距性能参数用于表征毫米波雷达的探测距离的精确度,测角性能参数用于表征毫米波雷达的探测角度的精确度,测高性能参数用于表征毫米波雷达的探测高度的精确度。
其中,控制装置可以根据回波信号,计算角反射器与毫米波雷达之间的探测距离,获取角反射器与毫米波雷达之间的实际距离,根据探测距离和实际距离计算毫米波雷达的测距性能参数;控制装置可以根据回波信号,计算角反射器的探测角度,根据探测角度与角反射器的实际角度,计算毫米波雷达的测角性能参数;控制装置可以根据回波信号,计算角反射器的探测高度,根据探测高度与角反射器的实际高度,计算毫米波雷达的测高性能参数。控制装置的控制设备可以实时获取角反射器与毫米波雷达之间的实际距离、角反射器的实际角度以及角反射器的实际高度。
本发明实施例的毫米波雷达测试系统包括控制装置、雷达调节装置和探测装置,控制装置分别与雷达调节装置及探测装置电连接,雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,使得雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,毫米波雷达在目标视场角发射电磁波信号;控制装置还用于向探测装置发送第二控制信号,使得探测装置根据第二控制信号将角反射器调整至目标高度;控制装置根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。可以看出,在测试过程中,通过控制装置发送的第一控制信号可以自动调节毫米波雷达的视场角,通过控制装置发送的第二控制信号可以自动调节角反射器的高度,测试过程无需人工干预,可以提高毫米波雷达的测试效率。
图7示出了本发明另一实施例毫米波雷达测试方法的流程示意图。该方法应用于前述任一实施例中的毫米波雷达测试系统中的控制装置。毫米波雷达测试系统包括:控制装置、雷达调节装置和探测装置。控制装置分别与雷达调节装置及探测装置电连接;雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器。如图7所示,本发明实施例的毫米波雷达测试方法包括:
步骤601:向所述雷达调节装置发送第一控制信号,以使所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号。
其中,控制装置包括控制设备,控制设备上可以安装并运行应用软件。控制装置可以通过应用软件生成第一控制信号。第一控制信号可以包含调节毫米波雷达的视场角的指令信息。控制装置可以向雷达调节装置发送第一控制信号,以使雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,并且使得毫米波雷达在目标视场角向角反射器发射电磁波信号。
步骤602:向所述探测装置发送第二控制信号,以使所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号。
其中,控制装置可以通过应用软件生成第二控制信号。第二控制信号可以包含调节角反射器的高度的指令信息。控制装置可以向探测装置发送第二控制信号,以使探测装置根据第二控制信号将角反射器调整至目标高度,并且使得角反射器在目标高度对电磁波信号进行反射,并产生回波信号。
步骤603:根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
其中,毫米波雷达可以接收角反射器产生的回波信号,并且将接收到的回波信号发送给控制装置。控制装置进一步根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。
本发明实施例的毫米波雷达测试系统包括控制装置、雷达调节装置和探测装置,控制装置分别与雷达调节装置及探测装置电连接,雷达调节装置上安装有毫米波雷达,探测装置上安装有角反射器;控制装置用于向雷达调节装置发送第一控制信号,使得雷达调节装置根据第一控制信号将毫米波雷达调整至目标视场角,毫米波雷达在目标视场角发射电磁波信号;控制装置还用于向探测装置发送第二控制信号,使得探测装置根据第二控制信号将角反射器调整至目标高度;控制装置根据毫米波雷达接收到的回波信号,计算毫米波雷达的性能参数。可以看出,在测试过程中,通过控制装置发送的第一控制信号可以自动调节毫米波雷达的视场角,通过控制装置发送的第二控制信号可以自动调节角反射器的高度,测试过程无需人工干预,可以提高毫米波雷达的测试效率。
本发明实施例提供一种毫米波雷达测试装置,用于执行上述毫米波雷达测试方法。
本发明实施例提供了一种计算机程序,所述计算机程序可被处理器调用使计算设备执行上述任意方法实施例中的毫米波雷达测试方法。
本发明实施例提供了一种计算机程序产品,计算机程序产品包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令在计算机上运行时,使得所述计算机执行上述任意方法实施例中的毫米波雷达测试方法。
在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。
本领域技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。

Claims (14)

1.一种毫米波雷达测试系统,其特征在于,所述系统包括:控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述控制装置,用于向所述雷达调节装置发送第一控制信号,以及向所述探测装置发送第二控制信号;
所述雷达调节装置,用于根据所述第一控制信号将所述毫米波雷达调整至目标视场角,以使所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
所述探测装置,用于根据所述第二控制信号将所述角反射器调整至目标高度,以使所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
所述控制装置,还用于根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
2.根据权利要求1所述的系统,其特征在于,所述毫米波雷达的性能参数包括:测距性能参数、测角性能参数和测高性能参数;
所述控制装置,用于:
根据所述回波信号,计算所述角反射器与所述毫米波雷达之间的探测距离,获取所述角反射器与所述毫米波雷达之间的实际距离,根据所述探测距离和所述实际距离计算所述毫米波雷达的测距性能参数;
根据所述回波信号,计算所述角反射器的探测角度,根据所述探测角度与所述角反射器的实际角度,计算所述毫米波雷达的测角性能参数;
根据所述回波信号,计算所述角反射器的探测高度,根据所述探测高度与所述角反射器的实际高度,计算所述毫米波雷达的测高性能参数。
3.根据权利要求1或2所述的系统,其特征在于,所述视场角包括水平视场角及俯仰视场角;
所述雷达调节装置包括第一基座和旋转体,所述旋转体的底端与所述第一基座通过第一电机连接,所述第一电机安装于所述第一基座内部;
所述旋转体的顶端安装有支撑横梁,所述支撑横梁与第二电机连接,所述毫米波雷达安装于所述支撑横梁上;
所述第一电机,用于根据所述第一控制信号带动所述旋转体相对所述第一基座旋转,以调节所述毫米波雷达的水平视场角;
所述第二电机,用于根据所述第一控制信号带动所述支撑横梁相对所述旋转体旋转,以调节所述毫米波雷达的俯仰视场角。
4.根据权利要求3所述的系统,其特征在于,所述支撑横梁的中部设置有雷达夹具,所述毫米波雷达通过所述雷达夹具与所述支撑横梁连接。
5.根据权利要求1或2所述的系统,其特征在于,所述探测装置包括第二基座和角反射器杆,所述角反射器杆的一端可旋转安装于所述第二基座上;
所述角反射器与安装于所述角反射器杆上的滑块固定连接;
所述第二基座内部安装有第三电机,所述第三电机与所述滑块连接;
所述第三电机,用于根据所述第二控制信号带动所述滑块沿所述角反射器杆上下滑动,以调节所述角反射器的高度。
6.根据权利要求5所述的系统,其特征在于,所述第二基座内部安装有第四电机,所述第四电机用于根据所述第二控制信号带动所述角反射器杆的一端相对所述第二基座旋转,以使得所述角反射器杆在卧倒姿态与正立姿态之间进行切换。
7.根据权利要求6所述的系统,其特征在于,所述第二基座的安装平面上设置有基坑;
所述角反射器杆处于卧倒姿态时,所述角反射器收容于所述基坑内。
8.根据权利要求7所述的系统,其特征在于,所述系统包括多个探测装置;
所述多个探测装置安装于所述雷达调节装置的一侧,并且所述多个探测装置的安装位置依次间隔预设距离。
9.根据权利要求8所述的系统,其特征在于,所述控制装置用于:
确定目标探测装置,所述目标探测装置为任一探测装置;
根据所述目标探测装置的安装位置生成第一控制信号,将生成的第一控制信号发送至所述探测装置,以控制所述目标探测装置的角反射器杆处于正立姿态,所述目标探测装置以外的探测装置的角反射器杆处于卧倒姿态。
10.根据权利要求5所述的系统,其特征在于,所述第三电机通过牵引绳与所述滑块连接;
所述角反射器杆的另一端设置有滚轮;
所述牵引绳的一端连接至所述第三电机,另一端通过所述滚轮连接至所述滑块。
11.根据权利要求1所述的系统,其特征在于,所述控制装置通过控制电缆分别与所述雷达调节装置和所述探测装置电连接,所述控制电缆敷设于地下。
12.一种毫米波雷达测试方法,其特征在于,应用于权利要求1至11任一项所述的毫米波雷达测试系统,所述系统包括:控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述方法包括:
所述控制装置向所述雷达调节装置发送第一控制信号,以及向所述探测装置发送第二控制信号;
所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,以使所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,以使所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
所述控制装置根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
13.根据权利要求12所述的方法,其特征在于,所述毫米波雷达的性能参数包括:测距性能参数、测角性能参数和测高性能参数,所述方法包括:
所述控制装置根据所述回波信号,计算所述角反射器与所述毫米波雷达之间的探测距离,获取所述角反射器与所述毫米波雷达之间的实际距离,根据所述探测距离和所述实际距离计算所述毫米波雷达的测距性能参数;
所述控制装置根据所述回波信号,计算所述角反射器的探测角度,根据所述探测角度与所述角反射器的实际角度,计算所述毫米波雷达的测角性能参数;
所述控制装置根据所述回波信号,计算所述角反射器的探测高度,根据所述探测高度与所述角反射器的实际高度,计算所述毫米波雷达的测高性能参数。
14.一种毫米波雷达测试方法,其特征在于,应用于权利要求1至11任一项所述的毫米波雷达测试系统中的控制装置,所述系统包括:所述控制装置、雷达调节装置和探测装置;所述控制装置分别与所述雷达调节装置及所述探测装置电连接;所述雷达调节装置上安装有毫米波雷达,所述探测装置上安装有角反射器;
所述方法包括:
向所述雷达调节装置发送第一控制信号,以使所述雷达调节装置根据所述第一控制信号将所述毫米波雷达调整至目标视场角,所述毫米波雷达在所述目标视场角向所述角反射器发射电磁波信号;
向所述探测装置发送第二控制信号,以使所述探测装置根据所述第二控制信号将所述角反射器调整至目标高度,所述角反射器在所述目标高度对所述电磁波信号进行反射,产生回波信号;
根据所述毫米波雷达接收到的所述回波信号,计算所述毫米波雷达的性能参数。
CN202110292610.3A 2021-03-18 2021-03-18 毫米波雷达测试系统及方法 Pending CN112946593A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110292610.3A CN112946593A (zh) 2021-03-18 2021-03-18 毫米波雷达测试系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110292610.3A CN112946593A (zh) 2021-03-18 2021-03-18 毫米波雷达测试系统及方法

Publications (1)

Publication Number Publication Date
CN112946593A true CN112946593A (zh) 2021-06-11

Family

ID=76228240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110292610.3A Pending CN112946593A (zh) 2021-03-18 2021-03-18 毫米波雷达测试系统及方法

Country Status (1)

Country Link
CN (1) CN112946593A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820671A (zh) * 2021-09-28 2021-12-21 展讯通信(上海)有限公司 雷达测试装置
CN114594439A (zh) * 2022-04-29 2022-06-07 国汽智控(北京)科技有限公司 用于毫米波雷达的角反射器装置
CN115128558A (zh) * 2022-06-28 2022-09-30 大陆泰密克汽车系统(上海)有限公司 毫米波雷达覆盖件测试方法及系统
CN115421113A (zh) * 2022-09-29 2022-12-02 成都环泰睿诚科技有限公司 一种用于毫米波雷达的测试装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820671A (zh) * 2021-09-28 2021-12-21 展讯通信(上海)有限公司 雷达测试装置
CN114594439A (zh) * 2022-04-29 2022-06-07 国汽智控(北京)科技有限公司 用于毫米波雷达的角反射器装置
CN115128558A (zh) * 2022-06-28 2022-09-30 大陆泰密克汽车系统(上海)有限公司 毫米波雷达覆盖件测试方法及系统
CN115421113A (zh) * 2022-09-29 2022-12-02 成都环泰睿诚科技有限公司 一种用于毫米波雷达的测试装置

Similar Documents

Publication Publication Date Title
CN112946593A (zh) 毫米波雷达测试系统及方法
CN106597399B (zh) 一种相控阵系统的测评系统及性能测试方法
US8410987B2 (en) Method and device for measuring a radiation field
CN111781602A (zh) 一种机场跑道异物雷达监控系统、监控方法和监控装置
CN108008279B (zh) 一种电路射频噪声测试系统、方法及装置
CN204832360U (zh) 一种阵列天线幅相探测系统
CN111896923A (zh) 一种车载雷达多目标独立仿真装置及方法
CN207318708U (zh) 一种基于mems微镜的三维扫描激光雷达
CN109696585B (zh) 一种天线调平方法和系统
CN106388860B (zh) 一种自动化程度高的医用超声检测装置的使用方法
CN110658501B (zh) 一种雷达范围测量系统及方法
CN211348444U (zh) 一种整车天线测量系统
CN215180848U (zh) 毫米波雷达测试系统
EP3133417A1 (en) Mounting structure
KR102427632B1 (ko) 레이다 시험 설비 및 방법
CN109188441A (zh) 一种四维连续波超声雷达及四维信息测量方法
CN206431287U (zh) 一种相控阵系统的测评系统
CN209542836U (zh) 一种毫米波雷达测距的线树测距系统
CN113188650A (zh) 一种声场测量机械轴与声束准直轴平行方法及系统
CN109450568A (zh) 一种可移动式场强检测系统以及场强检测方法
CN112014847A (zh) 一种鱼探仪现场快速校正系统及其方法
CN117930161A (zh) 一种毫米波雷达增益测量的装置和方法
CN212675167U (zh) 一种机场跑道异物雷达监控系统和监控装置
CN219997286U (zh) 一种隐身性能检测系统
CN212275849U (zh) 一种植入式天线工作现场性能测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 401, Building B1, Nanshan Zhiyuan, No. 1001, Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong

Applicant after: Shenzhen Saifang Technology Co.,Ltd.

Address before: 518000 room 701, building B1, Nanshan wisdom garden, 1001 Xueyuan Avenue, Changyuan community, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Applicant before: Shenzhen Daotong Intelligent Automobile Co.,Ltd.