CN112946506A - 一种快速测试锂离子电池循环寿命的方法 - Google Patents

一种快速测试锂离子电池循环寿命的方法 Download PDF

Info

Publication number
CN112946506A
CN112946506A CN201911269602.6A CN201911269602A CN112946506A CN 112946506 A CN112946506 A CN 112946506A CN 201911269602 A CN201911269602 A CN 201911269602A CN 112946506 A CN112946506 A CN 112946506A
Authority
CN
China
Prior art keywords
charging
lithium ion
ion battery
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911269602.6A
Other languages
English (en)
Other versions
CN112946506B (zh
Inventor
王昊鹏
李素丽
李俊义
徐延铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Cosmx Battery Co Ltd
Original Assignee
Zhuhai Cosmx Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Cosmx Battery Co Ltd filed Critical Zhuhai Cosmx Battery Co Ltd
Priority to CN201911269602.6A priority Critical patent/CN112946506B/zh
Publication of CN112946506A publication Critical patent/CN112946506A/zh
Application granted granted Critical
Publication of CN112946506B publication Critical patent/CN112946506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种快速测试锂离子电池循环寿命的方法,所述方法可以很好地解决锂离子电池循环寿命测试耗时太长的问题。所述方法主要是通过减小电池每次充放电的SOC范围,使其分别在低SOC区间与高SOC区间循环;同时通过将高温间歇性循环的长时间静置步骤用恒压充电步骤代替或部分代替,加速电池内部SEI分解与重构,加速电池内部各类副反应发生,加速锂离子反应消耗、电极材料衰退与电解液分解在保证电池容量衰减机理一致的前提下实现高温间歇性循环的快速测试,大幅缩短测试所需时间,有利于电池产品的快速开发。

Description

一种快速测试锂离子电池循环寿命的方法
技术领域
本发明属于电池测试方法技术领域,具体涉及一种快速测试锂离子电池循环寿命的方法。
背景技术
锂离子电池因具有能量密度高、循环寿命长、无记忆效应等优点,已经在消费类电子产品、电动汽车产品中取得广泛应用。消费类电子产品,特别是笔记本电脑,要求电池在较高温度下仍然具有良好的循环、存储性能。终端厂商要求电池能够通过一些特定的高温测试以模拟电池的部分实际使用工况。
目前现行的电池高温性能测试方案是高温间歇性循环,具体步骤如下:高温下将满电电池完全放电、短时间静置(终端厂商规定的公知的正常放电充电之间的短暂静置时间,下文不再特意强调此次静置过程)、恒流恒压完全充电、长时间静置,以上步骤按顺序进行记为一次循环,其中长时间静置时间大于短时间静置时间,测试标准要求电池按以上步骤循环一定次数后的容量保持率不低于特定值。高温间歇性循环测试耗时很长,按照一般的标准进行测试,总循环时间一般超过100天。漫长的测试周期非常不利于电池产品的快速开发与优化,因此有必要开发相应的加速测试方案。
锂离子电池的工作寿命需要通过多种循环制度进行评估,不论哪一种循环测试都存在测试周期长的问题。针对锂离子电池循环测试耗时太长的问题,现有技术中公开了一种电池寿命加速测试方法,在高温条件下将电池恒流充电后进行时间递增的浮充,直至室温放电容量低于标称容量75%,查询提前测试并制作的常温寿命与高温寿命转换表,估算出该电池在常温条件下的循环寿命。以上方案虽然可以起到电池寿命加速测试的效果,但是还存在以下不足:第一,高温循环寿命与常温循环寿命仅通过常温放电容量进行对应,不足以保证电池容量衰减机理一致,而衰减机理不一致的加速测试方案并不能认为是有效的方案。第二,虽然常规的常温循环寿命与常规的高温循环寿命可以提前测试并制成寿命数据转换表,但由于容量衰减机理一致性无法保证,对于每种新材料、新方案制作的电池,都需要花费大量时间制作寿命数据转换表,实际上难以真正起到加速测试的效果。
发明内容
为了改善现有技术的不足,本发明的目的是提供一种快速测试锂离子电池循环寿命的方法,所述方法可以很好地解决锂离子电池循环寿命测试耗时太长的问题。所述方法主要是通过减小电池每次充放电的SOC范围,使其分别在低SOC区间与高SOC区间循环;同时通过将高温间歇性循环的长时间静置步骤用恒压充电步骤代替或部分代替,加速电池内部SEI分解与重构,加速电池内部各类副反应发生,加速锂离子反应消耗、电极材料衰退与电解液分解在保证电池容量衰减机理一致的前提下实现高温间歇性循环的快速测试,大幅缩短测试所需时间,有利于电池产品的快速开发。
本发明目的是通过如下技术方案实现的:
一种快速测试锂离子电池循环寿命的方法,所述方法包括:
(1)调整锂离子的电池容量至大于等于锂离子电池的设计容量的50%,进行高SOC区域充放电循环过程,且高SOC区域充放电循环过程结束后通过充电或放电调整电池容量至大于等于设计容量的90%;
(2)对步骤(1)的锂离子电池进行恒压充电和/或充电静置步骤;恒压充电和/或充电静置步骤结束后,通过充电或放电调整电池容量至小于锂离子电池的设计容量的50%;
(3)对步骤(2)的锂离子电池进行低SOC区域充放电循环过程,且低SOC区域充放电循环过程结束后通过充电或放电调整电池容量至小于等于设计容量的10%;
(4)对步骤(3)的锂离子电池进行恒压充电和/或充电静置步骤;
(5)锂离子电池按步骤(1)到步骤(4)为一次循环;当锂离子电池的充放电循环时间达到阈值时,记录锂离子电池的高温容量保持率;
或者,当锂离子电池的高温容量保持率达到阈值时,记录锂离子电池所用的充放电循环时间,即实现快速测试锂离子电池循环寿命。
根据本发明,所述方法是将锂离子电池置于40℃以上的环境中进行的。
根据本发明,步骤(1)中,所述锂离子电池的设计容量为2000-8000mAh,例如为4000mAh。
根据本发明,所述的高SOC区域充放电循环过程是指对电池容量大于等于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在高SOC区域内,例如为50-110%。
所述的低SOC区域充放电循环过程是指对电池容量小于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在低SOC区域内,例如为大于等于0且小于50%。
根据本发明,步骤(1)中,所述高SOC区域充放电循环过程包括充电步骤和放电步骤。
步骤(3)中,所述低SOC区域充放电循环过程包括充电步骤和放电步骤。
根据本发明,所述放电步骤例如可以是以0.2-6C的放电倍率对锂离子电池进行放电处理,且放电至放电下限电压U’,所述公知放电下限电压Ug’与放电下限电压U’满足如下关系式:1V≥Ug’-U’≥0V。
所述的公知的放电下限电压Ug’为2.0-3.6V。
根据本发明,所述充电步骤例如可以是以0.01-6C的充电倍率对锂离子电池进行恒流充电,且恒流充电至充电上限电压U,所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V。
所述公知充电上限电压Ug例如可以是3.6-4.5V。
根据本发明,步骤(2)和(4)中,所述恒压充电是在充电上限电压U的电压下进行充电的;所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V。
根据本发明,步骤(2)中,高SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时。
步骤(4)中,低SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时。
根据本发明,步骤(2)和(4)中,所述恒压充电处理的时间相同或不同。
根据本发明,步骤(5)中,每个循环过程中,步骤(1)、步骤(2)、步骤(3)、步骤(4)的操作相同或不同。
本发明的有益效果:
本发明提供了一种快速测试锂离子电池循环寿命的方法,所述方法可以很好地解决锂离子电池循环寿命测试耗时太长的问题。所述方法主要是通过减小电池每次充放电的SOC范围,使其分别在低SOC区间与高SOC区间循环;同时通过将高温间歇性循环的长时间静置步骤用恒压充电步骤代替或部分代替,加速电池内部SEI分解与重构,加速电池内部各类副反应发生,加速锂离子反应消耗、电极材料衰退与电解液分解在保证电池容量衰减机理一致的前提下实现高温间歇性循环的快速测试,大幅缩短测试所需时间,有利于电池产品的快速开发。
附图说明
图1为本发明的快速测试锂离子电池循环寿命的方法的流程示意图。
具体实施方式
如前所述,本发明提供一种快速测试锂离子电池循环寿命的方法,所述方法包括:
(1)调整锂离子的电池容量至大于等于锂离子电池的设计容量的50%,进行高SOC区域充放电循环过程,且高SOC区域充放电循环过程结束后通过充电或放电调整电池容量至大于等于设计容量的90%;
(2)对步骤(1)的锂离子电池进行恒压充电和/或充电静置步骤;恒压充电和/或充电静置步骤结束后,通过充电或放电调整电池容量至小于锂离子电池的设计容量的50%;
(3)对步骤(2)的锂离子电池进行低SOC区域充放电循环过程,且低SOC区域充放电循环过程结束后通过充电或放电调整电池容量至小于等于设计容量的10%;
(4)对步骤(3)的锂离子电池进行恒压充电和/或充电静置步骤;
(5)锂离子电池按步骤(1)到步骤(4)为一次循环;当锂离子电池的充放电循环时间达到阈值时,记录锂离子电池的高温容量保持率;
或者,当锂离子电池的高温容量保持率达到阈值时,记录锂离子电池所用的充放电循环时间,即实现快速测试锂离子电池循环寿命。
在本发明的一个方案中,所述方法是将锂离子电池置于高温(如40℃以上,如40-55℃,如45℃)的环境中进行的。
在本发明的一个方案中,步骤(1)中,所述锂离子电池的设计容量大小没有特别的限定,例如可以为2000-8000mAh,例如为4000mAh。
本发明中,所述的高SOC区域充放电循环过程是指对电池容量大于等于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在高SOC区域内,例如为50-110%,例如为50-105%,例如为50%、60%、70%、80%、90%、100%、105%或110%。
本发明中,所述的低SOC区域充放电循环过程是指对电池容量小于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在低SOC区域内,例如为大于等于0且小于50%,例如为0%、5%、10%、15%、20%、25%、30%、35%、40%、45%或49%。
在本发明的一个方案中,步骤(1)中,所述高SOC区域充放电循环过程包括充电步骤和放电步骤。
在本发明的一个方案中,步骤(3)中,所述低SOC区域充放电循环过程包括充电步骤和放电步骤。
本发明中,在高SOC区域充放电循环过程是对SEI膜的破坏过程,而低SOC区域充放电循环过程是新SEI膜形成的过程,SEI膜的重构是导致的活性锂损失,高温间歇性循环容量衰减的主要原因,本申请采用不同区间SOC循环的方法能够显著加速测试。
其中,所述放电步骤例如可以是以0.2-6C(如0.2C、0.5C、0.7C、0.8C、0.9C、1C、2C、3C、4C、5C、6C)的放电倍率对锂离子电池进行放电处理,且放电至放电下限电压U’,所述公知放电下限电压Ug’与放电下限电压U’满足如下关系式:1V≥Ug’-U’≥0V。
其中,所述的公知的放电下限电压Ug’是终端厂商指定的电池高温间歇性循环的放电步骤中所采用放电下限电压。
其中,所述的公知的放电下限电压Ug’为2.0-3.6V。
其中,所述充电步骤例如可以是以0.01-6C(如0.01C、0.0C、0.2C、0.5C、0.7C、0.8C、0.9C、1C、2C、3C、4C、5C、6C)的充电倍率对锂离子电池进行恒流充电,且恒流充电至充电上限电压U,所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V。
其中,所述公知充电上限电压Ug是终端厂商指定的电池高温间歇性循环的充电步骤中采用的充电上限电压。
其中,所述公知充电上限电压Ug例如可以是3.6-4.5V。
在本发明的一个方案中,步骤(2)和(4)中,所述恒压充电是在充电上限电压U的电压下进行充电的;所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V;在此恒压充电过程中可以加速电池内部各类副反应发生,继而实现本发明的快速测试锂离子电池循环寿命。
在本发明的一个方案中,步骤(2)中,高SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时。
在本发明的一个方案中,步骤(4)中,低SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时。
在本发明的一个方案中,步骤(2)和(4)中,所述充电静置步骤的时间没有特别的限定,例如可以是零,也可以是其他任意时间。
在本发明的一个方案中,步骤(2)和(4)中,所述恒压充电过程可以长时间持续进行,也可以与充电静置步骤结合;例如,可以持续进行恒压充电,也可以在恒压充电过程中设置至少一个充电静置步骤,对每个充电静置步骤的时间没有特别的限定。也就是说,在恒压充电过程中,可以包括至少一个充电静置步骤,也可以不包括充电静置步骤。例如,先恒压充电一段时间后,进行充电静置步骤,随后再进行恒压充电,再进行充电静置步骤,以此类推,重复多个这样的操作,直至完成此次循环过程。
在本发明的一个方案中,步骤(2)和(4)中,所述恒压充电处理的时间相同或不同,例如在每个循环过程中,可以根据步骤(1)的放电处理的时间、放电静置处理的时间、步骤(2)的恒流充电的时间、步骤(3)的恒流充电的时间的不同,因此,每个循环过程中,恒压充电的时间会有差异。
在本发明的一个方案中,步骤(5)中,每个循环过程中,步骤(1)、步骤(2)、步骤(3)、步骤(4)的操作相同或不同;例如,每个循环过程中的步骤(1)的锂离子的电池容量、步骤(1)的高SOC区域充放电循环过程、步骤(2)的恒压充电和/或充电静置步骤、步骤(2)的锂离子的电池容量、步骤(3)的锂离子的电池容量、步骤(3)的低SOC区域充放电循环过程、步骤(4)的恒压充电和/或充电静置步骤可以相同,也可以不同。
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
按照常规制造工艺制作锂离子电池,正极活性材料为钴酸锂,负极活性材料为石墨,电池设计容量4000mAh。所述锂离子电池公知的充电上限电压是4.35V,公知的放电下限电压是3.0V,公知的恒流充电的倍率是0.7C。
将锂离子电池放置在45℃环境下,测试过程如下:
检测电池的容量大于50%SOC,进行高SOC区域(50%~100%SOC)充放电循环过程:以0.3C充电、0.5C放电循环3次,循环结束后调整电池到90%SOC,恒压充电15小时,随后0.5C放电至20%SOC,进行低SOC区域(0%~20%SOC)充放电循环过程:以0.1C充电、0.1C放电循环3次,循环结束后调整电池到10%SOC,静置1小时,完成以上步骤记为一次循环。持续进行上述循环,记录容量保持率达到90%时所用时间,结果如表1所示。
实施例2
锂离子电池与实施例1相同,测试方法与实施例1不同。
本实施例的测试方法如下:
将锂离子电池放置在45℃环境下,测试过程如下:
检测电池的容量大于50%SOC,进行高SOC区域(80%~100%SOC)充放电循环过程:以0.2C充电、0.7C放电循环5次,循环结束后调整电池到100%SOC,恒压充电20小时,随后0.5C放电至30%SOC,进行低SOC区域(0%~30%SOC)充放电循环过程:以0.05C充电、0.1C放电循环3次,循环结束后调整电池到0%SOC,恒压放电2小时,完成以上步骤记为一次循环。持续进行上述循环,记录容量保持率达到90%时所用时间,结果如表1所示。
实施例3
锂离子电池与实施例1相同,测试方法与实施例1不同。
本实施例的测试方法如下:
将锂离子电池放置在50℃环境下,测试过程如下:
检测电池的容量大于50%SOC,进行高SOC区域(80%~110%SOC)充放电循环过程:以2C充电、0.5C放电循环5次,循环结束后调整电池到110%SOC,恒压充电10小时,随后1C放电至30%SOC,进行低SOC区域(0%~30%SOC)充放电循环过程:以0.1C充电、0.2C放电循环3次,循环结束后调整电池到0%SOC,完成以上步骤记为一次循环。持续进行上述循环,记录容量保持率达到90%时所用时间,结果如表1所示。
实施例4
锂离子电池与实施例1相同,测试方法与实施例1不同。
本对比例的测试方法如下:
将锂离子电池放置在55℃环境下,测试过程如下:
检测电池的容量大于50%SOC,进行高SOC区域(70%~105%SOC)充放电循环过程:以3C充电、0.7C放电循环5次,循环结束后调整电池到105%SOC,恒压充电15小时,静置5小时,随后0.5C放电至10%SOC,进行低SOC区域(0%~10%SOC)充放电循环过程:以0.02C充电、0.1C放电循环5次,循环结束后调整电池到0%SOC,静置1小时,完成以上步骤记为一次循环。持续进行上述循环,记录容量保持率达到90%时所用时间,结果如表1所示。
对比例1
锂离子电池与实施例1相同,测试方法与实施例1不同。
本对比例的测试方法如下:
将锂离子电池放置在45℃环境下,测试过程如下:
对充满电的锂离子电池进行放电处理,放电过程是在0.5C的放电倍率下放电至3.0V,然后进行放电静置10min;
表1
Figure BDA0002313792530000101
表1是本发明实施例与对比例的电池在高温容量保持率相同时所用的循环次数与常温容量恢复率。可见加速测试方案大幅缩短高温间歇性循环寿命评估所需时间,且加速测试与常规测试电池的高温容量保持率接近时,常温容量恢复率也很接近,证明加速测试与常规测试电池的容量衰减机理没有明显差别,本发明的加速测试方案是有效的加速测试方案。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种快速测试锂离子电池循环寿命的方法,所述方法包括:
(1)调整锂离子的电池容量至大于等于锂离子电池的设计容量的50%,进行高SOC区域充放电循环过程,且高SOC区域充放电循环过程结束后通过充电或放电调整电池容量至大于等于设计容量的90%;
(2)对步骤(1)的锂离子电池进行恒压充电和/或充电静置步骤;恒压充电和/或充电静置步骤结束后,通过充电或放电调整电池容量至小于锂离子电池的设计容量的50%;
(3)对步骤(2)的锂离子电池进行低SOC区域充放电循环过程,且低SOC区域充放电循环过程结束后通过充电或放电调整电池容量至小于等于设计容量的10%;
(4)对步骤(3)的锂离子电池进行恒压充电和/或充电静置步骤;
(5)锂离子电池按步骤(1)到步骤(4)为一次循环;当锂离子电池的充放电循环时间达到阈值时,记录锂离子电池的高温容量保持率;
或者,当锂离子电池的高温容量保持率达到阈值时,记录锂离子电池所用的充放电循环时间,即实现快速测试锂离子电池循环寿命。
2.根据权利要求1所述的方法,其中,所述方法是将锂离子电池置于40℃以上的环境中进行的。
3.根据权利要求1或2所述的方法,其中,步骤(1)中,所述锂离子电池的设计容量为2000-8000mAh,例如为4000mAh。
4.根据权利要求1-3任一项所述的方法,其中,所述的高SOC区域充放电循环过程是指对电池容量大于等于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在高SOC区域内,例如为50-110%。
所述的低SOC区域充放电循环过程是指对电池容量小于锂离子电池的设计容量50%的锂离子电池进行充放电循环处理,且充放电循环处理过程中,保持电池容量在低SOC区域内,例如为大于等于0且小于50%。
5.根据权利要求1-4任一项所述的方法,其中,步骤(1)中,所述高SOC区域充放电循环过程包括充电步骤和放电步骤;
步骤(3)中,所述低SOC区域充放电循环过程包括充电步骤和放电步骤。
6.根据权利要求1-5任一项所述的方法,其中,所述放电步骤例如可以是以0.2-6C的放电倍率对锂离子电池进行放电处理,且放电至放电下限电压U’,所述公知放电下限电压Ug’与放电下限电压U’满足如下关系式:1V≥Ug’-U’≥0V;所述的公知的放电下限电压Ug’为2.0-3.6V。
7.根据权利要求1-6任一项所述的方法,其中,所述充电步骤例如可以是以0.01-6C的充电倍率对锂离子电池进行恒流充电,且恒流充电至充电上限电压U,所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V;所述公知充电上限电压Ug例如可以是3.6-4.5V。
8.根据权利要求1-7任一项所述的方法,其中,步骤(2)和(4)中,所述恒压充电是在充电上限电压U的电压下进行充电的;所述充电上限电压U与公知充电上限电压Ug满足如下关系式:1V≥U-Ug≥0V。
9.根据权利要求1-8任一项所述的方法,其中,步骤(2)中,高SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时;
步骤(4)中,低SOC区域充放电循环过程的循环次数越多,所述恒压充电的时间越长,例如所述恒压充电的时间为1-100小时。
10.根据权利要求1-9任一项所述的方法,其中,步骤(2)和(4)中,所述恒压充电处理的时间相同或不同;
步骤(5)中,每个循环过程中,步骤(1)、步骤(2)、步骤(3)、步骤(4)的操作相同或不同。
CN201911269602.6A 2019-12-11 2019-12-11 一种快速测试锂离子电池循环寿命的方法 Active CN112946506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911269602.6A CN112946506B (zh) 2019-12-11 2019-12-11 一种快速测试锂离子电池循环寿命的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911269602.6A CN112946506B (zh) 2019-12-11 2019-12-11 一种快速测试锂离子电池循环寿命的方法

Publications (2)

Publication Number Publication Date
CN112946506A true CN112946506A (zh) 2021-06-11
CN112946506B CN112946506B (zh) 2022-10-28

Family

ID=76234221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911269602.6A Active CN112946506B (zh) 2019-12-11 2019-12-11 一种快速测试锂离子电池循环寿命的方法

Country Status (1)

Country Link
CN (1) CN112946506B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466719A (zh) * 2021-07-15 2021-10-01 深圳市清新电源研究院 一种利用小容量电池测试大容量电池循环寿命的方法
CN114545240A (zh) * 2022-01-24 2022-05-27 江苏中兴派能电池有限公司 一种提高电池性能的测试方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018683A (zh) * 2012-12-24 2013-04-03 天津力神电池股份有限公司 一种电池循环性能加速评估方法
CN103344917A (zh) * 2013-06-13 2013-10-09 北京交通大学 一种锂电池循环寿命快速测试方法
WO2014103218A1 (ja) * 2012-12-27 2014-07-03 三洋電機株式会社 蓄電装置充放電システム
CN104678319A (zh) * 2015-03-11 2015-06-03 浙江中科立德新材料有限公司 锂电池模拟循环测试方法
CN106093794A (zh) * 2016-08-01 2016-11-09 深圳市电科电源股份有限公司 磷酸铁锂电池的高温寿命加速测试方法
CN106199444A (zh) * 2016-07-11 2016-12-07 深圳天珑无线科技有限公司 预测电池循环寿命的方法及系统
CN107768708A (zh) * 2017-08-28 2018-03-06 天津力神电池股份有限公司 锂电池石墨负极材料循环性能的快速评价方法
US20180198161A1 (en) * 2017-01-12 2018-07-12 StoreDot Ltd. Increasing cycling lifetime of fast-charging lithium ion batteries
CN108445414A (zh) * 2018-04-26 2018-08-24 合肥国轩高科动力能源有限公司 一种三元锂离子电池循环寿命的快速测试方法
CN109713386A (zh) * 2018-12-05 2019-05-03 上海科比斯实业有限公司 一种硬碳负极材料锂离子电池的化成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018683A (zh) * 2012-12-24 2013-04-03 天津力神电池股份有限公司 一种电池循环性能加速评估方法
WO2014103218A1 (ja) * 2012-12-27 2014-07-03 三洋電機株式会社 蓄電装置充放電システム
CN103344917A (zh) * 2013-06-13 2013-10-09 北京交通大学 一种锂电池循环寿命快速测试方法
CN104678319A (zh) * 2015-03-11 2015-06-03 浙江中科立德新材料有限公司 锂电池模拟循环测试方法
CN106199444A (zh) * 2016-07-11 2016-12-07 深圳天珑无线科技有限公司 预测电池循环寿命的方法及系统
CN106093794A (zh) * 2016-08-01 2016-11-09 深圳市电科电源股份有限公司 磷酸铁锂电池的高温寿命加速测试方法
US20180198161A1 (en) * 2017-01-12 2018-07-12 StoreDot Ltd. Increasing cycling lifetime of fast-charging lithium ion batteries
CN107768708A (zh) * 2017-08-28 2018-03-06 天津力神电池股份有限公司 锂电池石墨负极材料循环性能的快速评价方法
CN108445414A (zh) * 2018-04-26 2018-08-24 合肥国轩高科动力能源有限公司 一种三元锂离子电池循环寿命的快速测试方法
CN109713386A (zh) * 2018-12-05 2019-05-03 上海科比斯实业有限公司 一种硬碳负极材料锂离子电池的化成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YANG GAO ET AL.: "Lithium-ion battery aging mechanisms and life model under different charging stresses", 《JOURNAL OF POWER SOURCES》 *
曹锦珠 等: "锂离子电池加速循环新评估方法研究", 《测试与测量》 *
李连兴 等: "锂二次电池的高温循环性能及其容量损失", 《电源技术》 *
王玲玲 等: "影响锂离子电池循环寿命的因素", 《电源技术》 *
陈满 等: "锂电池健康装置监测与评价技术研究", 《水电站机电技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466719A (zh) * 2021-07-15 2021-10-01 深圳市清新电源研究院 一种利用小容量电池测试大容量电池循环寿命的方法
CN113466719B (zh) * 2021-07-15 2024-04-19 深圳市清新电源研究院 一种利用小容量电池测试大容量电池循环寿命的方法
CN114545240A (zh) * 2022-01-24 2022-05-27 江苏中兴派能电池有限公司 一种提高电池性能的测试方法

Also Published As

Publication number Publication date
CN112946506B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN109856559B (zh) 一种锂电池循环寿命的预测方法
CN109839598B (zh) 一种无损检测锂离子电池正极可逆锂损失方法
CN110165319B (zh) 一种高容量锂电池自放电性能的分选方法
JP7076495B2 (ja) 使用済み電池の迅速なグループ化と修復方法
WO2018209784A1 (zh) 电池析锂的检测方法、电池管理系统及电池系统
US10345388B2 (en) Method for screening lithium ion battery
CN109201521B (zh) 一种镍钴锰酸锂锂离子电池自放电筛选工艺
CN108445414B (zh) 一种三元锂离子电池循环寿命的快速测试方法
CN110927593A (zh) 一种采用扣式电池评价循环后锂离子电池电极材料的方法
CN106908737A (zh) 一种基于电化学反应机理仿真的锂离子电池寿命预测方法
CN112363075A (zh) 一种锂离子电池老化的评估方法
CN110988086A (zh) 一种检测电池循环过程中电极材料结构稳定性的方法
CN112946506B (zh) 一种快速测试锂离子电池循环寿命的方法
CN109004288B (zh) 一种锂电池高soc附近小电流扰动循环化成方法
CN110729520A (zh) 一种电池快速充电方法
CN112689934A (zh) 充电方法、电子装置以及存储介质
You et al. Charging strategy optimization at low temperatures for li-ion batteries based on multi-factor coupling aging model
CN116338477A (zh) 一种电池膨胀力影响因素测试及分析方法
CN114252795B (zh) 一种预测锂离子电池循环寿命的方法
CN112946501A (zh) 一种快速测试锂离子电池循环寿命的方法
CN115548482A (zh) 一种补锂方法、电池制备方法及电池
CN111366863A (zh) 一种基于低温循环的锂离子电池寿命加速预判方法
CN109164397B (zh) 考虑充电速率和环境温度的锂电池寿命损耗评估方法
CN112379285B (zh) 一种电池包自放电筛选方法
CN112946502B (zh) 一种快速测试锂离子电池循环寿命的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant