CN112920256B - 一种治疗哮喘的生物肽及其应用 - Google Patents

一种治疗哮喘的生物肽及其应用 Download PDF

Info

Publication number
CN112920256B
CN112920256B CN202010568266.1A CN202010568266A CN112920256B CN 112920256 B CN112920256 B CN 112920256B CN 202010568266 A CN202010568266 A CN 202010568266A CN 112920256 B CN112920256 B CN 112920256B
Authority
CN
China
Prior art keywords
polypeptide
asthma
peptide
amino acid
another preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010568266.1A
Other languages
English (en)
Other versions
CN112920256A (zh
Inventor
刘莉
梅其炳
马淑梅
李梁
刘楠
顾丰华
王佳慧
许文琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical Industry Research Institute Co ltd
Shanghai Pharmaceutical Industry Research Institute Co ltd
Original Assignee
Shanghai Institute of Pharmaceutical Industry
China State Institute of Pharmaceutical Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry filed Critical Shanghai Institute of Pharmaceutical Industry
Priority to US17/778,939 priority Critical patent/US20230203095A1/en
Priority to PCT/CN2020/130625 priority patent/WO2021098854A1/zh
Priority to EP20889188.7A priority patent/EP4063378A1/en
Priority to JP2022530193A priority patent/JP7492004B2/ja
Publication of CN112920256A publication Critical patent/CN112920256A/zh
Application granted granted Critical
Publication of CN112920256B publication Critical patent/CN112920256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pulmonology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种治疗哮喘的生物肽及其应用。本发明还涉及所述多肽的制法和应用以及含所述多肽的药物组合物。本发明多肽具有多种优点,例如分子量小、生产成本低、水溶性好、稳定性好、半衰期长、免疫原性小、毒副作用低及组织穿透性强等优势;并且,本发明通过OVA诱导的哮喘模型小鼠模型的研究表明,该生物肽具有显著的预防、治疗和/或缓解哮喘的功能。

Description

一种治疗哮喘的生物肽及其应用
技术领域
本发明属于生物医药领域,具体地涉及一种治疗哮喘的生物肽及其应用。
背景技术
多肽是一类在氨基酸构成及其连接方式上与蛋白质相同,但在某些性质方面又有别于蛋白质的物质,如其空间结构较简单、免疫原性较低或无免疫原性、生理活性强等。但多肽类物质自身固有的特点,如口服利用率较低、酶降解性高以及半衰期极短等,使其作为药物开发应用受到诸多的局限。而导致多肽类药物不稳定的一个重要原因就是多肽特殊的分子结构。
哮喘是一种难治的肺部疾病,现有临床药物难以对哮喘进行有效治疗。虽然,随着生物医药技术的发展,针对哮喘开发了许多多肽药物,但是,这些多肽稳定性差、体内半衰期短且难以进行有效的治疗,因此,作为治疗药物受到很大的限制。
因此,本领域亟待开发稳定性强,体内的作用长且疗效高的药物,用于有效治疗哮喘。
发明内容
本发明通过对7肽进行结构修饰,提高其代谢稳定性,使其作为治疗哮喘类疾病的药物开发应用成为可能。
在本发明的第一方面,提供了一种如式I所示的多肽或其药学上可接受的盐,所述的多肽或其药学上可接受的盐具有预防、治疗和/或缓解哮喘的活性;
X0-X1-X2-X3-X4-X5-X6-X7-X8(I)
式中,
X0、X8各自独立地为无,或1-3个氨基酸的肽段;
X1是选自下组的氨基酸:Gly、Pro、Ala;
X2是选自下组的氨基酸:Ser、Thr;
X3是选自下组的氨基酸:Thr、Ser;
X4是选自下组的氨基酸:Tyr、Trp、Phe、Thr、Ser;
X5是选自下组的氨基酸:Thr、Ser;
X6是选自下组的氨基酸:Gln、Asn;
X7是选自下组的氨基酸:Gly、Pro、Ala。
在另一优选例中,X0-X8中的一个或多个为D型氨基酸。
在另一优选例中,X0-X8中的氨基酸各自独立地为D型氨基酸或L型氨基酸。
在另一优选例中,X0-X8中的氨基酸各自独立地为D型氨基酸。
在另一优选例中,所述的式I所示的多肽或其药学上可接受的盐包括选自下组的一种或多种特征:
X0、X8各自独立地为无;
X1为D-Gly;
X2为D-Se;
X3为D-Thr;
X4为D-Tyr;
X5为D-Th;
X6为D-Gln;和/或
X7为D-Gly。
在另一优选例中,X0-X8中1-2个,较佳地3-5个,更佳地6-9个为D型氨基酸。
在另一优选例中,所述多肽的总长度为≤20个氨基酸残基,较佳地为≤13个氨基酸残基,较佳地为≤12个氨基酸残基,又较佳地为≤10个氨基酸残基,更佳地为≤8个氨基酸残基,更佳地为≤7个氨基酸残基,最佳地为7个氨基酸残基。
在另一优选例中,所述X0和X8均为无或1-3个氨基酸的肽段。
在另一优选例中,所述X0和X8均为无。
在另一优选例中,所述多肽选自下组:
(a)具有SEQ ID NO:2所示氨基酸序列的多肽,且所述的多肽的长度为5-20个氨基酸(优选8-12个氨基酸);
(b)将SEQ ID NO:2所示氨基酸序列经过1-2个氨基酸残基的取代、缺失或添加而形成的,且具有预防、治疗和/或缓解哮喘功能的由(a)衍生的多肽。
在另一优选例中,所述衍生的多肽保留了≥70%,较佳地80%,更佳地85%,最佳地90%或95%以上的SEQ ID NO:2的所示多肽的预防、治疗和/或缓解哮喘的活性。
在另一优选例中,所述衍生的多肽与SEQ ID NO:2的同源性≥80%,较佳地≥90%;更佳地≥95%。
在另一优选例中,所述的多肽是由SEQ ID NO.:2所示多肽经过1-5个,较佳地1-3个,更佳地1-2个氨基酸取代;和/或
经过1-3个,较佳地1-2个氨基酸缺失;和/或
所述多肽的两端分别经过1-3个,更佳地1-2个氨基酸添加形成的。
在另一优选例中,所述多肽的氨基酸序列如SEQ ID NO:2所示。
在另一优选例中,所述多肽的氨基酸序列如SEQ ID NO:2所示,且SEQ ID NO:2所示的氨基酸序列中的氨基酸全部为D型氨基酸。
在另一优选例中,所述哮喘包括:过敏性哮喘、非过敏性哮喘、晚发型哮喘、气流受限型哮喘、肥胖型哮喘、激素抵抗性哮喘。
在本发明的第二方面,提供了一种分离的核酸分子,它编码第一方面所述的多肽。
在本发明的第三方面,提供了一种药物组合物,所述药物组合物包括:
(a)如本发明的第一方面所述的多肽或其药学上可接受的盐;和
(b)药学上可接受的载体或赋形剂。
在另一优选例中,所述组分(a)占所述药物组合物总重量的0.1-99.9wt%,较佳地10-99.9wt%,更佳地70%-99.9wt%。
在另一优选例中,所述药物组合物为液态、固体、或半固体。
在另一优选例中,所述的药物组合物的剂型为口服剂型、注射剂、喷雾剂、气雾剂或外用药物剂型。
在另一优选例中,所述药物组合物的剂型包括片剂、颗粒剂、胶囊、口服液、或注射剂。
在另一优选例中,所述药物组合物为液态组合物。
在另一优选例中,所述药物组合物为口服制剂。
在另一优选例中,所述的药物组合物的剂型为皮下注射剂或肌肉注射剂。
在另一优选例中,所述药学上可接受的载体选自下组:输液剂载体和/或注射剂载体,较佳地,所述的载体是选自下组的一种或多种载体:生理盐水、葡萄糖盐水、或其组合。
在另一优选例中,所述药学上可接受的载体可以是包括纳米材料的载体。
在另一优选例中,所述药物组合物为缓释剂型。
在另一优选例中,所述药物组合物的剂型为冻干粉。
在另一优选例中,所述的冻干粉包括冻干保护剂。
在另一优选例中,所述的冻干保护剂选自下组:葡萄糖、蔗糖、甘露醇,或其组合。
在另一优选例中,所述药物组合物的剂型为吸入剂。
在另一优选例中,所述的为吸入剂包括冻干粉。
在另一优选例中,所述药物组合物的剂型为液体制剂。
在另一优选例中,所述液体制剂包括如如本发明的第一方面所述的多肽或其药学上可接受的盐、渗透压调节剂和水。
在另一优选例中,所述的渗透压调节剂包括盐和/或糖类。
在另一优选例中,所述的盐包括氯化钠。
在另一优选例中,所述的糖类包括葡萄糖。
在另一优选例中,所述药物组合物的剂型为喷雾剂。
在另一优选例中,所述药物组合物的剂型为气雾剂。
在另一优选例中,所述气雾剂包括如如本发明的第一方面所述的多肽或其药学上可接受的盐和抛射剂。
在另一优选例中,所述的抛射剂为压缩二氧化碳、压缩氮气、四氟乙烷、七氟丙烷、丙烷、正丁烷、异丁烷。
在另一优选例中,所述的压缩二氧化碳为液体二氧化碳。
在另一优选例中,所述的压缩氮气为液态氮气。在另一优选例中,所述药物组合物在用于预防、治疗和/或缓解哮喘的应用中,可单独使用,或联合使用。
在另一优选例中,所述联合使用包括:与其它预防、治疗和/或缓解哮喘的药物联合使用。
在另一优选例中,所述的药物组合物还包括其它预防、治疗和/或缓解哮喘的药物。
在另一优选例中,所述其它预防、治疗和/或缓解哮喘的药物选自下组:糖皮质激素类、β2受体激动剂、抗胆碱能药物、大分子生物靶向药物、或其组合。
在另一优选例中,所述糖皮质激素类选自下组:倍氯米松、氟替卡松、莫米松、布地奈德、环索奈德、或其组合。
在另一优选例中,所述β2受体激动剂包括:沙丁胺醇、特布他林、沙美特罗、福莫特罗、或其组合。
在另一优选例中,所述抗胆碱能药物包括:异丙托溴铵、噻托溴铵、或其组合。
在另一优选例中,所述大分子生物靶向药物包括:IgE单克隆抗体、IL-4/IL-4R单克隆抗体、IL-5/IL-5R单克隆抗体、TSLP单克隆抗体,或其组合。
在本发明的第四方面,提供了一种本发明的第一方面所述的多肽或其药学上可接受的盐的用途,用于制备一药物,所述药物用于预防、治疗和/或缓解哮喘。
在另一优选例中,所述哮喘包括:过敏性哮喘、非过敏性哮喘、晚发型哮喘、气流受限型哮喘、肥胖型哮喘、激素抵抗性哮喘。
在另一优选例中,所述的过敏性哮喘包括选自下组的过敏剂引起的哮喘:OVA、佐剂氢氧化铝,或其组合。
在另一优选例中,所述的哮喘包括:
(1)由炎症因子引起的哮喘。
在另一优选例中,所述的由炎症因子引起的哮喘包括由炎症因子分泌或表达增加引起的哮喘和/或由炎症因子活性增强引起的哮喘。
在另一优选例中,所述的分泌由脾淋巴细胞分泌,优选地,由Th2细胞分泌。
在另一优选例中,所述的表达选自下组:蛋白质表达、mRNA表达,或其组合。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
在另一优选例中,所述的预防、治疗和/或缓解哮喘包括:
(i)抑制炎症因子;
(ii)降低IgE水平;
(iii)降低气道阻力;
(iv)提高肺顺应性;和/或
(v)抑制肺内炎性细胞浸润。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
在另一优选例中,抑制炎症因子包括抑制炎症因子的分泌或表达和/或活性。
在另一优选例中,所述的IgE水平为血清、全血或血浆中的IgE水平。
在本发明的第五方面,提供了一种如本发明的第一方面所述的多肽或其药学上可接受的盐的用途,用于制备一药物,所述药物用于(i)抑制炎症;(ii)降低IgE水平;(iii)降低气道阻力;(iv)提高肺顺应性;和/或(v)抑制肺内炎性细胞浸润。
在另一优选例中,所述的由炎症是由炎症因子引起的炎症。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
在本发明的第六方面,提供了一种预防、治疗和/或缓解哺乳动物哮喘的方法,包括步骤:给需要的对象施用如本发明第一方面所述的多肽或其药学上可接受的盐。
在另一优选例中,所述的哺乳动物包括人或非人哺乳动物。
在另一优选例中,所述非人哺乳动物包括:啮齿动物(如大鼠、小鼠)、灵长动物(如猴)。
在另一优选例中,所述哮喘包括:过敏性哮喘、非过敏性哮喘、晚发型哮喘、气流受限型哮喘、肥胖型哮喘、激素抵抗性哮喘。
在另一优选例中,所述哮喘包括:过敏性哮喘、非过敏性哮喘、晚发型哮喘、气流受限型哮喘、肥胖型哮喘、激素抵抗性哮喘
在另一优选例中,所述施用包括:口服、鼻腔吸入、肌肉注射、或静脉注射。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1为SP肽及及衍生物SIPI-D00的合成路线图。
图2为SD大鼠单次皮下注射SP(10mg/kg)后血药浓度-时间变化曲线图。
图3为SD大鼠单次皮下注射SIPI-D00(5mg/kg)后血药浓度-时间变化曲线图。
图4为不同组对OVA诱导的哮喘模型小鼠的肺病理的影响(4x)。
图5为不同组对OVA诱导的哮喘模型小鼠的肺病理的影响(20x)
具体实施方式
本发明人经过广泛而深入的研究,经过大量的筛选,首次开发了一种具有预防、治疗和/或缓解哮喘功能的,长度仅为7-20的小分子多肽(例如由7个D型氨基酸形成的小肽SIPI-D00)。具体地,本发明中,经合适位点化学修饰的多肽分子,其稳定性增加,在体内的作用时间延长,保留了生物学活性。在此基础上完成了本发明。
术语
多肽
如本文所用,术语“SIPI-D00多肽”、“SIPI-D00肽”、“SIPI-D00”、“D00”与“本发明多肽”可互换使用,是指具有预防、治疗和/或缓解哮喘且具有本发明第一方面所述的式I结构的多肽。
如本文所用,术语“SP多肽”、“SP肽”与“SP”可互换使用,是指具有SEQ ID NO:1所示氨基酸序列的多肽,从N端到C端,SP肽的氨基酸序列为GQTYTSG。如本文所用,术语“D型氨基酸”与“D-氨基酸”可互换使用。代表性地,“D型色氨酸”与“D-色氨酸”、“D-Ser”可互换使用,其它氨基酸类似。
如本文所用,术语“L型氨基酸”与“L-氨基酸”可互换使用。代表性地,“L型色氨酸”与“L-色氨酸”、“L-Ser”可互换使用,其它氨基酸类似。
在一个优选的实施方式中,本发明的多肽为SP肽衍生物SIPI-D00,所述的SIPI-D00具有如SEQ ID NO:2所示的氨基酸序列,从N端到C端,SP肽衍生物的氨基酸序列为GSTYTQG。更选地,SIPI-D00多肽所有的氨基酸残基为D型氨基酸残基。
在一个更优选的实施方式中,本发明的多肽具有如SEQ ID NO:2所示的氨基酸序列,且SEQ ID NO:2所示的氨基酸序列中的1-2个,较佳地3-5个,更佳地6-7个为D型氨基酸。
在一个更优选的实施方式中,本发明的多肽具有如SEQ ID NO:2所示的氨基酸序列,且SEQ ID NO:2所示的氨基酸序列中的氨基酸全部为D型氨基酸。
此外,所述术语“多肽”还包括具有预防、治疗和/或缓解哮喘功能的、SEQ ID NO:2序列的变异形式。这些变异形式包括(但并不限于):1-5个(通常为1-4个,较佳地1-3个,更佳地1-2个,最佳地1个)氨基酸的缺失、插入和/或取代,以及在C末端和/或N末端添加一个或数个(通常为5个以内,较佳地为3个以内,更佳地为2个以内)氨基酸。例如,在本领域中,用性能相近或相似的氨基酸进行取代时,通常不会改变蛋白质的功能。又比如,在C末端和/或N末端添加一个或数个氨基酸通常也不会改变蛋白质的结构和功能。
本发明还包括本发明多肽的活性片段、衍生物和类似物。如本文所用,术语“片段”、“衍生物”和“类似物”是指基本上保持预防、治疗和/或缓解哮喘功能或活性的多肽。本发明的多肽片段、衍生物或类似物可以是(i)有一个或多个保守或非保守性氨基酸残基(优选保守性氨基酸残基)被取代的多肽,或(ii)在一个或多个氨基酸残基中具有取代基团的多肽,或(iii)本发明多肽与另一个化合物(比如延长多肽半衰期的化合物,例如聚乙二醇)融合所形成的多肽,或(iv)附加的氨基酸序列融合于此多肽序列而形成的多肽(与前导序列、分泌序列或6His等标签序列融合而形成的然后蛋白)。根据本文的教导,这些片段、衍生物和类似物属于本领域熟练技术人员公知的范围。
一类优选的活性衍生物指与式I的氨基酸序列相比,有至多5个,较佳地至多3个,更佳地至多2个,最佳地1个氨基酸被性质相似或相近的氨基酸所替换而形成多肽。这些保守性变异多肽最好根据表A进行氨基酸替换而产生。
表A
Figure BDA0002548315050000081
Figure BDA0002548315050000091
本发明还提供本发明多肽的类似物。这些类似物与本发明多肽的差别可以是氨基酸序列上的差异,也可以是不影响序列的修饰形式上的差异,或者兼而有之。类似物还包括具有不同于天然L-氨基酸的残基(如D-氨基酸)的类似物,以及具有非天然存在的或合成的氨基酸(如β、γ-氨基酸)的类似物。应理解,本发明的多肽并不限于上述例举的代表性的多肽。
修饰(通常不改变一级结构)形式包括:体内或体外的多肽的化学衍生形式如乙酰化或羧基化。修饰还包括糖基化,如那些在多肽的合成和加工中或进一步加工步骤中进行糖基化修饰而产生的多肽。这种修饰可以通过将多肽暴露于进行糖基化的酶(如哺乳动物的糖基化酶或去糖基化酶)而完成。修饰形式还包括具有磷酸化氨基酸残基(如磷酸酪氨酸,磷酸丝氨酸,磷酸苏氨酸)的序列。还包括被修饰从而提高了其抗蛋白水解性能或优化了溶解性能的多肽。
本发明多肽还可以以由药学上或生理学可接受的酸或碱衍生的盐形式使用。这些盐包括(但不限于)与如下酸形成的盐:氢氯酸、氢溴酸、硫酸、柠檬酸、酒石酸、磷酸、乳酸、丙酮酸、乙酸、琥珀酸、草酸、富马酸、马来酸、草酰乙酸、甲磺酸、乙磺酸、苯磺酸、或羟乙磺酸。其他盐包括:与碱金属或碱土金属(如钠、钾、钙或镁)形成的盐,以及以酯、氨基甲酸酯或其他常规的“前体药物”的形式。
制备方法
本发明的多肽可以是化学合成的。相应地,本发明多肽可用常规方法人工合成。
一种优选的方法是使用液相合成技术或固相合成技术,如Boc固相法、Fmoc固相法或是两种方法联合使用。固相合成可快速获得样品,可根据目的肽的序列特征选用适当的树脂载体及合成系统。例如,Fmoc系统中优选的固相载体如连接有肽中C端氨基酸的Wang树脂,Wang树脂结构为聚苯乙烯,与氨基酸间的手臂是4-烷氧基苄醇;用25%六氢吡啶/二甲基甲酰胺室温处理20分钟,以除去Fmoc保护基团,并按照给定的氨基酸序列由C端逐个向N端延伸。合成完成后,用含4%对甲基苯酚的三氟乙酸将合成的胰岛素原相关肽从树脂上切割下来并除去保护基,可过滤除树脂后乙醚沉淀分离得到粗肽。将所得产物的溶液冻干后,用凝胶过滤和反相高压液相层析法纯化所需的肽。当使用Boc系统进行固相合成时,优选树脂为连接有肽中C端氨基酸的PAM树脂,PAM树脂结构为聚苯乙烯,与氨基酸间的手臂是4-羟甲基苯乙酰胺;在Boc合成系统中,在去保护、中和、偶联的循环中,用TFA/二氯甲烷(DCM)除去保护基团Boc并用二异丙基乙胺(DIEA)/二氯甲烷中和。肽链缩合完成后,用含对甲苯酚(5-10%)的氟化氢(HF),在0℃下处理1小时,将肽链从树脂上切下,同时除去保护基团。以50-80%乙酸(含少量巯基乙醇)抽提肽,溶液冻干后进一步用分子筛Sephadex G10或Tsk-40f分离纯化,然后再经高压液相纯化得到所需的肽。可以使用肽化学领域内已知的各种偶联剂和偶联方法偶联各氨基酸残基,例如可使用二异丙基羰二亚胺(DIC),羟基苯骈三氮唑(HOBt)或1,1,3,3-四脲六氟磷酸酯(HBTU)进行直接偶联。对于合成得到的短肽,其纯度与结构可用反相高效液相和质谱分析进行确证。
在一优选例中,本发明多肽,按其序列,采用固相合成的方法制备,行高效液相色谱纯化,获得高纯度目的肽冻干粉,-20℃贮存。
哮喘
哮喘是一种呼吸道慢性炎症疾病,发病机制比较复杂,普遍认为是基因和环境因素共同导致。该病的主要特征是呼吸道超敏反应,可逆性气流阻塞,支气管平滑肌痉挛,以及呼吸道炎症,常见的症状包括喘息,呼吸困难,咳嗽,胸闷等。在一个优选例中,所述的哮喘包括:
(1)由炎症因子引起的哮喘。
在另一优选例中,所述的由炎症因子引起的哮喘包括由炎症因子分泌或表达增加引起的哮喘和/或由炎症因子活性增强引起的哮喘。
在另一优选例中,所述的分泌由脾淋巴细胞分泌,优选地,由Th2细胞分泌。
在另一优选例中,所述的表达选自下组:蛋白质表达、mRNA表达,或其组合。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
典型地,所述哮喘包括:过敏性哮喘、非过敏性哮喘、晚发型哮喘、气流受限型哮喘、肥胖型哮喘、激素抵抗性哮喘。
代表性地,所述的哮喘为过敏性哮喘。
在一个优选例中,所述的过敏性哮喘包括选自下组的过敏剂引起的哮喘:OVA、佐剂氢氧化铝,或其组合。
用途
本发明的多肽能够用于预防、治疗和/或缓解哮喘。
在本发明中,术语“预防”表示预防疾病和/或它的附随症状的发作或者保护对象免于获得疾病的方法。本文中使用的"预防"还包括延迟疾病和/或它的附随症状的发作和降低对象的得病的风险。
本发明所述的“治疗”包括延缓和终止疾病的进展,或消除疾病,并不需要100%抑制、消灭和逆转。在一些实施方案中,与不存在本发明所述的组合物、药盒、食品盒或保健品盒、活性成分组合时观察到的水平相比,本发明所述组合物或药物组合物将哮喘疾病减轻、抑制和/或逆转了例如至少约10%、至少约30%、至少约50%、或至少约80%。
在一个优选例中,所述的预防、治疗和/或缓解哮喘包括:
(i)抑制炎症因子;
(ii)降低IgE水平;
(iii)降低气道阻力;
(iv)提高肺顺应性;和/或
(v)抑制肺内炎性细胞浸润。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
在另一优选例中,抑制炎症因子包括抑制炎症因子的分泌或表达和/或活性。
在另一优选例中,所述的IgE水平为血清、全血或血浆中的IgE水平。
本发明还提供一种本发明所述的多肽或其药学上可接受的盐用于(i)抑制炎症;(ii)降低IgE水平;(iii)降低气道阻力;(iv)提高肺顺应性;和/或(v)抑制肺内炎性细胞浸润。
在另一优选例中,所述的由炎症是由炎症因子引起的炎症。
在另一优选例中,所述的炎症因子包括白细胞介素。
在另一优选例中,所述的白细胞介素选自下组:IL-4、IL-5、IL-13,或其组合。
药物组合物
本发明还提供了一种药物组合物,它含有有效量(如0.1-99.9wt%;较佳的10-99.9wt%;更佳的,70-99.9wt%)的本发明多肽(尤其是多肽SIPI-D00),以及药学上可接受的载体。
通常,可将本发明多肽配制于无毒、惰性的和药学上可接受的水性载体介质中,其中pH通常约为5-8,较佳地,pH约为6-8。
如本文所用,术语“有效量”或“有效剂量”是指可对人和/或动物产生功能或活性的且可被人和/或动物所接受的量。
如本文所用,“药学上可接受的”的成分是适用于人和/或哺乳动物而无过度不良副反应(如毒性、刺激和变态反应)的,即具有合理的效益/风险比的物质。术语“药学上可接受的载体”指用于治疗剂给药的载体,包括各种赋形剂和稀释剂。
本发明的药物组合物含有安全有效量的本发明多肽以及药学上可接受的载体。这类载体包括(但并不限于):盐水、缓冲液、葡萄糖、水、甘油、乙醇、及其组合。通常药物制剂应与给药的方式相匹配,本发明的药物组合物可以被制成针剂形式,例如用生理盐水或含有葡萄糖和其他辅剂的水溶液通过常规方法进行制备。所述的药物组合物宜在无菌条件下制造。活性成分的给药量是治疗有效量。本发明的药物制剂还可制成缓释制剂。
在另一优选例中,所述药物组合物的剂型为喷雾剂、针剂(如肌肉或静脉注射液)。
本发明所述蛋白的有效量可随给药的模式和待治疗的疾病的严重程度等而变化。优选的有效量的选择可以由本领域普通技术人员根据各种因素来确定(例如通过临床试验)。所述的因素包括但不限于:所述的药代动力学参数例如生物利用率、代谢、半衰期等;患者所要治疗的疾病的严重程度、患者的体重、患者的免疫状况、给药的途径等。通常,当本发明多肽每天以约0.1-1mg/kg动物体重(较佳的0.3-0.6mg/kg动物体重)的剂量给予,能得到令人满意的效果。例如,由治疗状况的迫切要求,可每天给予若干次分开的剂量,或将剂量按比例地减少。
本发明的主要优点在于:
(1)本发明的多肽对哮喘具有有效的治疗。
(2)本发明多肽具有优异的药代动力学,皮下注射具有优异的吸收进入血液的特性,生物利用度显著增加,且体内半衰期长,从而能够较长时间地发挥药效。
(3)本发明多肽分子量小、生产成本低、免疫原性小、毒副作用低、水溶性佳,可开发为气雾剂。
下面的具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如(Sambrook和Russell等人,分子克隆:实验室手册(Molecular Cloning-A LaboratoryManual)(第三版)(2001)CSHL出版社)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。除非另外说明,否则百分比和份数按重量计算。以下实施例中所用的实验材料和试剂如无特别说明均可从市售渠道获得。
实施例
材料和方法
SP肽和SP肽衍生物合成通用方法
SP肽(简称SP))和SP肽衍生物SIPI-D00为多肽的固相合成法,如图1所示,以2-Cl三苯基树脂作为固相载体,以羟基苯并三氮唑(HOBT)/二异丙基羰二亚胺(DIC)为缩合体系,以20%哌啶的DMF溶液为脱Fmoc保护基条件,使用切割试剂将多肽与树脂分离,冰乙醚沉淀得粗肽,粗肽使用制备HPLC进行纯化,纯品使用高分辨质谱进行分子量和分子式匹配鉴定。
SP肽(SP)和SP肽衍生物D00(SIPI-D00)的合成
SP肽(从N端到C端,SP肽氨基酸序列为:GQTYTSG,SP肽氨基酸序列为SEQ ID NO:1)和SIPI-D00(从N端到C端,SIPI-D00的氨基酸序列为:GSTYTQG,SIPI-D00肽氨基酸序列如SEQ ID NO:2)合成的具体操作步骤如下所示:
(1)树脂的溶胀:称量500mg的2-Cl三苯基树脂于多肽合成管中,在常温条件下加入5-10mL DCM充分浸泡树脂,时间至少15min以上,然后使用隔膜泵将溶剂DCM抽离。注:如果多肽合成管壁上有树脂不能被DCM完全浸没,需要使用DMF将多肽合成管壁上的树脂淋洗入多肽合成管底端,再加入DCM进行浸泡,保证每一颗树脂得到充分地溶胀。
(2)树脂的洗涤:使用5-10ml DMF将挂壁的树脂淋洗入多肽合成管底端,滤除DMF。然后加入5-10ml DCM充分混合1min,滤除DCM,重复此操作3次。最后加入5-10ml DMF充分混合1min,滤除DMF,重复此操作3次。注:如果DMF不能将挂壁的树脂完全淋洗下来,需借助外力将其刮入多肽合成管底端,保证反应液能完全浸泡所有树脂。
(3)第一个氨基酸的缩合:称取Fmoc-AA-OH(3eq)加入到10mL离心管中,量取5mLDMF溶解氨基酸,量取DIPEA(8eq)于离心管中震摇混匀,室温条件下活化一到两分钟。将活化好的氨基酸倒入到多肽合成管中,置于双功能气浴恒温振荡器中,在35℃条件下震摇反应1h后洗涤。注:SP肽的第一个氨基酸为Fmoc-Gly-OH,SIPI-D00的第一个氨基酸Fmoc-D-Gly-OH;溶解氨基酸的DMF用量根据是否能完全浸没树脂为标准,一般需要3-8mL。
(4)多肽树脂复合物的洗涤:加入5-10ml DCM充分混合1min,滤除DCM,重复此操作3次。最后加入5-10ml DMF充分混合1min,滤除DMF,重复此操作3次。注:如果DMF不能将挂壁的树脂完全淋洗下来,需借助外力将其刮入多肽合成管底端,保证反应液能完全浸泡所有树脂。
(5)树脂空位点的封闭:向上述多肽合成管中加入5mL甲醇置于双功能气浴恒温振荡器,在35℃条件下震摇反应20min,滤除封闭液甲醇。重复此操作两次。再重复(4)洗涤多肽树脂复合物的操作。注:封闭液甲醇的用量以完全浸没多肽树脂复合物为基准。
(6)保护基Fmoc的脱除:向上述多肽合成管中加入5mL 20%哌啶/DMF溶液,置于双功能气浴恒温振荡器中,在35℃条件下震摇反应10min,滤除反应液,重复此操作两次。再重复(4)洗涤多肽树脂复合物的操作。注:20%哌啶/DMF溶液以全浸没多肽树脂复合物为基准,20%哌啶/DMF(20mL哌啶:80mL DMF)。
(7)脱除保护基Fmoc的检测:脱除Fmoc保护基反应需要使用Kaiser试剂(茚三酮定性显色)监测反应进程,用毛细滴管取少量树脂于2ml的离心管中,滴加入3滴5%茚三酮乙醇溶液和1滴80%苯酚的乙醇溶液,混匀后于200℃条件下加热沸腾1min,若每颗树脂均显蓝色说明氨基端完全裸露,Fmoc保护基脱离完全,若有几颗树脂显无色说明氨基端Fmoc保护基未反应脱除,需重复上述脱Fmoc保护基的步骤一次。注:Kaiser试剂(5%的茚三酮乙醇溶液:80%苯酚乙醇溶液(3:1,v/v));检测所用的树脂尽量从不同方位取,保证所检测树脂具有代表性。
(8)第二个氨基酸的缩合:分别称取Fmoc-AA-OH(3eq),HOBT(3.6eq)加入10mL离心管中,加入6mL DMF震摇混匀后,再量取DIC(8eq)离心管中震摇混匀,室温条件下活化一到两分钟。将活化好的氨基酸加入到多肽合成管中,多肽合成管置于双功能气浴恒温振荡器中,在35℃的条件下反应2h后。再重复(4)洗涤多肽树脂复合物的操作。注:SP肽的第二个氨基酸为Fmoc-Ser-OH,SIPI-D00的第二个氨基酸Fmoc-D-Gln-OH。
(9)氨基酸缩合后的检测:氨基酸缩合反应后需使用Kaiser试剂(茚三酮定性显色)监测反应进程,即用毛细滴管取少量树脂于2ml的离心管中,滴加入3滴5%茚三酮乙醇溶液和1滴80%苯酚的乙醇溶液,混匀后于200℃条件下加热沸腾1min,若树脂显示无色说明氨基端完全缩合,若显蓝色或者蓝紫色说明氨基端未完全缩合,需重复上述第二个氨基酸缩合的步骤。
(10)剩余氨基酸的缩合:重复(6)保护基Fmoc的脱除,(7)脱除保护基Fmoc的检测、(8)第二个氨基酸的缩合、(9)氨基酸缩合后的检测等步骤依次按照多肽序列将氨基酸缩合到树脂上。最后重复(6)保护基Fmoc的脱除,(7)脱保护基Fmoc的检测。
(11)分离多肽与树脂:将洗涤好的多肽树脂复合物使用DCM淋洗3次后,再使用乙醚洗涤多肽树脂复合物3次,使用隔膜泵抽干树脂(多肽树脂复合物呈散沙状),倒入50mL离心管中,量取20mL切割试剂B试剂加入到50mL离心管(内含多肽树脂复合物)中,密封于35℃条件下剧烈震摇反应4h。反应结束过滤,分离树脂与切割液(内含多肽),滤液转至50mL离心管中,再用5mL B试剂淋洗树脂,所得淋洗液转移至至50mL离心管中,氮气鼓泡浓缩滤液(内含多肽)。加入40mL冰乙醚,震摇沉淀,使用离心机进行离心,将上清液倒出,加入乙醚洗涤,重复上述离心和乙醚洗涤的操作三次,氮气鼓风干燥获得粗肽。注:B试剂配比(88%TFA:5%苯酚:5%水:2%TIPs);离心机的离心时间设置为5min,转速设置为3500r/min。
(12)分析、纯化与鉴定:使用高效液相色谱仪对粗肽进行分析,制备液相对粗肽进行纯化,使用质谱仪鉴定。
1)高效液相色谱仪的分析条件:开启氘灯进行双波长检测,波长分别设置为214nm和254nm,流速设置为1.0mL/min;进样量设置为5μL。采用梯度洗脱的方法进行洗脱,梯度洗脱高效液相色谱仪程序以流动相B为基准设置为(0min—开始,0min—90%流动相B,2min—90%流动相B,20min—20%流动相B,30min—0%流动相B,60min—结束)。其中流动相A为分析纯乙腈(内含0.1%三氟乙酸),流动相B为纯化水(内含0.1%三氟乙酸)。分析柱为Diamonsil C18 5μm 250×4.6mM。
2)制备柱色谱条件:开启氘灯进行双波长检测,波长分别为214nm和254nm,流速设置为10mL/min;进样量设置为10mL。采用梯度洗脱的方法进行洗脱纯化,梯度洗脱程序以流动相B为基准设置为(0min—开始,0min—90%流动相B,5min—90%流动相B,40min—20%流动相B,60min—0%流动相B,60min—结束)。其中流动相A为分析纯乙腈(内含0.1%乙酸),流动相B为纯化水(内含0.1%三氟乙酸)。制备柱为Ryoung Tech Led C18-RPS12nm 10μm 20×250mM。梯度洗脱收集目标峰溶液,目标峰溶液置于液氮中进行冷冻,再使用冷冻干燥机进行干燥,对产物再进行HPLC分析确定产物纯度,使用质谱仪鉴定产物的分子式与分子量是否与理论值匹配。
注:进样前需使用5%的流动相A冲洗柱子5min以上,无明显杂质峰后再使用90%的流动相B平衡柱子5-10min,可见一个明显的平衡峰出现。
合成的SP肽(SEQ ID NO:1)的所有氨基酸残基为L-氨基酸,合成的SIPI肽衍生物SIPI-D00(SEQ ID NO:2)的所有氨基酸残基均为D-氨基酸。
实施例1大鼠全血中各7肽化合物稳定性
1.1实验流程及孵育条件
供试品配制:SP、SIPI-D00用适量含0.1%甲酸的50%乙腈水溶解并稀释,得到浓度为200μg/mL的工作液。稳定性研究试剂使用情况件下表1。
表1稳定性研究试剂使用情况
Figure BDA0002548315050000171
1)新鲜大鼠全血加于EP管中,轻轻震荡混合;
2)EP管置于37℃水浴预孵5分钟;
3)分别加入各化合物起始反应,继续37℃孵育;
4)分别于0、2min、5min、10min、30min、60min于样品管中取50μL至终止管中,加入50μL冰冷7%高氯酸,震荡,终止反应;
5)13000r/min离心10min,吸取上清75μL,加入60μL 1.25%氨水混匀,0.22μM微孔滤膜过滤后,取20μL进行LC-MS/MS分析。
每个样品双复管,结果如表2所示。
表2不同多肽在大鼠全血中的稳定性
Figure BDA0002548315050000172
Figure BDA0002548315050000181
从表2中可以看出,SIPI-D00多肽在全血中的稳定性显著高于SP肽,在与全血孵育60min后,回收率仍然高达100%,表明SIPI-D00在全血中具有优异的稳定性,从而使得SIPI-D00符合药物成药性的药代动力学要求(半衰期>30min)
实施例2 SD大鼠单次皮下注射SP肽或SIPI-D00肽后不同时间血浆药物浓度
1.材料
SP肽(氨基酸酸序列SEQ ID NO:1)
SIPI-D00多肽(氨基酸酸序列SEQ ID NO:2)
2.实验动物
体重约200g的雄性SD大鼠,饲养条件:饲养于空调恒温室内,室温20-24℃,湿度40-70%,光照12h,自由进食与饮水。
3.实验方法
3.1给药方法
途径:单次背部皮下注射;
药物给药剂量:用生理盐水分别将SP肽和SIPI-D00多肽配制成3.33mg/mL溶液,背部皮下注射SP肽的给药剂量为10mg/kg体重,背部皮下注射SIPI-D00肽的给药剂量为5mg/kg体重。
3.2给药与血样采集
雄性SD大鼠,给药前禁食12h,自由饮水。皮下注射给予受试物SP肽或SIPI-G9多肽。分别于给药前和给药后不同时间点眼眶采血。采集的全血用1%肝素抗凝,8000rpm离心4min后取50μL血浆于1.5mL聚丙烯管中,置于-70℃冰箱,待测。高浓度样品用空白血浆稀释。
3.3测定方法
采用高效液相-质谱联用(HPLC-MS)联用测定SIPI-G9多肽的血药浓度;
3.3.1 HPLC-MS条件
HPLC系统:ExionLC AC系统,AB公司。
MS系统:Triple Quad 5500型串联四级杆质谱仪,AB公司。
数据采集:Analyst(1.7),AB公司。
HPLC色谱条件:
色谱柱:SHIM-PACK GISS C18(2.1×100mm,1.9μm);进样体积:20μL;流动相:A相:0.2%乙酸水溶液;B相:甲醇,梯度洗脱(详见表3);
表3梯度洗脱条件
Figure BDA0002548315050000191
3.3.2质谱条件
离子源为电喷雾离子化源(ESI);干燥气体(N2)温度550℃;电喷雾电压为5500V;检测方式为正离子检测;扫描方式为选择反应监测(MRM)方式,扫描时间为0.15s。质谱检测参数如下表4所示:
表4质谱检测参数
Figure BDA0002548315050000192
3.4样品处理
取50μL血浆,加入5μL内标溶液(DX07(His-Leu-Glu-Thr-Glu-Leu-His)100ng/mL)后,加入150μL甲醇沉淀蛋白,13000rpm离心5min,取上清160μL,40℃N2吹干后,用75μL0.1%甲酸水溶液复溶,20μL进样于HPLC-MS,测定SIPI-G9的血药浓度。
2.1.5数据处理
采用DAS 2.0软件的非房室模型计算药代动力学参数。Cmax和Tmax均为实测值;AUC、T1/2、CL和Vz为DAS 2.0计算所得。
4、实验结果
SD大鼠单次皮下注射SP肽(10mg/kg)后不同时间血浆药物浓度如图2所示,其药代动力学参数如表5所示,不同时间点的血药浓度如表6所示:
表5 SD大鼠单次皮下注射SP肽(10mg/kg)后后主要药动学参数
Figure BDA0002548315050000201
表6 SD大鼠单次皮下注射SP肽(10mg/kg)后不同时间点的血药浓度
Figure BDA0002548315050000202
Figure BDA0002548315050000211
SD大鼠单次皮下注射SIPI-D00肽(5mg/kg)后不同时间血浆药物浓度如图3所示,其药代动力学参数如表7所示,不同时间点的血药浓度如表8所示:
表7 SD大鼠单次皮下注射SIPI-D00(5mg/kg)后主要药动学参数
Figure BDA0002548315050000212
表8 SD大鼠单次皮下注射SIPI-D00(5mg/kg)后不同时间点的血药浓度
Figure BDA0002548315050000213
从表5-8和图2-3可以看出,与SP相比,SIPI-D00肽的AUC显著提高,表明SIPI-D00在皮下注射具有优异的吸收进入血液的特性,生物利用度显著增加,且体内半衰期高达1.5h,从而能够较长时间地发挥药效,因此,可以看出,SIPI-D00肽具有优异的药代动力学特性。
实施例3 SP肽和SIPI-D00肽对ConA(刀豆蛋白A)刺激小鼠脾细胞分泌IL-4的影响
哮喘疾病主要是由Th2细胞介导的炎性疾病。在疾病进展过程中,Th2细胞分泌IL-4、IL-5、IL-13,这些细胞因子作用于嗜酸性粒细胞、肥大细胞、气道结构细胞等,促进支气管黏膜上皮发生炎性细胞聚集和起到重构。因此,通过考察SP肽和SIPI-D00肽对IL-4分泌的影响来评价其哮喘的治疗作用。
1.实验方法
BALB/C小鼠3只,麻醉后脱颈椎处死小鼠。置于75%乙醇中浸泡5分钟。解剖,取脾,制备脾淋巴细胞,计数后,96孔板加入2×105个/孔,SP肽和SIPI-D00肽分别设置不同浓度组,不同浓度的CsA(环孢素A)作为阳性对照组。各孔加入不同浓度的受试物,每个浓度设双复孔,ConA终浓度为5μg/mL。37℃5%CO2培养箱中孵育24h,吸取每孔含药细胞悬液,4℃,200g离心15min,取上清,用鼠IL-4Elisa试剂盒(mouse IL-4Elisa kit)检测IL-4的含量。
3.2实验结果
不同浓度的SP肽和SIPI-D00肽对ConA刺激的小鼠脾细胞分泌IL-4的影响如表9所示,对IL-4分泌抑制率如表10所示:
表9不同多肽对ConA刺激的小鼠脾细胞分泌IL-4的影响
Figure BDA0002548315050000221
注:*表示与浓度为0相比,p<0.05,**表示与浓度为0相比,p<0.01。
表10不同多肽对ConA刺激的小鼠脾细胞分泌的IL-4抑制率
Figure BDA0002548315050000231
表9和表10可以看出,与SP肽相比,SIPI-D00肽能够显著抑制ConA刺激的小鼠脾淋巴细胞分泌IL-4,从而对II型细胞因子占优势的哮喘具有优异的治疗作用。
实施例4药效学检测
1.材料与仪器
SIPI-D00肽:冻干粉末,-20℃保存备用;
阳性对照药:地塞米松磷酸钠注射液,规格:5mg/ml,1ml/支;性状和理化性质:无色液体;保存条件:遮光、密封,在阴凉处保存;生产厂家:国药集团荣生制药有限公司。
鸡蛋白清蛋白(Albumin from chicken egg white)(OVA):批号:SLBK6445V;生产厂家:SIGMA-ALDRICH
氢氧化铝佐剂:名称:Imject Alum;批号:TJ271907A;规格:50mL/瓶;生产厂家:Thermo scientific。
ELISA试剂盒:Mouse IgE ELISA Kit;批号:GR3246691-4;生产厂家:abcam。
雾化器:型号:403C型家用空气压缩式雾化器,生产厂家:鱼跃医疗。
动物肺功能分析系统:型号:AniRes2005。生产厂家:北京贝兰博科技有限公司。
2.实验动物
SPF雌性BALB/c小鼠,以标准灭菌鼠饲料,动物饮用水采用饮水瓶供应,动物自由饮水,饲养温度为20℃~22℃,湿度40%~70%,光照12小时明暗交替。
3.实验方法
3.1动物分组
SPF雌性BALB/c小鼠分2批进行实验,一批用于检测血清IgE和肺病理,另一批用于检测肺功能。
第一批:小鼠分组,每组10只,即:空白对照组(生理盐水)、模型组(OVA,20ug/只)、SP肽组(给药剂量分别为175μg/kg体重/天、350μg/kg体重/天)、SIPI-D00肽组(给药剂量为175μg/kg体重/天、350μg/kg体重/天)、地塞米松组(给药剂量为2mg/kg体重/天)。
第二批:小鼠分组,每组10只,即:空白对照组(生理盐水)、模型组(OVA,剂量为20ug/只)、SP肽组(给药剂量分别为87.5μg/kg体重/天、175μg/kg体重/天、350μg/kg体重/天)、SIPI-D00肽组(给药剂量为87.5μg/kg体重/天、175μg/kg体重/天、350μg/kg体重/天)、地塞米松组(给药剂量为2mg/kg体重/天)。
3.2过敏性哮喘型模型动物构建和给药
3.2.1药物配制及给药途径
3.2.1.1 OVA的配置及给药方法
3.2.1.1.1致敏(Sensitization)用OVA:
致敏用OVA用无菌PBS溶液溶解,终浓度为0.2mg/ml,加入等体积的氢氧化铝佐剂,震荡30分钟后,腹腔注射小鼠,每只小鼠注射0.2ml(20μg OVA/只)。
3.2.1.1.2激发(challenge)用OVA:
用无菌PBS配置2%OVA溶液。将2%OVA用雾化器进行雾化,将小鼠放置于雾化吸入箱中,每天30min。
3.2.1.1.3地塞米松:
地塞米松磷酸钠注射液用生理盐水稀释后腹腔注射给药,给药剂量为2mg/kg。
3.2.1.14免疫7肽及其衍生物:
根据给药剂量,分别将SP肽、SIPI-D00溶解于生理盐水,根据动物体重采用背部皮下给药方式给药。
3.2.2过敏性哮喘型模型动物构建和给药方法
模型组、SP肽组、SIPI-D00肽组和地塞米松组小鼠于第0、7、14天腹腔注射OVA进行致敏(20μg OVA/mice)后,第21-25天进行OVA(每天一次,连续5天)雾化给药激发,构建哮喘型模型动物。模型组小鼠第21-28天给予生理盐水;不同剂量的SP肽组和SIPI-D00肽组小鼠分别在第19-28天皮下注射不同剂量的SP和SIPI-D00;地塞米松组小鼠在21-28天腹腔注射2mg/kg/天地塞米松。同时,空白对照组的10只小鼠从0天到28天正常饮食,未经任何处理,给予生理盐水作为空白对照。
4实验结果
4.1血清中IgE水平测定
28天结束后,小鼠眼内眦采血,取血清,用ELISA试剂盒对血清中的IgE水平进行测定,结果如表11所示。
表11空白对照组、模型组、SP肽组、SIPI-D00肽组和地塞米松组的IgE水平(n=10)
Figure BDA0002548315050000251
从表11中可以看出,OVA联合佐剂氢氧化铝致敏引起的过敏性哮喘小鼠模型组血清中IgE水平显著升高(p<0.01),与模型组和SP肽组相比,SIPI-D00肽治疗给药的血清中IgE水平显著降低,表明SIPI-D00肽能够显著降低过敏性哮喘小鼠模型组血清中IgE水平。
4.2肺功能的测定
28天时,对小鼠麻醉后行气管插管和颈静脉插管,每组动物进行吸气相气道阻力和肺顺应性的测量。每只动物通过颈静脉给予倍数增加的乙酰甲胆碱:0.025mg/kg,0.05mg/kg,0.1mg/kg,0.2mg/kg。给与每个剂量后连续记录5分钟的肺顺应性曲线,计算吸气相气道阻力和肺顺应性,结果如表12和表13所示。
表12空白对照组、模型组、SIPI-D00肽组和地塞米松组的吸气相气道阻力(n=10)
Figure BDA0002548315050000261
**P<0.01与空白对照组比较,#P<0.05,##P<0.01与模型组比较。
表13空白对照组、模型组、SIPI-D00肽组和地塞米松组的肺顺应性(n=10)
Figure BDA0002548315050000262
**P<0.01与空白对照组比较,#P<0.05,##P<0.01与模型组比较。
从表12和表13中可以看出,模型组小鼠的吸气相阻力显著升高,肺顺应性显著降低。与模型组比较,地塞米松组小鼠的吸气相阻力显著降低,肺顺应性显著升高;与模型组相比,SIPI-D00高、中、低剂量组小鼠的吸气相阻力显著降低,肺顺应性显著升高,表明SIPI-D00肽能够显著降低小鼠的吸气相阻力,升高肺顺应性。
4.3肺病理观察
28天结束后,将小鼠肺组织取出,4%甲醛固定、石蜡包埋、切片、H&E染色后进行病理观察,结果如图4和图5所示:
由图4和5可知,空白对照组小鼠肺内无炎性细胞浸润,肺泡腔清晰。而模型组小鼠肺内有大量炎性细胞浸润,炎性细胞以嗜酸性粒细胞和单个核细胞为主,肺泡腔严重损坏,气道上皮损伤、脱落;气道壁增厚、黏膜水肿;气道渗出物增多、黏液滞留;气道平滑肌增厚。阳性对照组小鼠肺内有少量炎性细胞浸润,但肺泡腔严重损坏。
SP低剂量组和高剂量组小鼠气道黏膜中均可见部分炎性细胞浸润;气道壁增厚、黏膜水肿;气道渗出物增多、黏液滞留;气道平滑肌增厚。SIPI-D00低剂量组小鼠肺内有较多炎性细胞浸润,炎性细胞以嗜酸性粒细胞和单个核细胞为主,肺泡腔清晰。SIPI-D00高剂量组小鼠肺内有较少炎性细胞浸润,肺泡腔清晰;气道上皮较完整;气道壁厚度正常、无黏膜水肿,渗出;气道平滑肌正常。
从图4和图5可以看出,SIPI-D00肽能够显著降低小鼠肺内炎性细胞浸润。
综上,可以看出,SIPI-D00肽能够有效抑制炎症因子、降低IgE水平、降低吸气相气道阻力、提高肺顺应性和抑制肺内炎性细胞浸润,从而对过敏性哮喘具有有效地治疗作用。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
序列表
<110> 上海医药工业研究院
中国医药工业研究总院
<120> 一种治疗哮喘的生物肽及其应用
<130> P2020-0262
<150> CN201911151330.X
<151> 2019-11-21
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 7
<212> PRT
<213> 人工序列(Artificial sequence)
<400> 1
Gly Gln Thr Tyr Thr Ser Gly
1 5
<210> 2
<211> 7
<212> PRT
<213> 人工序列(Artificial sequence)
<400> 2
Gly Ser Thr Tyr Thr Gln Gly
1 5

Claims (12)

1.一种多肽或其药学上可接受的盐,其特征在于,所述的多肽或其药学上可接受的盐具有预防、治疗和/或缓解过敏性哮喘的活性;
其中所述多肽的氨基酸序列如SEQ ID NO:2所示。
2.如权利要求1所述的多肽,其特征在于,SEQ ID NO:2所示的氨基酸序列中的3-5个为D型氨基酸。
3.如权利要求1所述的多肽,其特征在于,SEQ ID NO:2所示的氨基酸序列中的5个为D型氨基酸。
4.一种分离的核酸分子,其特征在于,所述的核酸分子编码如权利要求1所述的多肽。
5.一种药物组合物,其特征在于,所述药物组合物包括:
(a)如权利要求1所述的多肽或其药学上可接受的盐;和
(b)药学上可接受的载体或赋形剂。
6.如权利要求5所述的药物组合物,其特征在于,所述的药物组合物的剂型为液体制剂。
7.如权利要求6所述的药物组合物,其特征在于,所述液体制剂包括如权利要求1所述的多肽或其药学上可接受的盐、渗透压调节剂和水。
8.如权利要求7所述的药物组合物,其特征在于,所述的渗透压调节剂包括盐和/或糖类。
9.如权利要求8所述的药物组合物,其特征在于,所述盐为氯化钠。
10.如权利要求8所述的药物组合物,其特征在于,所述糖类包括葡萄糖。
11.一种如权利要求1所述的多肽或其药学上可接受的盐的用途,其特征在于,用于制备一药物,所述药物用于预防、治疗和/或缓解过敏性哮喘。
12.一种如权利要求1所述的多肽或其药学上可接受的盐的用途,其特征在于,用于制备一药物,所述药物用于(i)抑制炎症;(ii)降低IgE水平;(iii)降低气道阻力;(iv)提高肺顺应性;和/或(v)抑制肺内炎性细胞浸润。
CN202010568266.1A 2019-11-21 2020-06-19 一种治疗哮喘的生物肽及其应用 Active CN112920256B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/778,939 US20230203095A1 (en) 2019-11-21 2020-11-20 Biological peptide for treating lung diseases and application thereof
PCT/CN2020/130625 WO2021098854A1 (zh) 2019-11-21 2020-11-20 一种治疗肺部疾病的生物肽及其应用
EP20889188.7A EP4063378A1 (en) 2019-11-21 2020-11-20 Biological peptide for treating lung diseases and application thereof
JP2022530193A JP7492004B2 (ja) 2019-11-21 2020-11-20 肺疾患を治療するための生物学的ペプチドおよびその適用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911151330 2019-11-21
CN201911151330X 2019-11-21

Publications (2)

Publication Number Publication Date
CN112920256A CN112920256A (zh) 2021-06-08
CN112920256B true CN112920256B (zh) 2022-08-19

Family

ID=76163360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010568266.1A Active CN112920256B (zh) 2019-11-21 2020-06-19 一种治疗哮喘的生物肽及其应用

Country Status (1)

Country Link
CN (1) CN112920256B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822816A (zh) * 2010-05-27 2010-09-08 程云 7p肽在预防或治疗肺炎中的应用
CN104955469B (zh) * 2012-12-18 2016-12-21 程云 Sp肽或其衍生物在制备预防或治疗哮喘的药物中的应用
CN109456390A (zh) * 2018-12-27 2019-03-12 西华师范大学 一种人工合成多肽h-473及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890200B2 (en) * 2011-04-12 2018-02-13 Moerae Matrix, Inc. Compositions and methods for preventing or treating diseases, conditions, or processes characterized by aberrant fibroblast proliferation and extracellular matrix deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822816A (zh) * 2010-05-27 2010-09-08 程云 7p肽在预防或治疗肺炎中的应用
CN104955469B (zh) * 2012-12-18 2016-12-21 程云 Sp肽或其衍生物在制备预防或治疗哮喘的药物中的应用
CN109456390A (zh) * 2018-12-27 2019-03-12 西华师范大学 一种人工合成多肽h-473及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enhanced UHPLC-MS/MS determination of a therapeutic heptapeptide mimic for inflammatory-related diseases in rat plasma: application to a pharmacokinetic study";Liang Li et al.;《RSC Advances》;20191015;第9卷(第56期);第32699-32711页 *
"丙型肝炎病毒HVR1合成肽抗原活性的研究及丙型肝炎Th1/Th2免疫应答的初步探讨";董漪;《中国优秀博硕士学位论文全文数据库(硕士) 医药卫生科技辑》;20041215(第4期);第E059-323页 *
"胎盘多肽注射液对哮喘患儿免疫功能的";辛凤志;《中国医学创新》;20151231;第12卷(第35期);第144-145页 *

Also Published As

Publication number Publication date
CN112920256A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
US6703483B1 (en) Compounds useful in pain management
BR122024000903A2 (pt) Composto, composição, e, uso do composto
JP2003526622A (ja) 老化防御効果を示すテトラペプチド、これを基にした薬理学的物質、及びその利用法
US5106834A (en) Linear free-sulfhydryl-containing oligopeptide derivatives as antihypertensive agents
CN113929761B (zh) 新型生长激素释放激素类似肽改构和二聚体化制备及其应用
CN113429471A (zh) 长效glp-1多肽类似物及其制备方法和应用
EP3530667B1 (en) Peptide having anti-obesity and anti-diabetes efficacy and use thereof
CN107629114B (zh) 多肽、其衍生物及其在制备抗肺纤维化的药物中的应用
CN112920256B (zh) 一种治疗哮喘的生物肽及其应用
JPH05503101A (ja) 好中球化学誘引物質
US8957019B2 (en) Oligopeptide for treating liver fibrosis and/or treating hepatitis B and/or improving liver function
CN112824428B (zh) 一种治疗肺疾病的生物肽及其应用
EP3568148B1 (en) Mycobacteria tuberculosis chaperonin 60.1 peptides and uses thereof
WO2021098854A1 (zh) 一种治疗肺部疾病的生物肽及其应用
JPH06507633A (ja) 肝臓癌の治療
AU2018293467B2 (en) Pro-drug peptide with improved pharmaceutical properties
CN116162147B (zh) 一种长效胰岛素类似物
JP2000511511A (ja) 腫瘍成長阻害及び毛細管増殖のための生物学的活性タンパク質、コラーゲンフラグメントHF―COLL―18/514cf
CN113024635B (zh) 一类订书肽化合物及其药物组合物的用途
CN116731117B (zh) Kim-1靶向性多肽及其在急性肾损伤中肾靶向性的应用
US20220251093A1 (en) Potassium salt crystal form b of phosphodiesterase type 5 inhibitor, and preparation method and use therefor
EP4289860A1 (en) Use of polypeptide compound in prevention or treatment of inflammatory bowel disease and intestinal fibrosis related thereto
CN103012555A (zh) 具有组织保护活性的新多肽的制备方法及在治疗中的应用
KR20170069997A (ko) 미리스토일화된 렙틴-관련된 펩티드 및 이들의 용도
CN115160404A (zh) 多肽化合物在制备用于预防或治疗非酒精性脂肪肝病药物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 200040 No. 1320 West Beijing Road, Shanghai, Jingan District

Patentee after: Shanghai Pharmaceutical Industry Research Institute Co.,Ltd.

Patentee after: China Pharmaceutical Industry Research Institute Co.,Ltd.

Address before: 200040 No. 1320 West Beijing Road, Shanghai, Jingan District

Patentee before: SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY

Patentee before: CHINA STATE INSTITUTE OF PHARMACEUTICAL INDUSTRY