CN112941086B - OsPIL15基因在调控水稻耐盐性中的应用 - Google Patents
OsPIL15基因在调控水稻耐盐性中的应用 Download PDFInfo
- Publication number
- CN112941086B CN112941086B CN202110272399.9A CN202110272399A CN112941086B CN 112941086 B CN112941086 B CN 112941086B CN 202110272399 A CN202110272399 A CN 202110272399A CN 112941086 B CN112941086 B CN 112941086B
- Authority
- CN
- China
- Prior art keywords
- ospil15
- rice
- gene
- ala
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及OsPIL15基因在调控水稻耐盐性中的应用。本发明通过构建OsPIL15‑OE超表达载体和OsPIL15‑KO敲除载体,利用农杆菌介导法导入粳稻品种日本晴,筛选获得OsPIL15超表达转基因株系和敲除突变体;并通过试验证明敲除OsPIL15基因的水稻突变体,经200mM NaCl盐胁迫处理7d后,生长状态明显好于野生型日本晴和OsPIL15‑OE超表达植株。本发明基于CRISPR/Cas9技术对OsPIL15的基因编辑,为快速创制耐盐水稻新品系提供了一种简单有效的技术手段。OsPIL15基因在提高水稻耐盐性上具有潜在的应用价值,可利用分子改良技术在生产中加以利用,对水稻高产、稳产和抗逆育种具有重要的实践意义。
Description
技术领域
本发明属于基因工程技术领域,具体涉及OsPIL15基因在调控水稻耐盐性中的应用。
背景技术
近年来,全球气候变暖和不合理的农业灌溉等因素使盐渍土面积不断扩大,程度不断加深,土壤盐渍化成为土地退化的主要因素。据联合国粮农组织(FAQ)统计,目前全球有超过9亿公顷土地正遭受盐害影响,受盐害的面积约占全世界农业耕作面积的50%,且面积正逐年增加(Hossain S.Present scenario of global salt affected soils,itsmanagement and importance of salinity research[J].International Journal ofBiological Sciences.2019,1(1):1-3)。在中国,盐渍化也正成为日趋严重的环境与社会问题。据全国土壤普查资料显示,我国盐渍土地面积为5.2亿亩(不包括滨海滩涂),其中只有约1亿亩进行了开垦种植。因此,提高盐渍化土地的生产力显得异常重要。
水稻(Oryza sativa L.)是世界上最主要的粮食作物之一,为全球半数以上人口提供食物来源,对保障我国粮食安全具有重要战略意义,其特殊的栽培方式使其成为盐渍化土地开发利用的先锋作物。水稻对盐胁迫耐受程度因品种不同和生育阶段不同而有所差异。高浓度盐胁迫可抑制水稻种子萌发,对水稻幼苗地上部和根系生长产生影响明显(Kakar N,Jumaa S H,E D,et al.Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage[J].Rice.2019,12(1):57)。水稻生殖生长期受到盐碱胁迫危害高于营养生长期,在生殖生长期受到盐碱胁迫,明显影响水稻幼穗分化进程,减少颖花形成数量,穗粒数减少,结实率与千粒重下降,从而导致水稻减产甚至绝收(Gerona M E B,Deocampo M P,Egdane J A,etal.Physiological responses of contrasting rice genotypes to salt stress atreproductive stage[J].Rice Science.2019,26(4):207-219)。水稻耐盐性属于数量性状,有超过900个耐盐相关QTL被鉴定,目前已精细定位或克隆的QTL主要为位于第1染色体上的qSKC-1与Saltol。qSKC-1为水稻中克隆的第一个耐盐基因SKC1,其编码一个HKT家族转运蛋白,在盐胁迫下调节水稻地上部K+/Na+的平衡,从而增加水稻的耐盐性(Ren Z,Gao J,Li L,et al.A rice quantitative trait locus for salt tolerance encodes asodium transporter[J].Nature genetics.2005,37(10):1141-1146),而Saltol主要负责调控盐胁迫下水稻的K+/Na+平衡。qSE3编码钾离子转运蛋白OsHAK21,可提高盐胁迫下水稻种子萌发和幼苗建成(He Y,Yang B,He Y,et al.A quantitative trait locus,qSE3,promotes seed germination and seedling establishment under salinity stress inrice[J].The Plant Journal.2019,97(6):1089-1104),qSL7编码bHLH家族转录因子,调控盐胁迫下水稻茎杆长度(Jahan N,Zhang Y,Lv Y,et al.QTL analysis for ricesalinity tolerance and fine mapping of a candidate locus qSL7 for shootlength under salt stress[J].Plant Growth Regulation.2020,90(2):307-319)。
已有研究表明,包括AP2/ERF、bZIP、WRKY和bHLH等家族转录因子均可参与水稻盐胁迫响应(Ganie S A,Molla K A,Henry R J,et al.Advances in understanding salttolerance in rice[J].Theoretical and applied genetics.2019,132(4):851-870)。光敏色素互作因子PIFs(Phytochrome-Interacting Factors)或称PILs(PhytochromeInteracting Factor-Like)是碱性螺旋-环-螺旋(Basic helix-loop-helix,bHLH)转录因子家族的一类转录因子。作为bHLH蛋白的一种,所有PIFs家族的蛋白都包含N端与光敏色素互作的APB(Active Phytochrome B-binding)或APA(Active Phytochrome A-binding)结构域和C端bHLH-DNA结合结构域(Khanna R,Huq E,Kikis E A,et al.A novel molecularrecognition motif necessary for targeting photoactivated phytochromesignaling to specific basic helix-loop-helix transcription factors[J].PlantCell.2004,16(11):3033-3044)。研究表明,DELLAs蛋白能与PIFs的bHLH结构域结合,阻碍其对下游靶基因的调控,而DELLAs蛋白的积累则可缓解盐胁迫过程中ROS引起的生理伤害(Achard P,Renou J,BerthoméR,et al.Plant DELLAs restrain growth and promotesurvival of adversity by reducing the levels of reactive oxygen species[J].Current Biology.2008,18(9):656-660)。水稻光敏色素phyB缺失突变体可提高植株对盐胁迫耐受性,作为与光敏色素互作的转录因子,PIFs可能参与这一过程(Kwon C,Song G,Kim S,et al.Functional deficiency of phytochrome B improves salt tolerance inrice[J].Environmental and experimental botany.2018,148:100-108)。目前,转录因子OsPIL15与盐胁迫响应的关系尚不明确,国内外也未有相关的报道。
发明内容
本发明的目的在于提供OsPIL15基因在调控水稻耐盐性中的应用,提供了培育耐盐水稻品系的新方法。
为了实现上述目的,本发明采用以下技术方案:
本发明提供了OsPIL15基因在调控水稻耐盐性中的应用,所述OsPIL15基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:3所示;或所述OsPIL15基因编码的蛋白质的氨基酸序列如SEQ ID NO:2所示。
优选的,所述应用为通过对OsPIL15基因进行敲除或下调其表达获得高耐盐性水稻。
进一步优选的,通过CRISPR-Cas9、锌指核酸酶、TALENs或RNAi对OsPIL15基因进行敲除或下调其表达。
进一步优选的,通过CRISPR-Cas9对OsPIL15基因进行敲除,包括以下步骤:在OsPIL15外显子区域选择一段19bp序列作(SEQ ID NO:4)为sgRNA序列,使用酶切连接法将SEQ ID NO:4序列连接至pBUN411载体,构建OsPIL15-KO敲除载体,利用农杆菌介导法将敲除载体导入粳稻品种日本晴,筛选获得OsPIL15敲除突变体。
本发明取得的有益效果:
本发明提供了OsPIL15基因在调控水稻耐盐性中的应用。本发明通过构建OsPIL15-OE超表达载体和OsPIL15-KO敲除载体,利用农杆菌介导法导入粳稻品种日本晴,筛选获得OsPIL15超表达转基因株系和敲除突变体;并通过试验证明敲除OsPIL15基因的水稻突变体,经200mM NaCl盐胁迫处理7d后,生长状态明显好于野生型日本晴和OsPIL15-OE超表达植株。本发明基于CRISPR/Cas9技术对OsPIL15的基因编辑,为快速创制耐盐水稻新品系提供了一种简单有效的技术手段。OsPIL15基因在提高水稻耐盐性上具有潜在的应用价值,可利用分子改良技术在生产中加以利用,对水稻高产、稳产和抗逆育种具有重要的实践意义。
附图说明
图1为OsPIL15-OE载体结构示意图;
图2为OsPIL15-KO载体结构示意图;
图3为OsPIL15-KO株系突变基因型;
图4为200mM NaCl胁迫7d WT和OsPIL15转基因幼苗表型(标尺:10cm);
图5为盐胁迫后恢复5d WT和OsPIL15转基因幼苗表型(标尺:10cm);
图6为盐胁迫后恢复5d WT和OsPIL15转基因幼苗存活率统计(*P<0.05,**P<0.01)。
具体实施方式
下面结合具体实施方式对本发明作进一步描述,但本发明的保护范围并不仅限于此;若未特别说明,实施例中所用的各类培养基、试剂、质粒、细胞系试剂、工具酶等均为市售商品,所用的方法如无特别说明均为常规分子生物学方法。
实施例1 OsPIL15-OE表达载体和OsPIL15-KO表达载体的构建
通过水稻基因组注释数据库The Rice Annotation Project(https://rapdb.dna.affrc.go.jp/)查找OsPIL15基因(Os01g0286100),其编码序列为SEQ ID NO:1,氨基酸序列为SEQ ID NO:2,在保证编码氨基酸序列不变的前提下,优化SEQ ID NO:1编码序列为SEQ ID NO:3,该序列由苏州金唯智生物科技有限公司合成。
使用酶切连接法将SEQ ID NO:3序列连接至p1305载体,构建OsPIL15-OE表达载体(图1)。
使用宝生物工程(大连)有限公司的限制性内切酶KpnI和HindIII分别对优化合成的SEQ ID NO:3和p1305载体进行酶切,50μL酶切体系如下:
37℃酶切过夜。
使用天根生化科技(北京)有限公司的普通琼脂糖凝胶DNA回收试剂盒分别纯化回收上述酶切产物,使用T4 DNA连接酶进行连接,连接体系如下:
4℃连接过夜。
依据CRISPR/Cas9技术原理,在OsPIL15外显子区域选择一段19bp序列作为sgRNA序列SEQ ID NO:4,使用酶切连接法将SEQ ID NO:4序列连接至pBUN411载体,构建OsPIL15-KO表达载体(图2)。
使用限制性内切酶BsaⅠ酶切CRISPR/Cas9载体pBUN411质粒使其线性化,50μL酶切体系如下:
37℃酶切4h后65℃热处理20min使酶失活。使用天根生化科技(北京)有限公司的普通琼脂糖凝胶DNA回收试剂盒分别纯化回收上述酶切产物,使用T4 DNA连接酶进行连接,连接体系如下:
4℃连接过夜。
实施例2 OsPIL15-OE超表达株系和OsPIL15-KO敲除突变体的获得和鉴定
将上述构建成功的OsPIL15-OE和OsPIL15-KO表达载体转化农杆菌EHA105,随后使用含重组质粒的农杆菌侵染水稻日本晴成熟胚愈伤组织,参照Nishimura等(Nishimura etal.,2006)报道方法进行水稻转基因,使用潮霉素和除草剂抗性分别筛选获得转基因再生苗。
以野生型日本晴WT作为对照,测定OsPIL15-OE转基因植株中OsPIL15的表达量,选取3个OsPIL15有较高表达量的转基因株系OE-7、OE-8和OE-11作为OsPIL15-OE超表达株系。
选取三组不同株系的OsPIL15-OE转基因植株OE-7、OE-8和OE-11,以野生型日本晴(WT)作为对照,使用TRIzol试剂提取WT和OsPIL15-OE株系叶片RNA,反转录获得相应cDNA。以cDNA为模板,进行半定量检测。发现在OsPIL15-OE转基因植株OE-7、OE-8和OE-11中OsPIL15显著表达,表明OsPIL15-OE转基因株系构建成功,获得了OsPIL15基因表达显著升高的转基因水稻株系。
为了检测获得T0代阳性转基因植株靶位点的突变情况,在靶位点两侧设计引物OsPIL15-test-F(TGTTTTGTGTGTGCAGGTCC)和OsPIL15-test-R(CGGGAGAAGAGCGAGAAGTT),以转基因阳性单株DNA为模板扩增靶位点序列,50μL扩增体系如下:
PCR条件:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min,其中变性,退火和延伸为35个循环。PCR产物在生工生物工程(上海)股份有限公司进行测序分析。
根据测定OsPIL15突变单株的OsPIL15基因序列,选取3种不同基因型的突变单株作为OsPIL15-KO敲除株系。KO-1株系在PAM序列前第3和第4碱基间插入1个碱基“G”;KO-3株系在PAM序列前有66bp碱基缺失;KO-7株系在PAM序列前第4和第6碱基间缺失1个碱基“G”(图3)。这些碱基的插入和缺失均造成OsPIL15氨基酸的改变,KO-1和KO-7株系出现移码突变,KO-3株系有22个氨基酸的缺失。
实施例3水稻OsPIL15-OE超表达株系和OsPIL15-KO敲除突变体的盐胁迫抗性分析
选取野生型日本晴(WT)、OsPIL15-KO株系(KO-1、KO-3和KO-7)和OsPIL15-OE株系(OE-7、OE-8和OE-11),采用温室水培的方法。种子用10%H2O2消毒灭菌10min,然后用蒸馏水将种子表面的H2O2冲洗干净,将种子均匀放置于有灭菌滤纸的培养皿中,30±2℃恒温培养箱黑暗萌发3d。萌发的种子置于含有滤网的水培箱中清水生长7d,然后用营养液进行梯度培养(1/4、1/2强度营养液各培养3d,然后全营养液进行培养),营养液每3d更换一次。营养液含有1.44mmol·L-1NH4NO3、0.3mmol·L-1NaH2PO4、0.5mmol·L-1K2SO4、1.0mmol·L-1CaCl2、1.6mmol·L-1MgSO4、0.17mmol·L-1NaSiO3、0.075μmol·L-1(NH4)6Mo7O24、15μmol·L-1H3BO3、9.5μmol·L-1MnCl2、0.16μmol·L-1CuSO4、0.15μmol·L-1ZnSO4、50μmol·L-1EDTA-Fe、74.4μmol·L-1柠檬酸,pH调整为5.5。培养室生长条件28/25℃(白天/夜间,大约70%相对湿度),光周期为14h/10h(白天/夜间),光照强度为400μmol·m-2·s-1。选取长势良好的叶龄为3叶期的水稻幼苗,使用200mM NaCl进行盐胁迫处理。盐胁迫7d后,发现水稻植株叶片均出现萎蔫、卷曲和失水等表型,与WT相比,OsPIL15-KO株系生长状态明显较好,而OsPIL15-OE株系生长状态明显较差(图4)。将胁迫后的水稻植株转移至不含NaCl的正常营养液中恢复5d,与WT相比,OsPIL15-KO株系叶片展开且大部分存活,而OsPIL15-OE株系则出现大部分死亡(图5)。统计存活率,OsPIL15-KO株系存活率显著高于WT,而OsPIL15-OE株系存活率比WT显著降低(图6)。表明敲除OsPIL15基因可显著提高水稻耐盐胁迫能力。
在实际应用中,可通过基因编辑技术如CRISPR-Cas9对OsPIL15基因进行敲除,获得高耐盐性水稻。本发明为快速创制耐盐水稻新品系提供了一种简单有效的技术手段。
<110> 信阳农林学院
<120> OsPIL15基因在调控水稻耐盐性中的应用
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 1914
<212> DNA
<213> 水稻(Oryza sativa L.)
<221> OsPIL15基因
<400> 1
atgtccgacg gcaacgactt cgccgagctg ctgtgggaga acggccaggc ggtggtgcac 60
gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120
ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180
ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240
gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300
cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360
tatggctccg acttcttctc cgagctccag gcggcggcgg ctgccgcggc ggccgccgcg 420
ccgccgaccg atctcgcctc tctgccagcc tccaatcaca acggcgccac caataacaga 480
aatgctccgg ttgccaccac caccaccagg gaaccctcca aggaaagcca cggcggcctg 540
tcggttccca ccacccgagc cgagccgcag ccgcagccac agctcgccgc agccaagctg 600
cctcggtcga gcggcagcgg cggcggcgag ggcgtgatga acttctcgct cttctcccgc 660
ccggccgtcc tggcgagggc gacgctggag agcgcgcaga ggacgcaggg caccgacaat 720
aaggcgtcca atgtcaccgc gagcaaccgc gtcgagtcga cggtcgtgca gacggcgagc 780
gggccaagga gcgcaccggc gttcgccgat cagagggcgg cggcgtggcc gccgcagccg 840
aaggagatgc cgttcgcgtc cacggcagcc gctcccatgg ccccggccgt taacctgcac 900
cacgagatgg gccgtgacag ggcaggccga accatgcctg tccacaaaac cgaggcgagg 960
aaggcacctg aggccacggt cgcgacatcg tcggtgtgct ccggcaacgg agctgggagt 1020
gacgagctgt ggcgccagca gaagcggaag tgccaggccc aggcagagtg ctcagctagc 1080
caagacgatg atcttgacga tgaacctgga gtattgagaa aatctggaac caggagcacg 1140
aaacgcagcc gcacagctga ggttcacaat ttatcagaaa ggaggagaag ggacaggatc 1200
aatgaaaaga tgcgcgctct gcaagaactc attcccaact gcaacaagat tgataaagcc 1260
tcgatgctgg atgaagctat agagtacctc aaaacccttc agcttcaagt acagatgatg 1320
tccatgggaa ctgggctgtg cattcctcca atgctattac caacagccat gcagcacttg 1380
caaattccac cgatggctca tttccctcat ctcggcatgg gattggggta cgggatgggc 1440
gtcttcgaca tgagcaacac tggagcactt cagatgccac ccatgcctgg tgctcacttt 1500
ccctgcccaa tgatcccagg tgcgtcacca caaggtcttg ggatccctgg cacaagcacc 1560
atgccaatgt ttggggttcc tgggcaaaca attccttcgt cagcgtctag tgtaccacca 1620
tttgcatctt tggctggtct tcctgttagg ccaagcgggg tccctcaagt atcaggcgcc 1680
atggctaaca tggtgcaaga ccagcaacaa ggcatagcga atcaacagca gcaatgtctg 1740
aacaaggaag ctatacaggg agcaaatcca ggtgattcac aaatgcagat catcatgcag 1800
ggtgacaacg agaattttag gataccctct tcagcccaaa caaaaagcag tcaattttca 1860
gatggtaccg gcaaggggac caacgctaga gagagagatg gggctgaaac ataa 1914
<210> 2
<211> 637
<212> PRT
<213> 水稻(Oryza sativa L.)
<221> OsPIL15蛋白
<400> 2
Met Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn Gly Gln
1 5 10 15
Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala Phe Pro Pro
20 25 30
Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly Gly Ser Ser Ser
35 40 45
Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp Ala Phe Ala Lys Val
50 55 60
Gly Gly Gly Phe Gly Ala Leu Gly Met Ala Pro Ala Val His Asp Phe
65 70 75 80
Ala Ser Gly Phe Gly Ala Thr Thr Gln Asp Asn Gly Asp Asp Asp Thr
85 90 95
Val Pro Trp Ile His Tyr Pro Ile Ile Asp Asp Glu Asp Ala Ala Ala
100 105 110
Pro Ala Ala Leu Ala Ala Ala Asp Tyr Gly Ser Asp Phe Phe Ser Glu
115 120 125
Leu Gln Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Pro Pro Thr Asp
130 135 140
Leu Ala Ser Leu Pro Ala Ser Asn His Asn Gly Ala Thr Asn Asn Arg
145 150 155 160
Asn Ala Pro Val Ala Thr Thr Thr Thr Arg Glu Pro Ser Lys Glu Ser
165 170 175
His Gly Gly Leu Ser Val Pro Thr Thr Arg Ala Glu Pro Gln Pro Gln
180 185 190
Pro Gln Leu Ala Ala Ala Lys Leu Pro Arg Ser Ser Gly Ser Gly Gly
195 200 205
Gly Glu Gly Val Met Asn Phe Ser Leu Phe Ser Arg Pro Ala Val Leu
210 215 220
Ala Arg Ala Thr Leu Glu Ser Ala Gln Arg Thr Gln Gly Thr Asp Asn
225 230 235 240
Lys Ala Ser Asn Val Thr Ala Ser Asn Arg Val Glu Ser Thr Val Val
245 250 255
Gln Thr Ala Ser Gly Pro Arg Ser Ala Pro Ala Phe Ala Asp Gln Arg
260 265 270
Ala Ala Ala Trp Pro Pro Gln Pro Lys Glu Met Pro Phe Ala Ser Thr
275 280 285
Ala Ala Ala Pro Met Ala Pro Ala Val Asn Leu His His Glu Met Gly
290 295 300
Arg Asp Arg Ala Gly Arg Thr Met Pro Val His Lys Thr Glu Ala Arg
305 310 315 320
Lys Ala Pro Glu Ala Thr Val Ala Thr Ser Ser Val Cys Ser Gly Asn
325 330 335
Gly Ala Gly Ser Asp Glu Leu Trp Arg Gln Gln Lys Arg Lys Cys Gln
340 345 350
Ala Gln Ala Glu Cys Ser Ala Ser Gln Asp Asp Asp Leu Asp Asp Glu
355 360 365
Pro Gly Val Leu Arg Lys Ser Gly Thr Arg Ser Thr Lys Arg Ser Arg
370 375 380
Thr Ala Glu Val His Asn Leu Ser Glu Arg Arg Arg Arg Asp Arg Ile
385 390 395 400
Asn Glu Lys Met Arg Ala Leu Gln Glu Leu Ile Pro Asn Cys Asn Lys
405 410 415
Ile Asp Lys Ala Ser Met Leu Asp Glu Ala Ile Glu Tyr Leu Lys Thr
420 425 430
Leu Gln Leu Gln Val Gln Met Met Ser Met Gly Thr Gly Leu Cys Ile
435 440 445
Pro Pro Met Leu Leu Pro Thr Ala Met Gln His Leu Gln Ile Pro Pro
450 455 460
Met Ala His Phe Pro His Leu Gly Met Gly Leu Gly Tyr Gly Met Gly
465 470 475 480
Val Phe Asp Met Ser Asn Thr Gly Ala Leu Gln Met Pro Pro Met Pro
485 490 495
Gly Ala His Phe Pro Cys Pro Met Ile Pro Gly Ala Ser Pro Gln Gly
500 505 510
Leu Gly Ile Pro Gly Thr Ser Thr Met Pro Met Phe Gly Val Pro Gly
515 520 525
Gln Thr Ile Pro Ser Ser Ala Ser Ser Val Pro Pro Phe Ala Ser Leu
530 535 540
Ala Gly Leu Pro Val Arg Pro Ser Gly Val Pro Gln Val Ser Gly Ala
545 550 555 560
Met Ala Asn Met Val Gln Asp Gln Gln Gln Gly Ile Ala Asn Gln Gln
565 570 575
Gln Gln Cys Leu Asn Lys Glu Ala Ile Gln Gly Ala Asn Pro Gly Asp
580 585 590
Ser Gln Met Gln Ile Ile Met Gln Gly Asp Asn Glu Asn Phe Arg Ile
595 600 605
Pro Ser Ser Ala Gln Thr Lys Ser Ser Gln Phe Ser Asp Gly Thr Gly
610 615 620
Lys Gly Thr Asn Ala Arg Glu Arg Asp Gly Ala Glu Thr
625 630 635
<210> 3
<211> 1914
<212> DNA
<213> 人工序列
<221> OsPIL15基因
<400> 3
atgagcgatg ggaacgactt cgcggaactc ctgtgggaga atgggcaagc ggtcgtccac 60
ggccgcaaga aacatccgca gccggccttc ccgccatttg gcttctttgg cggcacaggg 120
ggcggcggcg ggggcagctc cagcagggcc caagaaaggc agccaggggg catcgatgcg 180
tttgcgaaag tgggcggcgg ctttggggcg ctcggcatgg cgccggcggt ccatgatttt 240
gcgtccggct tcggcgccac cacccaagat aacggcgatg atgataccgt cccgtggatc 300
cactatccga tcatcgacga cgaagatgcc gccgcgccag cggccctcgc ggccgcggac 360
tacgggtccg attttttctc cgaactgcaa gccgccgcgg cggccgcggc cgcggccgcc 420
ccaccaacag atctcgcctc cctcccagcc tccaaccaca acggcgcgac caacaacagg 480
aacgccccag tcgccaccac aaccaccagg gagccatcca aggagagcca tggggggctc 540
tccgtgccaa ccacaagggc cgagccacag ccacaaccac agctggcggc cgccaaactc 600
ccaaggagca gcgggagcgg cggcggcgag ggggtcatga atttctccct cttttcccgc 660
ccagccgtcc tcgccagggc cacactggaa tccgcgcaac gcacacaggg gacagacaat 720
aaggccagca acgtcaccgc gtccaatcgc gtggagagca ccgtggtcca aacagcgagc 780
ggcccaaggt ccgccccagc ctttgcggat cagcgcgccg cggcctggcc accacagcca 840
aaggaaatgc cgtttgccag cacagcggcg gccccaatgg cgccagccgt caatctccac 900
catgagatgg gccgcgatag ggcgggcagg acaatgccag tccacaagac agaggcccgc 960
aaagccccag aagcgaccgt cgccacaagc tccgtgtgta gcgggaatgg cgccgggagc 1020
gacgaactgt ggaggcaaca gaagaggaag tgtcaagcgc aggccgaatg cagcgcgtcc 1080
caagacgacg acctcgatga tgagccaggg gtcctccgca aaagcggcac acgctccaca 1140
aagaggagcc gcaccgccga ggtccataac ctctccgagc gcaggaggcg cgatcgcatc 1200
aacgagaaaa tgcgcgcgct ccaagagctg atcccaaact gcaacaagat cgacaaggcc 1260
agcatgctcg acgaggccat cgagtacctg aaaaccctgc agctccaggt gcagatgatg 1320
agcatgggca cagggctctg catcccaccg atgctgctgc cgacagccat gcaacacctg 1380
cagatcccac cgatggccca tttcccacat ctcggcatgg ggctggggta tgggatgggg 1440
gtgttcgaca tgtccaacac cggcgcgctg caaatgccgc caatgccagg ggcccacttt 1500
ccgtgcccaa tgattccagg cgcctcccca cagggcctcg gcattccagg cacaagcaca 1560
atgccgatgt tcggcgtgcc ggggcaaacc attccaagca gcgcctccag cgtcccacca 1620
tttgccagcc tcgccgggct cccagtgagg ccatccggcg tcccacaagt cagcggggcg 1680
atggccaaca tggtgcaaga tcagcagcag gggattgcca accagcagca acaatgcctg 1740
aacaaggaag cgatccaagg ggcgaaccca ggggacagcc agatgcagat catcatgcag 1800
ggcgacaacg agaactttcg catcccgagc agcgcccaga caaaaagcag ccaattcagc 1860
gatggcaccg gcaaggggac aaatgccagg gagcgcgatg gggccgagac atga 1914
<210> 4
<211> 19
<212> DNA
<213> 人工序列
<221> 向导RNA(sgRNA)序列
<400> 4
gacttcttct ccgagctcc 19
Claims (4)
1.OsPIL15基因在调控水稻耐盐性中的应用,其特征在于,所述OsPIL15基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:3所示;或所述OsPIL15基因编码的蛋白质的氨基酸序列如SEQ ID NO:2所示。
2.根据权利要求1所述的应用,其特征在于,通过对OsPIL15基因进行敲除或下调其表达获得高耐盐性水稻。
3.根据权利要求2所述的应用,其特征在于,通过CRISPR-Cas9、锌指核酸酶、TALENs或RNAi对OsPIL15基因进行敲除或下调其表达。
4.根据权利要求3所述的应用,其特征在于,通过CRISPR-Cas9对OsPIL15基因进行敲除,包括以下步骤:在OsPIL15外显子区域选择如SEQ ID NO:4所示的一段19 bp序列作为sgRNA序列,使用酶切连接法将SEQ ID NO:4序列连接至pBUN411载体,构建OsPIL15-KO敲除载体,利用农杆菌介导法将敲除载体导入粳稻品种日本晴,筛选获得OsPIL15敲除突变体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272399.9A CN112941086B (zh) | 2021-03-12 | 2021-03-12 | OsPIL15基因在调控水稻耐盐性中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272399.9A CN112941086B (zh) | 2021-03-12 | 2021-03-12 | OsPIL15基因在调控水稻耐盐性中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112941086A CN112941086A (zh) | 2021-06-11 |
CN112941086B true CN112941086B (zh) | 2022-07-19 |
Family
ID=76229688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110272399.9A Active CN112941086B (zh) | 2021-03-12 | 2021-03-12 | OsPIL15基因在调控水稻耐盐性中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112941086B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114231542B (zh) * | 2022-01-21 | 2023-02-24 | 沈阳农业大学 | 一种影响山新杨耐盐性的bHLH基因及其应用 |
CN114573670B (zh) * | 2022-03-02 | 2023-08-29 | 信阳农林学院 | 水稻Os12g0594200基因在提高水稻耐盐性方面的应用 |
CN115927445A (zh) * | 2022-07-13 | 2023-04-07 | 扬州大学 | OsPIL15基因在调控水稻节水抗旱中的应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9610780A (pt) * | 1995-10-12 | 1999-07-13 | Cornnel Research Foundation In | Process de produzir uma celula ou protoplasto de planta cereal planta cereal transgenica semente processo de aumentar a tolerancia de uma planta cereal e celula ou protoplasto de planta cereal |
CN105018522B (zh) * | 2015-07-17 | 2018-02-09 | 山东省水稻研究所 | 基因OsPIL16在同时提高水稻的干旱和盐胁迫耐性中的应用 |
CN105002212B (zh) * | 2015-07-28 | 2018-01-05 | 山东省水稻研究所 | 基因OsPIL13在提高水稻盐胁迫耐性中的应用 |
CN105316346B (zh) * | 2015-11-19 | 2018-07-06 | 山东省水稻研究所 | 基因OsPIL16在降低水稻株高、提高分蘖数中的应用 |
CN105820225B (zh) * | 2016-05-20 | 2019-01-29 | 河南农业大学 | 水稻粒形调控蛋白OsPIL15、基因、载体和应用 |
CN107164401A (zh) * | 2017-05-25 | 2017-09-15 | 河南农业大学 | 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用 |
-
2021
- 2021-03-12 CN CN202110272399.9A patent/CN112941086B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112941086A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112941086B (zh) | OsPIL15基因在调控水稻耐盐性中的应用 | |
CN107541520B (zh) | 与水稻根发育和抗逆性相关OsSAUR11基因及编码蛋白与应用 | |
CN111718935B (zh) | 葡萄circSIZ1在调控植物生长发育和盐胁迫抗性中的用途 | |
CN110643618A (zh) | 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用 | |
CN115612695B (zh) | GhGPX5和GhGPX13基因在提高植物盐胁迫耐受性中的应用 | |
CN112724213B (zh) | 甘薯花青苷合成和抗逆相关蛋白IbMYB4及其编码基因与应用 | |
LU504522B1 (en) | Gene related to low potassium stress of tobacco, promoter and application thereof | |
CN110885842A (zh) | 番茄TGase基因在提高番茄非生物胁迫抗性中的应用 | |
CN111171127B (zh) | 紫云英lhy基因及其应用 | |
CN111334492A (zh) | 西瓜几丁质酶及其编码基因和应用 | |
CN113913440B (zh) | GhD1119基因调控陆地棉开花方面的应用 | |
CN105039279A (zh) | 一个拟南芥蛋白激酶及其编码基因与应用 | |
CN112048011B (zh) | 一种提高水稻耐盐能力的方法 | |
CN109355270B (zh) | 一种水稻激酶osk1及其应用 | |
CN112608938A (zh) | OsAO2基因在控制水稻抗旱性中的应用 | |
CN111560055A (zh) | 水稻基因OsLAT3在调节敌草快的吸收累积中的应用 | |
CN116769798B (zh) | 狗尾草抗旱耐盐基因SvWRKY64及其应用 | |
CN113637685B (zh) | 一种水稻耐寒基因OsRab11C1及其应用 | |
CN112321695B (zh) | OsSEC3B基因在控制水稻抗旱性中的应用 | |
CN115094069B (zh) | 调控水稻粒长的基因Os03g0626100的克隆及其应用 | |
CN113897375B (zh) | 极端嗜盐曲霉C6-like锌指蛋白编码基因及其应用 | |
CN118240841B (zh) | Srz3基因及其在提高水稻耐盐性方面的应用 | |
CN110564887B (zh) | 水稻生长素响应基因的应用 | |
CN112301034B (zh) | 水稻低光响应基因rll1及其突变体与应用 | |
CN111850031B (zh) | 蛋白质GmFULc在调控植物产量中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |