CN112928212B - 基于MOFs和有机半导体异质结的气体传感器件及其制备方法 - Google Patents

基于MOFs和有机半导体异质结的气体传感器件及其制备方法 Download PDF

Info

Publication number
CN112928212B
CN112928212B CN202110106566.2A CN202110106566A CN112928212B CN 112928212 B CN112928212 B CN 112928212B CN 202110106566 A CN202110106566 A CN 202110106566A CN 112928212 B CN112928212 B CN 112928212B
Authority
CN
China
Prior art keywords
solution
organic semiconductor
mofs
silicon wafer
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110106566.2A
Other languages
English (en)
Other versions
CN112928212A (zh
Inventor
王帅
王良杰
陈欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Zhuhai Fudan Innovation Research Institute
Original Assignee
Fudan University
Zhuhai Fudan Innovation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University, Zhuhai Fudan Innovation Research Institute filed Critical Fudan University
Priority to CN202110106566.2A priority Critical patent/CN112928212B/zh
Publication of CN112928212A publication Critical patent/CN112928212A/zh
Application granted granted Critical
Publication of CN112928212B publication Critical patent/CN112928212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明属于功能器件技术领域,具体为基于MOFs和有机半导体异质结的气体传感器件及其制备方法。本发明方法包括:采用带有SiO2层的硅片剪切成小面积于4 cm2的正方形或者圆形,而后使用匀胶机,将导电MOFs和有机半导体材料的混合溶液均匀地滴在硅片上,高转速下将多余的溶液甩飞;将以上器件退火处理,即得到导电MOFs和有机半导体聚合物的异质结的器件;将其应用于有害气体氛围中,定性检测有害气体。本发明用制备的基于导电MOFs材料和有机半导体材料的异质结结构搭建的器件,运用于有害气体检测,检测灵敏度高,拓宽了其应用领域。

Description

基于MOFs和有机半导体异质结的气体传感器件及其制备方法
技术领域
本发明属于功能器件技术领域,具体涉及一类基于导电MOFs和有机半导体材料异质结的气体传感器件及其制备方法。
背景技术
金属有机框架(Metal Organic Frameworks,MOFs),也称配位聚合物,是一类由有机配体和无机金属离子(或簇)通过配位键自组装杂化而形成的高度有序的多孔材料,在材料、物理、化学等领域具有广泛应用。它具有高的比表面积、可调控的孔直径、易于功能化和富有较多的活性位点等特点,成为较有前景的功能材料。将不同的配体和金属在在几何结构中有不同的排列组合,使得MOFs具有丰富多样的结构特性,这种多样的结构,拓展了这类材料在不同领域应用的可能性。
有机场效应晶体管除了传统的电学开关功能,还具有信号转换和信号放大功能。这一特性使其成为传感性能研究和功能应用的理想载体。将不同的外界被分析物引入到有机场效应晶体管,构筑性能优异的传感器成为 OFET 功能化研究中的重要分支,在环境检测、健康监测以及人工智能领域显示出重要的应用前景。
但是大多数有机场效应晶体管,其活性位点并没有足够丰富,因此限制了它在气体传感领域的应用。基于以上问题,本发明提供了一类基于导电MOFs和有机半导体材料的异质结结构搭建的气体传感器件的制备方法。
发明内容
本发明的目的在于提供一种能够高灵敏度检测有毒气体的、基于导电MOFs和有机半导体材料异质结的气体传感器件及其制备方法。
本发明提供的导电MOFs和有机半导体异质结的气体传感器件的制备方法,具体步骤如下:
(1)采用带有SiO2层的硅片剪切成小于4 cm2(如2-4 cm2)的正方形或者圆形,分别用丙酮,异丙醇各超声(5-8min),以除去表面残留的杂质;
(2)将步骤(1)得到的硅片采用掩膜的方法在薄膜表面蒸镀上金电极,备用;
(3)分别配置六巯基苯和Cu(NO3)2﹒3H2O溶液,六巯基苯溶液的溶剂为二氯苯,Cu(NO3)2﹒3H2O的溶剂为水,分别超声至完全溶解,而后将这两种溶液混合,超声0.5-2小时,静止1小时;然后用乙醇和DMF过滤,之后冷冻干燥机干燥,备用;
(4)取4-10mg的有机半导体DPPTT,用氯仿或二氯苯等含氯溶剂在80-120℃下,搅拌1h,制备4mg/ml的溶液,备用;
(5)将步骤(3)中制得的混合溶液和步骤(4)的溶液混合, 50-90℃搅拌1-3h;其中,前者溶液为后者溶液的1-20wt%;
(6)将步骤(2)得到的硅片放置在匀胶机上,用移液枪将配置好混合溶液均匀地滴在硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,然后在80℃-170℃下退火10-180min,即得到基于异质结材料的气体传感器件。
这里,导电MOFs为Cu,有机半导体材料为DPPTT。
将所得的器件置于有毒气体NO氛围中,具有较高灵敏度。
本发明提供了一种新型的导电MOFs和有机半导体材料的异质结结构搭建的气体传感器件。此种传感器件的检测灵敏度极高,可达到3730%。
附图说明
图1 为Cu-MOF和有机半导体DPPTT异质结的SEM。
图2为图1上3个区域的元素分布及含量图。
图3为图1上3个区域的能谱分布图。
图4 为Cu-MOFs和DPPTT的异质结器件的光学显微镜图。
图5 为Cu-MOFs器件在10ppm下的I-T图。
图6 为DPPTT器件在10ppm下的I-T图。
图7为5wt% Cu-MOF/DPPTT异质结器件在10ppm下的I-T图。
图8为10wt% Cu-MOF/DPPTT异质结器件在10ppm下的I-T图。
具体实施方式
下面通过具体实施例,并结合附图,进一步介绍本发明。
实施例1
步骤1:采用带有SiO2层的硅片剪切成小于4 cm2(如2-4 cm2)的正方形或者圆形,将切好的硅片分别用丙酮,异丙醇各超声5min,以除去表面残留的杂质;
步骤2:将步骤1得到的硅片采用掩膜的方法在薄膜表面上蒸镀上金电极,备用;
步骤3:称取1 .1mg的六巯基苯加入到20mL的氯代苯溶液中,超声至完全溶解后取出备用;称取4.8mg的Cu(NO3)2﹒3H2O加入到20mL水溶液中,超声至完全溶解,而后将这两种溶液混合,超声半小时,静止1小时;而后用乙醇和DMF过滤,之后冷冻干燥机干燥,备用;
步骤4:取步骤3的产物4mg,用氯仿或二氯苯超声溶解,制备4mg/ml的溶液,备用;
步骤5:将步骤2处理后的硅片放置于匀胶机上,用移液枪取20µl步骤4的溶液均匀地滴在步骤2处理后的硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,而后高温下退火,即得到基于MOFs材料的器件;
步骤6:将该器件置于10ppm的NO氛围下,检测其灵敏度可达66%。
实施例2
步骤1:采用带有SiO2层的硅片剪切成小于4 cm2(如2-4 cm2)的正方形或者圆形,将切好的硅片分别用丙酮,异丙醇各超声5min,以除去表面残留的杂质;
步骤2:将步骤1得到的硅片采用掩膜的方法在薄膜表面上蒸镀上金电极,备用;
步骤3:将有机半导体DPPTT聚合物称取4mg, 用氯仿或二氯苯等含氯溶剂在90℃下,搅拌1h,待其完全溶解后备用;
步骤4:将步骤2处理后的硅片放置于匀胶机上,用移液枪取20µl步骤3的溶液均匀地滴在硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,而后高温下退火,即得到OFET器件;
步骤5:将该器件置于10ppm的NO氛围下,检测其灵敏度可达120%。
实施例3
步骤1:采用带有SiO2层的硅片剪切成小于4 cm2(如2-4 cm2)的正方形或者圆形,将切好的硅片分别用丙酮,异丙醇各超声5min,以除去表面残留的杂质;
步骤2:将步骤1得到的硅片采用掩膜的方法在薄膜表面上蒸镀上金电极,备用;
步骤3:称取1 .1mg的六巯基苯加入到20mL的氯代苯溶液中,超声至完全溶解后取出备用;称取4.8mg的Cu(NO3)2﹒3H2O加入到20mL水溶液中,超声至完全溶解,而后将这两种溶液混合,超声半小时,静止1小时,备用;而后用乙醇和DMF过滤,之后冷冻干燥机干燥,备用;
步骤4:将步骤3的产物,取4mg,用氯仿或二氯苯超声溶解,制备4mg/ml的溶液,备用;
步骤5:将有机半导体DPPTT聚合物称取4mg, 用氯仿或二氯苯等含氯溶剂在90℃下,搅拌1h,待其完全溶解后备用;
步骤6:将步骤4中制的溶液以含量5wt%的比例和步骤5的溶液混合,搅拌1h后备用;
步骤7:将步骤2处理后的硅片放置于匀胶机上,用移液枪取20µl步骤6的混合溶液均匀地滴在硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,而后高温下退火,即得到基于MOFs/DPPTT异质结材料的气体传感器件;
步骤8:将该器件置于10ppm的NO氛围下,检测其灵敏度可达到1730%。
实施例4
步骤1:采用带有SiO2层的硅片剪切成小于4 cm2(如2-4 cm2)的正方形或者圆形,将切好的硅片分别用丙酮,异丙醇各超声5min,以除去表面残留的杂质;
步骤2:将步骤1得到的硅片采用掩膜的方法在薄膜表面上蒸镀上金电极,备用;
步骤3:称取1 .1mg的六巯基苯加入到20mL的氯代苯溶液中,超声至完全溶解后取出备用;称取4.8mg的Cu(NO3)2﹒3H2O加入到20mL水溶液中,超声至完全溶解,而后将这两种溶液混合,超声半小时,静止1小时,备用;而后用乙醇和DMF过滤,之后冷冻干燥机干燥,备用;
步骤4:将步骤3的产物,取4mg,用氯仿或二氯苯超声溶解,制备4mg/ml的溶液,备用;
步骤5:将有机半导体DPPTT聚合物称取4mg, 用氯仿或二氯苯等含氯溶剂在90℃下,搅拌1h,待其完全溶解后备用;
步骤6:将步骤4中制的溶液以含量10 wt%的比例和步骤5的溶液混合,搅拌1h后备用;
步骤7:将步骤2处理后的硅片放置于匀胶机上,用移液枪取20µl步骤6的混合溶液均匀地滴在硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,而后高温下退火,即得到基于MOFs/DPPTT异质结材料的气体传感器件;
步骤8:将该器件置于10ppm的NO氛围下,检测其灵敏度可达到3730%。

Claims (2)

1.一种基于MOFs和有机半导体异质结的气体传感器件的制备方法,其特征在于,具体步骤如下:
(1)采用带有SiO2层的硅片剪切成小于4 cm2的正方形或者圆形,分别用丙酮,异丙醇各超声,以除去表面残留的杂质;
(2)将步骤(1)得到的硅片采用掩膜的方法在薄膜表面蒸镀上金电极;
(3)分别配置六巯基苯和Cu(NO3)2﹒3H2O溶液,六巯基苯溶液的溶剂为二氯苯,Cu(NO3)2﹒3H2O的溶剂为水,分别超声至完全溶解,而后将这两种溶液混合,超声0.5-2小时,静止1小时;然后用乙醇和DMF过滤,之后冷冻干燥机干燥;
(4)取4-10mg的有机半导体DPPTT,用氯仿或二氯苯等含氯溶剂在80-120℃下,搅拌1h,制备4mg/ml的溶液;
(5)将步骤(3)中制得的混合溶液和步骤(4)的溶液混合, 在50-90℃下搅拌1-3h;其中,前者溶液为后者溶液的1-20wt%;
(6)将步骤(2)得到的硅片放置在匀胶机上,用移液枪将配置好混合溶液均匀地滴在硅片上,然后开启匀胶机,在高转速下将多余的盐溶液甩飞,然后在80℃-170℃下退火10-180min,即得到基于异质结材料的气体传感器件。
2.一种由权利要求1所述制备方法得到的基于导电MOFs和有机半导体异质结的气体传感器件。
CN202110106566.2A 2021-01-27 2021-01-27 基于MOFs和有机半导体异质结的气体传感器件及其制备方法 Active CN112928212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110106566.2A CN112928212B (zh) 2021-01-27 2021-01-27 基于MOFs和有机半导体异质结的气体传感器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110106566.2A CN112928212B (zh) 2021-01-27 2021-01-27 基于MOFs和有机半导体异质结的气体传感器件及其制备方法

Publications (2)

Publication Number Publication Date
CN112928212A CN112928212A (zh) 2021-06-08
CN112928212B true CN112928212B (zh) 2022-07-22

Family

ID=76166492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110106566.2A Active CN112928212B (zh) 2021-01-27 2021-01-27 基于MOFs和有机半导体异质结的气体传感器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112928212B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140388A (ko) * 2018-06-11 2019-12-19 인천대학교 산학협력단 금속-유기 골격체를 포함하는 습도 감지용 트랜지스터 및 수분흡착 특성을 갖는 유기 반도체 조성물
CN111004402A (zh) * 2019-11-05 2020-04-14 复旦大学 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201719856D0 (en) * 2017-11-29 2018-01-10 Sumitomo Chemical Co Gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140388A (ko) * 2018-06-11 2019-12-19 인천대학교 산학협력단 금속-유기 골격체를 포함하는 습도 감지용 트랜지스터 및 수분흡착 특성을 갖는 유기 반도체 조성물
CN111004402A (zh) * 2019-11-05 2020-04-14 复旦大学 界面限域自组装制备大面积Ni-BHT导电薄膜MOFs的方法

Also Published As

Publication number Publication date
CN112928212A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN110095509B (zh) Ti3C2Tx/聚苯胺复合薄膜氨气传感器及其制备方法与应用
CN101704957B (zh) 一种制备具有连续纳米孔道的聚合物薄膜的方法
Yu et al. Polymer-based flexible NO x sensors with ppb-level detection at room temperature using breath-figure molding
KR102172958B1 (ko) 금속-유기 골격체를 포함하는 습도 감지용 트랜지스터 및 수분흡착 특성을 갖는 유기 반도체 조성물
CN107359246A (zh) 一种甲胺铅碘钙钛矿太阳能电池的制作方法
CN108922972A (zh) 钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
CN106442464A (zh) 一种硅片/还原石墨烯/金纳米复合材料的制备方法
Liu et al. MPTTF-containing tripeptide-based organogels: receptor for 2, 4, 6-trinitrophenol and multiple stimuli-responsive properties
CN105390614B (zh) 一种钙钛矿太阳电池及其制备方法
JP2011128154A (ja) 金属酸化物含有多孔性ナノ繊維を用いたガスセンサー及びその製造方法
CN105130988B (zh) 一种离子型苝酰亚胺类材料与制备方法及其有机存储器件
CN105116033A (zh) 一种光敏共聚物复合碳纳米管分子印迹传感器的制备方法
Liang et al. Cobweb-like, ultrathin porous polymer films for ultrasensitive NO2 detection
CN112928212B (zh) 基于MOFs和有机半导体异质结的气体传感器件及其制备方法
Jang et al. Metal–organic frameworks in a blended polythiophene hybrid film with surface-mediated vertical phase separation for the fabrication of a humidity sensor
CN110311038B (zh) 一种增大钙钛矿太阳能电池钙钛矿膜层晶粒尺寸的方法
CN109621854B (zh) 一种提高三乙胺检测性能的复合空心微球制备方法
Jang et al. Addition of en-APTAS to a Polythiophene Film for Enhanced NO2 Gas Sensing
CN109142466B (zh) Cvd石墨烯的无污染转移工艺获得氧化石墨烯与石墨烯复合结构的气敏薄膜传感器及方法
CN103691487A (zh) 纳米Pd/Fe催化剂及其应用
Jang et al. Built-in Water Capture in a Polythiophene Film Blended with Metal-Organic Frameworks
CN110098332A (zh) 一种适用于高湿度环境下的钙钛矿薄膜的制备方法
CN103265011B (zh) 一种富勒烯二维带状形貌的制备方法
CN115109261B (zh) 一种二维MOFs薄膜的制备方法及其在光电探测器领域的应用
CN101157809A (zh) 一种超疏水eva涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant