CN112892524A - 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用 - Google Patents

一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用 Download PDF

Info

Publication number
CN112892524A
CN112892524A CN202110097355.7A CN202110097355A CN112892524A CN 112892524 A CN112892524 A CN 112892524A CN 202110097355 A CN202110097355 A CN 202110097355A CN 112892524 A CN112892524 A CN 112892524A
Authority
CN
China
Prior art keywords
kaolin
loaded
doped zno
water bath
zno composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110097355.7A
Other languages
English (en)
Inventor
张训波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Ciwen Technology Co ltd
Original Assignee
Chongqing Ciwen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Ciwen Technology Co ltd filed Critical Chongqing Ciwen Technology Co ltd
Priority to CN202110097355.7A priority Critical patent/CN112892524A/zh
Publication of CN112892524A publication Critical patent/CN112892524A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化降解技术领域,且公开了一种负载高岭土的Mn掺杂ZnO的复合材料,独特的海胆状形貌,增加了Mn掺杂ZnO对光能的接触和利用率,MnCO3不参与实际的化学反应,Mn离子掺杂可以改善ZnO的光降解性能,这主要归因于Mn离子掺杂,使其成为电子和空穴的陷阱,从而减少了电子和空穴的再结合并提高了光降解效率,另外,Mn掺杂将杂质能级引入ZnO的带隙中,这增强了样品在可见光区域的吸收并提高了光的利用率,与纯ZnO相比,当高岭土负载ZnO时,能够减少了粉末的团聚,且改性高岭土可以改善有机化合物的吸附,增加有机化合物与光催化剂之间的接触,促进光生电子和空穴的分离,并且不会抑制光催化剂对光能的有效吸收。

Description

一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用
技术领域
本发明涉及光催化降解技术领域,具体为一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用。
背景技术
目前,传统的废水处理方法存在成本高,处理效率低等问题,然而,半导体光催化具有处理效率高,应用范围广,减少二次污染等优点,在水污染治理中具有广阔的应用前景,环境废水的光催化降解是上世纪80年代开发的一种新型水处理技术,它能将水中的大量有机物完全分解为无污染的无机小分子,避免二次污染,降低处理成本低,操作条件简单,氧化能力强等优点,已成为近年来污染控制技术的研究热点。
ZnO是一种自活化的半导体材料,可广泛应用于短波光电器件,压敏电阻,传感器,光催化等领域,纳米氧化锌还具有出色的物理和化学性能,例如高热稳定性,化学稳定性和不导电性,无毒,被认为是最有前途的光催化剂之一,但它具有一些缺点,例如其比表面积小,会出现严重的团聚,同时,带隙宽,仅对紫外线有反应,使得光生电子与空穴容易出现复合,而且催化剂颗粒越小,从系统中分离出来就越困难,无法回收。
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用,解决了单纯的ZnO光催化材料的聚团以及光生电子和空穴容易复合,严重影响其对甲基橙和亚甲基蓝等有机污染物的光催化降解活性。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:一种负载高岭土的Mn掺杂ZnO的复合材料,所述负载高岭土的Mn掺杂ZnO的复合材料制备方法包括以下步骤:
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:100-150,在80-100℃下加热回流酸化处理3-6h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,在40-60℃,滴加氢氧化钾与碳酸锰的混合溶液,超声反应4-8min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料,应用于光催化降解领域。
优选的,所述步骤(1)的改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比120-180:100:280-350:2-3:500-550。
优选的,所述超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层。
优选的,所述步骤(3)的水热反应的温度为100-120℃,反应时间为9-12h。
优选的,所述负载高岭土的Mn掺杂ZnO的复合材料应用于光催化降解领域。
(三)有益的技术效果
与现有技术相比,本发明具备以下实验原理和有益技术效果:
该一种负载高岭土的Mn掺杂ZnO的复合材料,煅烧能够去除高岭土中铝氧八面体的OH基团,并降低Al的配位数,同时,有序高岭石也会变成结构紊乱的偏高岭石,从而使Al能够发生酸反应活动,而在与酸反应的过程中,氧化物的浸出使得高岭土颗粒表面形成孔状结构,增加了高岭土的比表面积,提高了有机污染物在高岭土上的吸附概率,然后,将改性高岭土添加到以硝酸锌为锌源、聚乙二醇为结构导向剂、碳酸锰为掺杂剂和氢氧化钾为沉淀剂形成前驱体溶液中,进行水热反应,使其在改性高岭土表面沉淀形成海胆状Mn掺杂ZnO,而独特的海胆状形貌,具有更高的比表面积,增加了Mn掺杂ZnO对光辐射的接触和光能的利用率。
该一种负载高岭土的Mn掺杂ZnO的复合材料,MnCO3不参与实际的化学反应,Mn离子掺杂可以改善ZnO的光降解性能,这主要归因于Mn离子掺杂,使其成为电子和空穴的陷阱,从而减少了电子和空穴的再结合并提高了光降解效率,另外,Mn掺杂将杂质能级引入ZnO的带隙中,这增强了样品在可见光区域的吸收并提高了光的利用率,与纯ZnO相比,当比表面积巨大的高岭土负载Mn掺杂ZnO时,能够减少了粉末的团聚,且改性高岭土可以改善甲基橙和亚甲基蓝等有机污染物的吸附,增加有机污染物与光催化复合材料之间的接触,促进光生电子和空穴的分离,并且不会抑制光催化剂对光能的有效吸收,从而实现复合材料先对有机污染物进行吸附,然后进行光催化降解的双功能。
附图说明
图1为本发明中超声装置结构主视图;
图2为本发明中超声装置结构俯视图。
图中:1-超声装置;2-水浴锅;3-烧杯;4-进水孔;5-出水口;6-超声振子;7-保温层。
具体实施方式
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:100-150,在80-100℃下加热回流酸化处理3-6h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在40-60℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比120-180:100:280-350:2-3:500-550,超声反应4-8min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为100-120℃,反应时间为9-12h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料,应用于光催化降解领域。
实施例1
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为1:1,在80℃下加热回流酸化处理3h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在40℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比120:100:280:2:500,超声反应4min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为100℃,反应时间为9h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
实施例2
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:120,在90℃下加热回流酸化处理4h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在50℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比150:100:320:2.5:520,超声反应6min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为110℃,反应时间为10h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
实施例3
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:150,在100℃下加热回流酸化处理6h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在60℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比180:100:350:3:550,超声反应8min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为120℃,反应时间为12h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
对比例1
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:80,在60℃下加热回流酸化处理2h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在35℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比90:100:210:1.5:380,超声反应3min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为75℃,反应时间为7h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
对比例2
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:180,在120℃下加热回流酸化处理7h,冷却,离心分离,蒸馏水洗涤纯化,得到改性高岭土,
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层,在70℃,滴加氢氧化钾与碳酸锰的混合溶液,控制改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比220:100:420:4:650,超声反应10min,得到前驱体溶液,
(3)将前驱体溶液转移进反应釜中,进行水热反应,反应温度为145℃,反应时间为15h,反应后再离心、洗净、真空干燥,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
称取2g的负载高岭土的Mn掺杂ZnO的复合材料催化剂加入100mL浓度为0.1%的亚甲基蓝溶液中,并遮光搅拌30min后,于200W氙灯下照射3h后取样,离心分离,剩余的亚甲基蓝的吸光度和浓度由AA320N原子吸收光谱仪测定,并计算亚甲基的降解率,检测的标准为GB/T 23762-2020。
测试 实施例1 实施例2 实施例3 对比例1 对比例2
初始浓度(%) 0.1 0.1 0.1 0.1 0.1
剩余浓度(%) 0.0064 0.0011 0.0059 0.0220 0.0188
降解率(%) 93.6 98.9 94.1 78.0 81.2
称取5g的负载高岭土的Mn掺杂ZnO的复合材料催化剂加入100mL浓度为0.1%的甲基橙溶液中,并遮光搅拌30min后,于200W氙灯下照射6h后取样,离心分离,剩余的甲基橙的吸光度和浓度由AA320N原子吸收光谱仪测定,并计算亚甲基的降解率,检测的标准为GB/T23762-2020。
测试 实施例1 实施例2 实施例3 对比例1 对比例2
初始浓度(%) 0.1 0.1 0.1 0.1 0.1
剩余浓度(%) 0.0051 0.0032 0.004 0.0168 0.0187
降解率(%) 94.9 96.8 96.0 83.2 81.3

Claims (5)

1.一种负载高岭土的Mn掺杂ZnO的复合材料,其特征在于:所述负载高岭土的Mn掺杂ZnO的复合材料的制备方法包括以下步骤:
(1)将在煅烧处理后的高岭土置于盐酸溶液中,控制高岭土和HCl的质量比为100:100-150,在80-100℃下加热回流酸化处理3-6h,得到改性高岭土;
(2)将硝酸锌、聚乙二醇和改性高岭土加入蒸馏水中,超声至均匀,置于超声装置中,在40-60℃,滴加氢氧化钾与碳酸锰的混合溶液,超声反应4-8min,得到前驱体溶液;
(3)将前驱体溶液转移进反应釜中,进行水热反应,即可得到负载高岭土的Mn掺杂ZnO的复合材料。
2.根据权利要求1所述的负载高岭土的Mn掺杂ZnO的复合材料,其特征在于:所述步骤(1)的改性高岭土、硝酸锌、聚乙二醇、碳酸锰和氢氧化钾的质量比120-180:100:280-350:2-3:500-550。
3.根据权利要求1所述的一种负载高岭土的Mn掺杂ZnO的复合材料,其特征在于:所述超声装置包括水浴锅,水浴锅内部设置有烧杯,水浴锅左上方设置有进水孔,水浴锅右下方设置有出水口,水浴锅下方固定连接有超声振子,水浴锅外侧设置有保温层。
4.根据权利要求1所述的负载高岭土的Mn掺杂ZnO的复合材料,其特征在于:所述步骤(3)的水热反应的温度为100-120℃,反应时间为9-12h。
5.根据权利要求1所述的负载高岭土的Mn掺杂ZnO的复合材料,其特征在于:所述负载高岭土的Mn掺杂ZnO的复合材料应用于光催化降解领域。
CN202110097355.7A 2021-04-20 2021-04-20 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用 Withdrawn CN112892524A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110097355.7A CN112892524A (zh) 2021-04-20 2021-04-20 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110097355.7A CN112892524A (zh) 2021-04-20 2021-04-20 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用

Publications (1)

Publication Number Publication Date
CN112892524A true CN112892524A (zh) 2021-06-04

Family

ID=76119481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110097355.7A Withdrawn CN112892524A (zh) 2021-04-20 2021-04-20 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用

Country Status (1)

Country Link
CN (1) CN112892524A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159559A (zh) * 2021-11-17 2022-03-11 中国地质大学(武汉) 一种高岭石复合诊疗剂及其制备方法和应用
CN115845863A (zh) * 2023-01-09 2023-03-28 辽宁大学 一种铬掺杂四氧化三钴光催化剂及其制备方法与应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159559A (zh) * 2021-11-17 2022-03-11 中国地质大学(武汉) 一种高岭石复合诊疗剂及其制备方法和应用
CN114159559B (zh) * 2021-11-17 2022-11-25 中国地质大学(武汉) 一种高岭石复合诊疗剂及其制备方法和应用
CN115845863A (zh) * 2023-01-09 2023-03-28 辽宁大学 一种铬掺杂四氧化三钴光催化剂及其制备方法与应用
CN115845863B (zh) * 2023-01-09 2024-03-22 辽宁大学 一种铬掺杂四氧化三钴光催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110975918B (zh) 一种硫化铟锌-氮掺杂石墨烯泡沫复合光催化材料及其制备方法和应用
US10646852B2 (en) Double-layer ZnO hollow sphere photocatalytic material and preparation method thereof
CN103611551B (zh) 硫化铋/氧化钼铋异质结光催化复合材料的制备方法
CN112892524A (zh) 一种负载高岭土的Mn掺杂ZnO的复合材料的制法和应用
WO2022047813A1 (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN111617804B (zh) 一种分层可见光复合催化剂的制备方法及应用
CN108745393A (zh) 一种铋-碳酸氧铋异质结构光催化材料及其制备方法
CN114105280A (zh) 一种基于非金属复合催化材料活化过二硫酸盐处理有机废水的方法
CN113663679A (zh) 一种钙钛矿型复合光催化剂、制备方法及专用系统和方法
CN104383945A (zh) 一种黑色溴氧化铋光催化剂及其制备方法
CN113145627A (zh) 微波-紫外线联用的土壤修复装置
CN106140241B (zh) 氧离子表面调控的纳米g-C3N4有机光催化剂及其制备方法和应用
CN110605128A (zh) 一种CoTiO3/Bi4NbO8Cl复合光催化剂材料的制备方法
CN107376912B (zh) 一种多层TiO2纳米管基光催化剂及其制备方法与应用
CN110237855A (zh) 一种可见光响应氧化铁掺杂氮缺陷氮化碳复合材料的制备方法及应用
CN112495400B (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN107376956B (zh) 一种氧化锌/红磷异质结复合光催化剂及其制备方法
CN109499597A (zh) 一种多孔二氧化钛/氮化碳纳米颗粒复合材料的制备方法
CN113694946A (zh) 一种核壳结构的Bi2O2CO3@rGO光催化剂及其制备方法及应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN109772381B (zh) 基于fto表面的卤氧化铋/铋酸钙复合材料、制备方法及在光催化降解水体中染料的应用
CN115849441B (zh) 一种富氧空位Bi12O17Cl2超薄纳米片及其制备方法和应用
CN111167486A (zh) 一种Bi5O7I/MnxZn1-xFe2O4复合磁性光催化剂的制备方法
CN111495362A (zh) 低钯金属锚连富表面氧缺陷的钼酸铋光催化剂的制备及应用
CN112844375B (zh) 脱除氮氧化物的MnO2/Bi2WO6异质结光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210604

WW01 Invention patent application withdrawn after publication