CN112899447A - 一种提高纳米晶铁芯在互感器中输出线性度的退火方法 - Google Patents

一种提高纳米晶铁芯在互感器中输出线性度的退火方法 Download PDF

Info

Publication number
CN112899447A
CN112899447A CN202110072789.1A CN202110072789A CN112899447A CN 112899447 A CN112899447 A CN 112899447A CN 202110072789 A CN202110072789 A CN 202110072789A CN 112899447 A CN112899447 A CN 112899447A
Authority
CN
China
Prior art keywords
iron core
magnetic field
temperature
heating
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110072789.1A
Other languages
English (en)
Inventor
杨明展
王依民
唐吉伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Northen Technology Co ltd
Original Assignee
Jilin Northen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Northen Technology Co ltd filed Critical Jilin Northen Technology Co ltd
Priority to CN202110072789.1A priority Critical patent/CN112899447A/zh
Publication of CN112899447A publication Critical patent/CN112899447A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明提出了一种提高纳米晶铁芯在互感器中输出线性度的退火方法,包括如下步骤:周期球化退火,将铁芯在800至1500A/cm的横向磁场环境下,从室温以第一速率加热至450℃或更高的目标温度,并在此温度下保持0.5至1小时;之后,变化磁场方向及大小,在2000至3500A/cm的纵向磁场环境下,以第二速度加热至580℃,并在此温度下保持0.5至1小时;之后,停止施加磁场,用还原性保护气体保护铁芯,以第三速率将铁芯冷却至室温,并在此温度下保持0.5至1小时;感应加热表面回火后进行气体渗碳,在连续式渗碳炉中的不同时期采用不同的碳势;利用垂直加热整体淬火法进行淬火。

Description

一种提高纳米晶铁芯在互感器中输出线性度的退火方法
技术领域
本发明涉及一种退火方法,尤其涉及一种提高纳米晶铁芯在互感器中输出线性度的退火方法。
背景技术
纳米晶材料为主要用作互感器的铁芯材料,对于纳米晶材料,为了进一步提高输出线性度的特性,退火通常是至关重要的方法,现有技术中,为了通过应变等改善材料特性、对材料附加方向性的目的而进行的磁场中退火作业,磁特性会因退火条件(退火温度、退火时间)而大幅变化,所以难以制造一定特性的铁芯。
发明内容
本发明提出了一种提高纳米晶铁芯在互感器中输出线性度的退火方法,包括如下步骤:
步骤1,周期球化退火,将铁芯在800至1500A/cm的横向磁场环境下,从室温以第一速率加热至450℃或更高的目标温度,并在此温度下保持0.5至1小时;之后,变化磁场方向及大小,在2000至3500A/cm的纵向磁场环境下,以第二速度加热至580℃,并在此温度下保持0.5至1小时;之后,停止施加磁场,用还原性保护气体保护铁芯,以第三速率将铁芯冷却至室温,并在此温度下保持0.5至1小时;
步骤2,感应加热表面回火,使感应器通过一定频率的交流电以产生交变磁场,使铁芯加热;回火后,铁芯的过渡层的厚度约为硬化层的一半;
步骤3,气体渗碳,在连续式渗碳炉中的不同时期采用不同的碳势;同时向连续式渗碳炉内滴入两种有机液体,分别形成稀释性气氛和渗碳气氛;
步骤4,利用垂直加热整体淬火法进行淬火,利用两根或多根沿轴线布置的导体,产生沿铁芯表面垂直方向流动的感应电流,对铁芯加热,达到淬火温度后,对铁芯整体表面进行喷射淬火或浸液淬火。
进一步地,所述第二速率<第三速率<第一速率。
进一步地,纵向磁场和横向磁场为恒定的磁场或是脉冲磁场。
进一步地,采用透入式加热方法,使得电流热透入铁芯深度为硬化层的三分之二。
进一步地,步骤3中,渗碳开始阶段,为强渗期,采用高的碳势;在渗碳的结束阶段,碳势降低,在气体渗碳结束后,维持一定的碳势,防止铁芯表面氧化和脱碳。
进一步地,步骤2中,采用高频感应加热,频率为550-650kHz,淬硬层深度为3-4mm。
附图说明
附图1为本发明的退火方法的步骤流程图;
具体实施方式
本发明为了提高纳米晶铁芯在互感器中输出线性度,提出了一种退火工艺,包括如下步骤:
步骤1,周期球化退火。首先将铁芯从室温以1到20℃/min的加热速率从室温加热到大约450℃或更高的温度,然后在达到450℃或更高的目标温度后,保持0.5至1小时;再以较低的加热速率0.1至1℃/min和/或以加热速率1至10℃/min加热至550℃-580℃,并在此温度下保持0.5至1小时。然后将铁芯以1至10℃/min的冷却速率冷却至室温。如此周期性以第一速率加热至450℃或更高的目标温度,并在此温度下保持0.5至1小时后,再以第二速度加热至580℃,并在此温度下保持0.5至1小时后,在以第三速率冷却至室温,并在此温度下保持0.5至1小时,如此重复,上下周期摆动,每阶段保温0.5~1h。这样获得的球化效果最好;
整个周期球化退火的过程需按照周期提供强度为800至3500A/cm的横向磁场和纵向磁场,具体如下:当以第一速率加热至450℃或更高的目标温度,并在此温度下保持0.5至1小时的过程中,施加800至1500A/cm的横向磁场;以第二速度加热至580℃,并在此温度下保持0.5至1小时的过程中,施加2000至3500A/cm的纵向磁场;当在以第三速率冷却至室温,并在此温度下保持0.5至1小时的过程中,停止施加磁场,并用空气或还原性保护气体(例如NH3,H2,CO2)或被动保护气体(例如He,Ne,Ar,N2,CO2)保护铁芯,能够保证在带表面上既不会发生氧化也不会发生其他反应。由于扩散的保护气体,材料内部也可能不会发生固态物理反应。纵向磁场和横向磁场可以是保持恒定的磁场,也可以是脉冲磁场。
步骤2,感应加热表面回火,把铁芯放在纯铜管做成的感应器内,铜管中通水冷却,使感应器通过一定频率的交流电以产生交变磁场,结果在铁芯内产生频率相同,方向相反的感应电流,该感应电流使电能变成热能,使铁芯加热。优选地,采用高频感应加热,频率为550-650kHz,淬硬层深度为3-4mm。
在感应加热表面回火过程中,为了得到高的生产率和良好的回火质量(表面硬度高、残余压应力大),应使过渡层与硬化层之间保持如下关系,即过渡层的厚度约为硬化层的一半,采用透入式加热方法,并使得电流热透入深度为硬化层的三分之二。
步骤3,气体渗碳,把铁芯装入在连续式渗碳炉中,炉内压力控制在50~80Pa,同时将铁芯加热到880-890摄氏度,铁芯便在这一温度下渗碳。在连续式渗碳炉中的不同时期采用不同的碳势,在渗碳的开始阶段,为强渗期,铁芯有极大的吸碳能力,为尽快形成较高的碳浓度梯度,加速碳扩散,因此该强渗期,阶段采用高的碳势;在渗碳的结束阶段,铁芯表面层已形成较高的碳浓度梯度,有一定的层深,吸碳能力减弱,这时应将炉内碳势适当降低,防止碳黑生成,在气体渗碳结束后,仍需维持弱的碳势,以防止铁芯表面氧化和脱碳。
在连续式渗碳炉滴入渗碳剂,在渗碳过程中可同时向炉内滴入两种有机液体,一种在高温下分解后形成稀释性气氛,另一种液体则形成渗碳气氛,渗碳效果较好。优选地,有机液体的分子中碳原子数与氧原子数之比等于1,即可主要裂化为CO和H2,其中CO也可作为一种极弱的渗碳气体,气氛中活性碳原子不多,可作为稀释剂使用。
步骤4,渗碳后,采用垂直加热整体淬火法进行淬火,垂直加热整体淬火法是利用两根或多根沿轴线布置的有效导体,产生沿铁芯表面垂直方向流动的感应电流,对铁芯加热,在加热和冷却的全过程铁芯必须旋转,待要被淬火的表面全部达到淬火温度后,对整体表面进行喷射淬火或浸液淬火。垂直加热整体淬火法的最大优点是铁芯的各段表面温度均匀、硬化层连续,因此优化了铁芯在互感器中输出的线性度。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (6)

1.一种提高纳米晶铁芯在互感器中输出线性度的退火方法,其特征在于,包括如下步骤:
步骤1,周期球化退火,将铁芯在800至1500A/cm的横向磁场环境下,从室温以第一速率加热至450℃或更高的目标温度,并在此温度下保持0.5至1小时;之后,变化磁场方向及大小,在2000至3500A/cm的纵向磁场环境下,以第二速度加热至580℃,并在此温度下保持0.5至1小时;之后,停止施加磁场,用还原性保护气体保护铁芯,并以第三速率将铁芯冷却至室温,并在此温度下保持0.5至1小时;
步骤2,感应加热进行表面回火,使感应器通过一定频率的交流电以产生交变磁场,使铁芯加热;回火后,铁芯的过渡层的厚度约为硬化层的一半;
步骤3,气体渗碳,在连续式渗碳炉中的不同时期采用不同的碳势;同时向连续式渗碳炉内滴入两种有机液体,分别形成稀释性气氛和渗碳气氛;
步骤4,利用垂直加热整体淬火法进行淬火,利用两根或多根沿铁芯轴线布置的导体,产生沿铁芯表面垂直方向流动的感应电流,对铁芯加热,达到淬火温度后,对铁芯整体表面进行喷射淬火或浸液淬火。
2.如权利要求1所述的退火方法,其特征在于:所述第二速率<第三速率<第一速率。
3.如权利要求1所述的退火方法,其特征在于:纵向磁场和横向磁场为恒定的磁场或是脉冲磁场。
4.如权利要求1所述的退火方法,其特征在于:步骤2中,采用透入式加热方法,使得电流热透入铁芯深度为硬化层的三分之二。
5.如权利要求1所述的退火方法,其特征在于:步骤3中,渗碳开始阶段,为强渗期,采用高的碳势;在渗碳的结束阶段,碳势降低,在气体渗碳结束后,维持弱的碳势,防止铁芯表面氧化和脱碳。
6.如权利要求1所述的退火方法,其特征在于:步骤2中,采用高频感应加热,频率为550-650kHz,淬硬层深度为3-4mm。
CN202110072789.1A 2021-01-20 2021-01-20 一种提高纳米晶铁芯在互感器中输出线性度的退火方法 Pending CN112899447A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110072789.1A CN112899447A (zh) 2021-01-20 2021-01-20 一种提高纳米晶铁芯在互感器中输出线性度的退火方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110072789.1A CN112899447A (zh) 2021-01-20 2021-01-20 一种提高纳米晶铁芯在互感器中输出线性度的退火方法

Publications (1)

Publication Number Publication Date
CN112899447A true CN112899447A (zh) 2021-06-04

Family

ID=76116270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110072789.1A Pending CN112899447A (zh) 2021-01-20 2021-01-20 一种提高纳米晶铁芯在互感器中输出线性度的退火方法

Country Status (1)

Country Link
CN (1) CN112899447A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703346A (zh) * 2022-05-17 2022-07-05 广德亿盛精密科技有限公司 新能源汽车电机铁芯高频加热水冷工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703346A (zh) * 2022-05-17 2022-07-05 广德亿盛精密科技有限公司 新能源汽车电机铁芯高频加热水冷工艺

Similar Documents

Publication Publication Date Title
WO2009131202A1 (ja) 鋼部材の製造方法
CN108277449B (zh) 一种对低碳合金钢工件进行渗碳淬火的热处理方法
JP7092500B2 (ja) 低圧かつ高温で1つ以上の鋼部品を浸炭窒化する方法および設備
JP2007046088A (ja) 浸窒焼入品及びその製造方法
JP4876668B2 (ja) 鋼部材の熱処理方法
CN112593183A (zh) 一种渗碳淬火的热处理方法
JP5649884B2 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
JP2016023346A (ja) 歯車の浸炭処理方法
CN112899447A (zh) 一种提高纳米晶铁芯在互感器中输出线性度的退火方法
JP2007238969A (ja) 窒化処理方法
WO2019223491A1 (zh) 一种高强度曲轴的制造方法
CN109957648A (zh) 一种齿轮钢热处理工艺
JP2019127624A (ja) 鋼部材の製造方法
KR101866754B1 (ko) 저압 범위 내에서의 침탄방법
US10894992B2 (en) Method for producing steel member
JP5798463B2 (ja) 浸炭処理方法及び浸炭処理装置
KR20170052485A (ko) 저온 진공침탄방법
CN112708734A (zh) 一种具有提高耐磨性的热处理工艺
CN109295411A (zh) 一种q&amp;p&amp;t工艺下的汽车传动齿轮
KR102360964B1 (ko) 기어용 강의 복합 열처리 방법
Rudnev Recent inventions and innovations in induction hardening of gears and gear-like components
JP2009270155A (ja) 浸窒焼入れ方法および浸窒焼入れ品
CN108441624A (zh) 一种提高风电齿轮气体渗碳效率的激光冲击工艺
JP2013151746A (ja) オーステナイト系ステンレス鋼の浸炭処理方法及びその加工品
KR100681505B1 (ko) 면압 제어 오스템퍼링 열처리 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210604