CN106908737A - 一种基于电化学反应机理仿真的锂离子电池寿命预测方法 - Google Patents

一种基于电化学反应机理仿真的锂离子电池寿命预测方法 Download PDF

Info

Publication number
CN106908737A
CN106908737A CN201710208705.6A CN201710208705A CN106908737A CN 106908737 A CN106908737 A CN 106908737A CN 201710208705 A CN201710208705 A CN 201710208705A CN 106908737 A CN106908737 A CN 106908737A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
electrochemical reaction
reaction mechanism
prediction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710208705.6A
Other languages
English (en)
Other versions
CN106908737B (zh
Inventor
汤依伟
吴理觉
文定强
郑世林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan New Materials Research Institute Co Ltd
Guangdong Jiana Energy Technology Co Ltd
Original Assignee
Qingyuan New Materials Research Institute Co Ltd
Guangdong Jiana Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingyuan New Materials Research Institute Co Ltd, Guangdong Jiana Energy Technology Co Ltd filed Critical Qingyuan New Materials Research Institute Co Ltd
Priority to CN201710208705.6A priority Critical patent/CN106908737B/zh
Publication of CN106908737A publication Critical patent/CN106908737A/zh
Application granted granted Critical
Publication of CN106908737B publication Critical patent/CN106908737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:参数测量、电化学反应机理模型的建立、模型耦合计算、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。本发明的基于电化学反应机理仿真的锂离子电池寿命预测方法具有操作简单、测试周期短、成本低廉和准确性高的特点。

Description

一种基于电化学反应机理仿真的锂离子电池寿命预测方法
技术领域
本发明涉及锂离子电池技术领域,特别是一种基于电化学反应机理仿真的锂离子电池寿命预测方法。
背景技术
锂离子电池由于具有工作电压高、能量密度高、无记忆效应和自放电率低等优点,在便携式电子产品中得到了广泛的应用。近年来,其应用正向电动汽车领域拓展。与便携式电子产品不同,电动汽车除了要求电池满足高能量密度和功率密度外,对电池的使用寿命提出了更高要求。美国先进电池联合会(USABC)要求混合电动汽车(HEV)电池具有15年以上的使用寿命,纯电动汽车(EV)电池具有10年以上的使用寿命,因此,提高电池的使用寿命是车用锂离子动力电池大规模发展必须解决的问题。
发展先进的电池寿命预测方法是研究电池寿命问题的前提。目前,预测电池使用寿命主要采用实验测试、数学公式拟合以及两者相结合的方法。专利201310736887.6提出对电池进行间歇式循环测试,得到的电池循环次数与容量保持率和温升增长率的对应关系,在此基础上进行数学拟合,利用拟合得到的公式计算电池的使用寿命。中国发明专利201310736887.6通过对电池进行最少40次循环测试,拟合数学公式推断电池300次循环时的容量状态。
但是,实验测试方法需要消耗大量时间成本,如对电池充放电循环达千次以上时,需要的时间短则一两个月,长则一两年;并且经历寿命测试的电池,性能已经劣化,不能作为正常产品使用。数学公式拟合方法是根据已有的实验数据,定义数学表达式计算电池的寿命。然而,在一定的误差范围内,同样一组实验数据,可以用不止一个数学表达式拟合,但对于具体的锂离子电池来说,真正有物理意义的关系是唯一的,这说明数学公式拟合法忽略了电池本身的物理意义;另外,实验数据都是在特定条件下测试得到的,对于超出测试条件和数据的预测,拟合的准确性难以把握。
发明内容
本发明的最主要目的在于提供了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,具有操作简单、测试周期短、成本低廉和测试准确的特点。
本发明可以通过以下技术方案来实现:
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量随循环次数的变化,进行数学拟合,预测电池的使用寿命。
进一步地,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变中的一种或两种以上。
进一步地,所述锂离子电池的正极材料为镍钴锰三元材料、磷酸铁锂、钴酸锂、镍酸锂、锰酸锂和/或磷酸锰锂中的一种或两种以上。
进一步地,所述锂离子电池的负极材料为人造石墨、天然石墨、中间相碳微球和/或钛酸锂中的一种或两种以上。
进一步地,在步骤4中,步骤4所述的数学拟合为数学拟合或非数学拟合。
进一步地,步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
本发明基于电化学反应机理仿真的锂离子电池寿命预测方法具有如下有益的技术效果:与实验测试方法相比,本发明所需的时间较为节约,实施例1在戴尔PrecisionT1650工作站(两个四核Intel Core i7-3770处理器,8GB自由内存,1TB硬盘)上计算1000次充放电循环所花费的时间为34小时,而同等充放电电流条件下,实验测试1000次循环需要的时间为1200小时;与单纯的数学公式拟合相比,本发明基于电池内部的真实反应进行计算,物理意义明确,预测精度高。
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合实施例及对本发明产品作进一步详细的说明。
实施例1
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。
在本实施例中,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和活性物质溶解和相转变。所述锂离子电池的正极材料为镍钴锰三元材料。所述锂离子电池的负极材料为人造石墨。在步骤4中,数学拟合的函数关系式为:y=0.037ln(x)+1.0708,式中,x为循环次数,y为容量保持率。步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
实施例2
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。
在本实施例中,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变。所述锂离子电池的正极材料为磷酸铁锂。所述锂离子电池的负极材料为天然石墨。在步骤4中,数学拟合的函数关系式为:y=1.0007e-0.0001x,式中,x为循环次数,y为容量保持率。步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
实施例3
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。
在本实施例中,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变。所述锂离子电池的正极材料为钴酸锂。所述锂离子电池的负极材料为中间相碳微球。在步骤4中,数学拟合的函数关系式为:y=1.1756x-0.038,式中,x为循环次数,y为容量保持率。步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
实施例4
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。
在本实施例中,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变。所述锂离子电池的正极材料为镍酸锂和磷酸锰锂。所述锂离子电池的负极材料为中间相碳微球和钛酸锂。在步骤4中,数学拟合的函数关系式为:Y= y=0.04ln(x)+1.0208,式中,x为循环次数,y为容量保持率。步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
实施例5
本发明公开了一种基于电化学反应机理仿真的锂离子电池寿命预测方法,包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量的变化,进行数学拟合,预测电池的使用寿命。
在本实施例中,所述容量衰减机理包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变。所述锂离子电池的正极材料为镍钴锰三元材料、磷酸铁锂、钴酸锂、镍酸锂、锰酸锂和磷酸锰锂。所述锂离子电池的负极材料为人造石墨、天然石墨、中间相碳微球和钛酸锂。在步骤4中,数学拟合的函数关系式为:y=0.99789-0.000131x,式中,x为循环次数,y为容量保持率。步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
应用实施例1
在锂离子电池中,除了在电极活性材料嵌入和脱出时发生的氧化还原反应外,还存在着许多副反应,如电解液的分解、固态电解质界面膜(Solid Electrolyte InterphaseLayer,SEI)的生长、活性物质溶解和相转变等,这些副反应的发生需要消耗活性物质中的锂离子,减少了电池充放电容量,造成使用寿命的降低。
目前商业化的锂离子电池中,负极SEI膜在充电过程中的不稳定及持续生长被认为是影响电池寿命的主要原因。本实施例以充电过程负极SEI的生长作为主要的容量衰减机理,对本发明的实质性特点和优势作进一步的说明, 但本发明并不局限于所列的实施例。
步骤1、以磷酸铁锂为正极材料、中间相碳微球(MCMB)为负极材料、六氟磷酸锂的碳酸乙烯酯/碳酸二甲酯溶液为电解液,铝塑膜为外包装制备20Ah的锂离子电池;对电池进行性能测试,得到其结构参数、热力学参数和动力学参数;部分参数如表1所示。
步骤2、根据多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,赋予各组分相应的热力学、动力学参数;
步骤3、定义负极表面SEI膜反应的数学表达式及相应的参数值,耦合到步骤2建立的电化学反应机理模型中,并对模型进行循环计算。每次循环结束时,按照SEI膜反应的发生情况,计算锂离子的损失和SEI厚度的变化,对电极中的锂离子浓度和电极的孔隙率以及电阻率等参数进行重置;
步骤4、计算电池1000次循环过程中容量的变化情况,并进行拟合,得到线性关系式为:
y=0.99789-0.000131x
式中,x为循环次数,y为容量保持率。
根据此关系式,可计算得到容量保持率为80%时,电池的循环次数为1510次,即电池的使用寿命为1510次。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,可利用以上所揭示的技术内容而作出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (6)

1.一种基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于包括以下步骤:
步骤1、参数测量,制备锂离子电池样品,测试不同环境温度下的电池结构参数、热力学和动力学参数值;
步骤2、电化学反应机理模型的建立,基于多孔电极理论、非均匀介质物质传递和电荷迁移理论,建立锂离子电池的电化学反应机理模型,并基于步骤1的测试结果,赋予各物质相相关热力学、动力学参数,所述物质相包括正极、负极、粘结剂、导电剂和电解液;
步骤3、模型耦合计算,结合电池体系特点,引入容量衰减反应的数学表达式及参数值,耦合到步骤2的电化学反应机理模型中,并对模型进行循环计算,每次循环结束时,按照容量衰减反应的发生情况,对相关参数进行重置;
步骤4、寿命预测,根据仿真计算过程中电池容量随循环次数的变化,进行数学拟合,预测电池的使用寿命。
2.根据权利要求1所述的基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于:所述容量衰减反应包括电解液的分解、固态电解质界面膜的生长和/或活性物质溶解和相转变中的一种或两种以上。
3.根据权利要求1或2所述的基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于:所述锂离子电池的正极材料为镍钴锰三元材料、磷酸铁锂、钴酸锂、镍酸锂、锰酸锂和/或磷酸锰锂中的一种或两种以上。
4.根据权利要求3所述的基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于:所述锂离子电池的负极材料为人造石墨、天然石墨、中间相碳微球和/或钛酸锂中的一种或两种以上。
5.根据权利要求4所述的基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于:步骤1测量的参数包括固相体积分数、固相体积分数、厚度和粒径。
6.根据权利要求1所述的基于电化学反应机理仿真的锂离子电池寿命预测方法,其特征在于:步骤4所述的数学拟合为数学拟合或非数学拟合。
CN201710208705.6A 2017-03-31 2017-03-31 一种基于电化学反应机理仿真的锂离子电池寿命预测方法 Active CN106908737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710208705.6A CN106908737B (zh) 2017-03-31 2017-03-31 一种基于电化学反应机理仿真的锂离子电池寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710208705.6A CN106908737B (zh) 2017-03-31 2017-03-31 一种基于电化学反应机理仿真的锂离子电池寿命预测方法

Publications (2)

Publication Number Publication Date
CN106908737A true CN106908737A (zh) 2017-06-30
CN106908737B CN106908737B (zh) 2019-04-05

Family

ID=59195786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710208705.6A Active CN106908737B (zh) 2017-03-31 2017-03-31 一种基于电化学反应机理仿真的锂离子电池寿命预测方法

Country Status (1)

Country Link
CN (1) CN106908737B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479000A (zh) * 2017-08-17 2017-12-15 北京理工大学 一种基于Box‑Cox变换与蒙特卡罗仿真的锂离子动力电池RUL预测方法
CN108146260A (zh) * 2017-11-22 2018-06-12 中国汽车技术研究中心 整车制动回馈电流对锂离子电池使用寿命影响的测试方法
CN108761347A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 一种处理方法、装置及电子设备
CN109146115A (zh) * 2018-06-11 2019-01-04 广州市香港科大霍英东研究院 基于模型迁移的电池寿命预测方法、系统及装置
CN111208431A (zh) * 2020-01-07 2020-05-29 天津市捷威动力工业有限公司 一种电动汽车用锂离子电池全气候日历寿命预测方法
CN111380996A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料循环寿命的快速检测方法
CN113125969A (zh) * 2020-01-14 2021-07-16 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
CN113884929A (zh) * 2021-09-28 2022-01-04 江苏中兴派能电池有限公司 一种磷酸铁锂电池循环寿命预测方法
CN115047364A (zh) * 2022-03-01 2022-09-13 东方电气集团科学技术研究院有限公司 一种基于电化学模型锂离子电池使用寿命预测的方法
CN115184809A (zh) * 2022-07-05 2022-10-14 燕山大学 一种基于温度角度对储能电池系统多维度评估方法
CN116705210A (zh) * 2023-08-03 2023-09-05 宁德时代新能源科技股份有限公司 电芯老化模型构建方法和电芯全生命周期性能预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291417A1 (en) * 2009-05-15 2010-11-18 Robert Bosch Gmbh Method for determining extent and type of capacity fade
CN105223508A (zh) * 2015-07-14 2016-01-06 上海空间电源研究所 锂离子电池内部性能状态无损检测方法
CN105548893A (zh) * 2015-12-07 2016-05-04 上海空间电源研究所 一种锂离子电池健康状态的特征参数评价方法
CN105911478A (zh) * 2016-04-19 2016-08-31 中国科学院宁波材料技术与工程研究所 一种老化的锂电池充放电状态下热分析方法和系统
CN106383324A (zh) * 2016-12-07 2017-02-08 上海动力储能电池系统工程技术有限公司 一种基于容量衰减机理分解分析的锂离子电池寿命预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291417A1 (en) * 2009-05-15 2010-11-18 Robert Bosch Gmbh Method for determining extent and type of capacity fade
CN105223508A (zh) * 2015-07-14 2016-01-06 上海空间电源研究所 锂离子电池内部性能状态无损检测方法
CN105548893A (zh) * 2015-12-07 2016-05-04 上海空间电源研究所 一种锂离子电池健康状态的特征参数评价方法
CN105911478A (zh) * 2016-04-19 2016-08-31 中国科学院宁波材料技术与工程研究所 一种老化的锂电池充放电状态下热分析方法和系统
CN106383324A (zh) * 2016-12-07 2017-02-08 上海动力储能电池系统工程技术有限公司 一种基于容量衰减机理分解分析的锂离子电池寿命预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NING GANG等: "cycle life modeling of lihtium-ion batteries", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
P.RAMADASS等: "Development of first principles capacity fade model for li-ion cells", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
R.SPOTNITZ: "Simulation of capacity fade in lithium-ion batteries", 《JOURNAL OF POWER SOURCES》 *
韩雪冰: "车用锂离子电池机理模型与状态估计研究", 《中国博士学位论文全文数据库(电子期刊)》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479000A (zh) * 2017-08-17 2017-12-15 北京理工大学 一种基于Box‑Cox变换与蒙特卡罗仿真的锂离子动力电池RUL预测方法
CN107479000B (zh) * 2017-08-17 2019-10-11 北京理工大学 一种基于Box-Cox变换与蒙特卡罗仿真的锂离子动力电池RUL预测方法
CN108146260B (zh) * 2017-11-22 2019-11-08 中国汽车技术研究中心 整车制动回馈电流对锂离子电池使用寿命影响的测试方法
CN108146260A (zh) * 2017-11-22 2018-06-12 中国汽车技术研究中心 整车制动回馈电流对锂离子电池使用寿命影响的测试方法
CN109146115A (zh) * 2018-06-11 2019-01-04 广州市香港科大霍英东研究院 基于模型迁移的电池寿命预测方法、系统及装置
CN108761347B (zh) * 2018-06-29 2021-01-15 联想(北京)有限公司 一种处理方法、装置及电子设备
CN108761347A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 一种处理方法、装置及电子设备
CN111380996A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料循环寿命的快速检测方法
CN111208431A (zh) * 2020-01-07 2020-05-29 天津市捷威动力工业有限公司 一种电动汽车用锂离子电池全气候日历寿命预测方法
CN111208431B (zh) * 2020-01-07 2022-05-10 天津市捷威动力工业有限公司 一种电动汽车用锂离子电池全气候日历寿命预测方法
CN113125969A (zh) * 2020-01-14 2021-07-16 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
CN113125969B (zh) * 2020-01-14 2022-07-15 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
CN113884929A (zh) * 2021-09-28 2022-01-04 江苏中兴派能电池有限公司 一种磷酸铁锂电池循环寿命预测方法
CN115047364A (zh) * 2022-03-01 2022-09-13 东方电气集团科学技术研究院有限公司 一种基于电化学模型锂离子电池使用寿命预测的方法
CN115184809A (zh) * 2022-07-05 2022-10-14 燕山大学 一种基于温度角度对储能电池系统多维度评估方法
CN116705210A (zh) * 2023-08-03 2023-09-05 宁德时代新能源科技股份有限公司 电芯老化模型构建方法和电芯全生命周期性能预测方法

Also Published As

Publication number Publication date
CN106908737B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN106908737B (zh) 一种基于电化学反应机理仿真的锂离子电池寿命预测方法
Logan et al. Electrolyte design for fast-charging Li-ion batteries
Gao et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li (NiMnCo) O2 cathode
Wang et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge
CN109586373A (zh) 一种电池充电方法和装置
CN103117412B (zh) 锂离子电池及其化成方法
CN109581234B (zh) 一种锂离子电池一致性筛选方法
CN115453377B (zh) 基于电化学-热-老化与三维降阶的电池组寿命预测方法
CN107066713B (zh) 一种预测锂离子电池材料电化学性能的仿真方法
CN103018683A (zh) 一种电池循环性能加速评估方法
Han et al. Electrochemical-thermal coupled investigation of lithium iron phosphate cell performances under air-cooled conditions
Marangoni Battery management system for li-ion batteries in hybrid electric vehicles
CN111129628B (zh) 锂离子电芯充放电的控制方法、系统、介质及电子设备
Miranda et al. Computer simulation evaluation of the geometrical parameters affecting the performance of two dimensional interdigitated batteries
CN104882631A (zh) 一种提高锂离子电池极片均匀散热性能的方法
Hamidah et al. Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery
Xue et al. Lithium-ion batteries: thermomechanics, performance, and design optimization
Zhang et al. Effects of cell-to-cell variations on series-connected liquid metal battery pack capacity
CN110658473B (zh) 一种锂离子电池正极材料存储性能评估方法
CN103760212A (zh) 一种磷酸铁锂正极材料循环寿命快速检测的方法
Qian et al. Revealing the Impact of High Current Overcharge/Overdischarge on the Thermal Safety of Degraded Li‐Ion Batteries
CN116068447A (zh) 预测锂离子电池日历老化和循环老化的方法
CN115267551A (zh) 一种同时测得锂离子电池电极材料开路电势曲线与熵系数曲线的方法
CN107394270A (zh) 用于提高钛酸锂电池循环稳定性的电解液及其制备方法
CN111856293B (zh) 一种锂离子电池硅负极材料容量的测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant